Finite Elements Analysis of Biomechanical Behavior of the Bracket in a Gradual Horizontal Periodontal Breakdown—A Comparative Analysis of Multiple Failure Criteria
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
- The Tresca (found to be better suited) and Von Mises criteria are more correct (qualitatively) than the other three criteria in both intact and reduced periodontium in the study of stress distribution in stainless-steel brackets.
- Qualitatively, the Tresca and Von Mises criteria simulations with 0.5 N of force and five orthodontic movements generated the maximum stress areas in the attachment side and the entire base of the bracket, confirming non-homogenous stress distribution areas and risks of bond failure.
- Qualitatively, for all five failure criteria, maximum stress areas were displayed on the applied force site/surface, on the internal surface of the bracket, and in the enamel around bracket area in a non-homogenous manner.
- Quantitatively, all five types of failure criteria showed comparable results, with higher amounts of stress displayed on the bracket (internal surface and force appliance site/surface) when compared with the enamel component.
- All five failure criteria quantitatively showed rotation and translation, closely followed by tipping to be the most stressful movements.
- In all five failure criteria’s simulations rotation, translation and tipping movements showed slightly lower quantitative values for 8 mm bone loss when compared with intact periodontium, while intrusion and extrusion has shown the opposite behavior (i.e., a slight increase).
- The periodontal breakdown has little to no influence over the stress display in the bracket and surrounding enamel area for all five orthodontic movements.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Eser, I.; Cicek, O.; Ozkalayci, N.; Yetmez, M.; Erener, H. Effect of Different Types of Adhesive Agents on Orthodontic Bracket Shear Bond Strength: A Cyclic Loading Study. Materials 2023, 16, 724. [Google Scholar] [CrossRef] [PubMed]
- Algera, T.J.; Feilzer, A.J.; Prahl-Andersen, B.; Kleverlaan, C.J. A comparison of finite element analysis with in vitro bond strength tests of the bracket-cement-enamel system. Eur. J. Orthod. 2011, 33, 608–612. [Google Scholar] [CrossRef] [PubMed]
- Elsaka, S.E.; Hammad, S.M.; Ibrahim, N.F. Evaluation of stresses developed in different bracket-cement-enamel systems using finite element analysis with in vitro bond strength tests. Prog. Orthod. 2014, 15, 33. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.A.; Sekar, S.; Kumar, S.S.; Divakar, G.; Vijayarangam, K.; Arulselvi, S. Computation and Collation of Torque Expression in 0.018 Inch and 0.022 Inch Preadjusted Bracket Slots on Passive Insertion of Full-Size Archwire: A Finite Element Study. J. Pharm. Bioallied Sci. 2022, 14 (Suppl. S1), S143–S147. [Google Scholar] [CrossRef] [PubMed]
- Magesh, V.; Harikrishnan, P.; Kingsly Jeba Singh, D. Finite element analysis of slot wall deformation in stainless steel and titanium orthodontic brackets during simulated palatal root torque. Am. J. Orthod. Dentofac. Orthop. