A Novel Approach to Satellite Component Health Assessment Based on the Wasserstein Distance and Spectral Clustering
Abstract
:1. Introduction
2. Problem Description and Overall Program
2.1. Problem Description
2.2. Overall Program
3. Program Design
3.1. WD-Based Multiparameter Component Assessment Model
3.1.1. WD-Based Single Parameter Health Calculation
3.1.2. Multiparametric Assessment Models Based on Data Standardization
3.2. Classification of Health Status Classes Based on Spectral Clustering
3.3. Verification of Validity Based on Seasonal Decomposition
4. Experiment and Verification
4.1. Component Assessment Modeling
4.2. Component Health Assessment
4.3. Verification of Validity
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tao, L.; Zhang, T.; Peng, D.; Hao, J.; Jia, Y.; Lu, C.; Ding, Y.; Ma, L. Long-term degradation prediction and assessment with heteroscedasticity telemetry data based on GRU-GARCH and MD hybrid method: An application for satellite. Aerosp. Sci. Technol. 2021, 115, 106826. [Google Scholar] [CrossRef]
- Zhang, B.; Wu, Y.; Zhao, B.; Chanussot, J.; Hong, D.; Yao, J.; Gao, L. Progress and challenges in intelligent remote sensing satellite systems. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 1814–1822. [Google Scholar] [CrossRef]
- Vichard, L.; Steiner, N.Y.; Zerhouni, N.; Hissel, D. Hybrid fuel cell system degradation modeling methods: A comprehensive review. J. Power Sources 2021, 506, 230071. [Google Scholar] [CrossRef]
- Rui, K.; Wenjun, G.; Yunxia, C. Model-driven degradation modeling approaches: Investigation and review. Chin. J. Aeronaut. 2020, 33, 1137–1153. [Google Scholar]
- Zhang, K.; Jiang, B.; Yan, X.-G.; Mao, Z. Incipient fault detection for traction motors of high-speed railways using an interval sliding mode observer. IEEE Trans. Intell. Transp. Syst. 2018, 20, 2703–2714. [Google Scholar] [CrossRef]
- Liu, J.; Tang, Q.; Qiu, W.; Ma, J.; Duan, J. Probability-based failure evaluation for power measuring equipment. Energies 2021, 14, 3632. [Google Scholar] [CrossRef]
- Xiao, N.-C.; Yuan, K.; Zhou, C. Adaptive kriging-based efficient reliability method for structural systems with multiple failure modes and mixed variables. Comput. Methods Appl. Mech. Eng. 2020, 359, 112649. [Google Scholar] [CrossRef]
- Lee, I.; Lee, U.; Ramu, P.; Yadav, D.; Bayrak, G.; Acar, E. Small failure probability: Principles, progress and perspectives. Struct. Multidiscip. Optim. 2022, 65, 326. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, C.; Wang, Q. Bayesian Uncertainty Inferencing for Fault Diagnosis of Intelligent Instruments in IoT Systems. Appl. Sci. 2023, 13, 5380. [Google Scholar] [CrossRef]
- Yuehua, C.; Liang, J.; Bin, J.; Ningyun, L. Useful life prediction using a stochastic hybrid automata model for an ACS multi-gyro subsystem. J. Syst. Eng. Electron. 2019, 30, 154–166. [Google Scholar]
- Strzelecki, P. Determination of fatigue life for low probability of failure for different stress levels using 3-parameter Weibull distribution. Int. J. Fatigue 2021, 145, 106080. [Google Scholar] [CrossRef]
- Chen, Y.; Peng, G.; Zhu, Z.; Li, S. A novel deep learning method based on attention mechanism for bearing remaining useful life prediction. Appl. Soft Comput. 2020, 86, 105919. [Google Scholar] [CrossRef]
- Chen, Z.; Wu, M.; Zhao, R.; Guretno, F.; Yan, R.; Li, X. Machine remaining useful life prediction via an attention-based deep learning approach. IEEE Trans. Ind. Electron. 2020, 68, 2521–2531. [Google Scholar] [CrossRef]
- Wang, M.; Wang, H.; Cui, L.; Xiang, G.; Han, X.; Zhang, Q.; Chen, J. Remaining Useful Life Prediction for Aero-Engines Based on Time-Series Decomposition Modeling and Similarity Comparisons. Aerospace 2022, 9, 609. [Google Scholar] [CrossRef]
- Hui, Y.; Cheng, Y.; Jiang, B.; Yang, L. A Method for Satellite Component Health Assessment Based on Multiparametric Data Distribution Characteristics. Aerospace 2023, 10, 356. [Google Scholar] [CrossRef]
- Schwabacher, M. A survey of data-driven prognostics. In Proceedings of the Infotech@ Aerospace, Arlington, Virginia, 26–29 September 2005; p. 7002. [Google Scholar]
- Park, H.J.; Kim, S.; Lee, J.; Kim, N.H.; Choi, J.-H. System-level prognostics approach for failure prediction of reaction wheel motor in satellites. Adv. Space Res. 2023, 71, 2691–2701. [Google Scholar] [CrossRef]
- Ibrahim, S.K.; Ahmed, A.; Zeidan, M.A.E.; Ziedan, I.E. Machine learning techniques for satellite fault diagnosis. Ain Shams Eng. J. 2020, 11, 45–56. [Google Scholar] [CrossRef]
- Gao, J.; Wang, H.; Shen, H. Task failure prediction in cloud data centers using deep learning. IEEE Trans. Serv. Comput. 2020, 15, 1411–1422. [Google Scholar] [CrossRef]
- Abdelghafar, S.; Goda, E.; Darwish, A.; Hassanien, A.E. Satellite lithium-ion battery remaining useful life estimation by coyote optimization algorithm. In Proceedings of the 2019 Ninth International Conference on Intelligent Computing and Information Systems (ICICIS), Cairo, Egypt, 8–10 December 2019; pp. 124–129. [Google Scholar]
- Yuchen, S.; Datong, L.; Yandong, H.; Jinxiang, Y.; Yu, P. Satellite lithium-ion battery remaining useful life estimation with an iterative updated RVM fused with the KF algorithm. Chin. J. Aeronaut. 2018, 31, 31–40. [Google Scholar]
- Ma, M.; Mao, Z. Deep-convolution-based LSTM network for remaining useful life prediction. IEEE Trans. Ind. Inform. 2020, 17, 1658–1667. [Google Scholar] [CrossRef]
- Wang, X.; Jiang, B.; Wu, S.; Lu, N.; Ding, S.X. Multivariate relevance vector regression based degradation modeling and remaining useful life prediction. IEEE Trans. Ind. Electron. 2021, 69, 9514–9523. [Google Scholar] [CrossRef]
- Pardini, C.; Anselmo, L. Environmental sustainability of large satellite constellations in low earth orbit. Acta Astronaut. 2020, 170, 27–36. [Google Scholar] [CrossRef]
- Boudjemai, A.; Hocine, R.; Guerionne, S. Space environment effect on earth observation satellite instruments. In Proceedings of the 2015 7th International Conference on Recent Advances in Space Technologies (RAST), Istanbul, Turkey, 16–19 June 2015; pp. 627–634. [Google Scholar]
- Chen, H.; Jiang, B.; Ding, S.X.; Lu, N.; Chen, W. Probability-relevant incipient fault detection and diagnosis methodology with applications to electric drive systems. IEEE Trans. Control Syst. Technol. 2018, 27, 2766–2773. [Google Scholar] [CrossRef]
- Zhou, C.; Xiao, N.-C.; Zuo, M.J.; Gao, W. An improved Kriging-based approach for system reliability analysis with multiple failure modes. Eng. Comput. 2022, 38, 1813–1833. [Google Scholar] [CrossRef]
- Wang, X.; Shen, C.; Xia, M.; Wang, D.; Zhu, J.; Zhu, Z. Multi-scale deep intra-class transfer learning for bearing fault diagnosis. Reliab. Eng. Syst. Saf. 2020, 202, 107050. [Google Scholar] [CrossRef]
- Rüschendorf, L. The Wasserstein distance and approximation theorems. Probab. Theory Relat. Fields 1985, 70, 117–129. [Google Scholar] [CrossRef]
- Panaretos, V.M.; Zemel, Y. Statistical aspects of Wasserstein distances. Annu. Rev. Stat. Its Appl. 2019, 6, 405–431. [Google Scholar] [CrossRef]
- Von Luxburg, U. A tutorial on spectral clustering. Stat. Comput. 2007, 17, 395–416. [Google Scholar] [CrossRef]
- Chambolle, A. An algorithm for total variation minimization and applications. J. Math. Imaging Vis. 2004, 20, 89–97. [Google Scholar]
- Nielsen, F. On a generalization of the Jensen–Shannon divergence and the Jensen–Shannon centroid. Entropy 2020, 22, 221. [Google Scholar] [CrossRef]
- Chen, Y.; Ye, J.; Li, J. Aggregated Wasserstein distance and state registration for hidden Markov models. IEEE Trans. Pattern Anal. Mach. Intell. 2019, 42, 2133–2147. [Google Scholar] [CrossRef] [PubMed]
- Hoshino, K. Finite-horizon control of nonlinear discrete-time systems with terminal cost of Wasserstein distance. In Proceedings of the 2020 59th IEEE Conference on Decision and Control (CDC), Jeju Island, Republic of Korea, 14–18 December 2020; pp. 4268–4274. [Google Scholar]
- Zhao, G.; Cai, Z.; Wang, X.; Dang, X. GAN Data Augmentation Methods in Rock Classification. Appl. Sci. 2023, 13, 5316. [Google Scholar] [CrossRef]
- Xu, C.; Wang, J.; Yang, W.; Yu, H.; Yu, L.; Xia, G.-S. Detecting tiny objects in aerial images: A normalized Wasserstein distance and a new benchmark. ISPRS J. Photogramm. Remote Sens. 2022, 190, 79–93. [Google Scholar] [CrossRef]
- Peyré, G.; Cuturi, M. Computational optimal transport: With applications to data science. Found. Trends® Mach. Learn. 2019, 11, 355–607. [Google Scholar] [CrossRef]
- Leo, J.; Ge, E.; Li, S. Wasserstein Distance in Deep Learning. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4368733 (accessed on 18 August 2023).
- Sun, H.; Yang, Z.; Cai, Q.; Wei, G.; Mo, Z. An extended Exp-TODIM method for multiple attribute decision making based on the Z-Wasserstein distance. Expert Syst. Appl. 2023, 214, 119114. [Google Scholar] [CrossRef]
- Kang, Z.; Shi, G.; Huang, S.; Chen, W.; Pu, X.; Zhou, J.T.; Xu, Z. Multi-graph fusion for multi-view spectral clustering. Knowl.-Based Syst. 2020, 189, 105102. [Google Scholar] [CrossRef]
- Huang, D.; Wang, C.-D.; Wu, J.-S.; Lai, J.-H.; Kwoh, C.-K. Ultra-scalable spectral clustering and ensemble clustering. IEEE Trans. Knowl. Data Eng. 2019, 32, 1212–1226. [Google Scholar] [CrossRef]
- Sun, G.; Cong, Y.; Dong, J.; Liu, Y.; Ding, Z.; Yu, H. What and how: Generalized lifelong spectral clustering via dual memory. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 44, 3895–3908. [Google Scholar] [CrossRef]
- Verma, D.; Meila, M. A comparison of spectral clustering algorithms. Univ. Wash. Tech. Rep. UWCSE030501 2003, 1, 1–18. [Google Scholar]
- Lin, J.; Dou, C.; Liu, Y. Multifractal detrended fluctuation analysis based on optimized empirical mode decomposition for complex signal analysis. Nonlinear Dyn. 2021, 103, 2461–2474. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, J. Forecasting wavelet neural hybrid network with financial ensemble empirical mode decomposition and MCID evaluation. Expert Syst. Appl. 2021, 166, 114097. [Google Scholar] [CrossRef]
- Wen, K.; Zhao, G.; He, B.; Ma, J.; Zhang, H. A decomposition-based forecasting method with transfer learning for railway short-term passenger flow in holidays. Expert Syst. Appl. 2022, 189, 116102. [Google Scholar] [CrossRef]
- Apaydin, H.; Sattari, M.T.; Falsafian, K.; Prasad, R. Artificial intelligence modelling integrated with Singular Spectral analysis and Seasonal-Trend decomposition using Loess approaches for streamflow predictions. J. Hydrol. 2021, 600, 126506. [Google Scholar] [CrossRef]
- Gao, J.; Song, X.; Wen, Q.; Wang, P.; Sun, L.; Xu, H. Robusttad: Robust time series anomaly detection via decomposition and convolutional neural networks. arXiv 2020, arXiv:2002.09545. [Google Scholar]
Weighting of Current | Weighting of Bearing Temperature | |
---|---|---|
CRITIC method | 0.512 | 0.488 |
Entropy method | 0.486 | 0.514 |
Combined weighting | 0.499 | 0.501 |
Excellent | Good | |
---|---|---|
HDDD | 0.821 | 0.338 |
Indicator | Current | Bearing Temperature |
---|---|---|
Pearson correlation coefficient | 0.999 | 0.999 |
RMSE | ||
MAE |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hui, Y.; Cheng, Y.; Jiang, B.; Han, X.; Yang, L. A Novel Approach to Satellite Component Health Assessment Based on the Wasserstein Distance and Spectral Clustering. Appl. Sci. 2023, 13, 9438. https://doi.org/10.3390/app13169438
Hui Y, Cheng Y, Jiang B, Han X, Yang L. A Novel Approach to Satellite Component Health Assessment Based on the Wasserstein Distance and Spectral Clustering. Applied Sciences. 2023; 13(16):9438. https://doi.org/10.3390/app13169438
Chicago/Turabian StyleHui, Yongchao, Yuehua Cheng, Bin Jiang, Xiaodong Han, and Lei Yang. 2023. "A Novel Approach to Satellite Component Health Assessment Based on the Wasserstein Distance and Spectral Clustering" Applied Sciences 13, no. 16: 9438. https://doi.org/10.3390/app13169438
APA StyleHui, Y., Cheng, Y., Jiang, B., Han, X., & Yang, L. (2023). A Novel Approach to Satellite Component Health Assessment Based on the Wasserstein Distance and Spectral Clustering. Applied Sciences, 13(16), 9438. https://doi.org/10.3390/app13169438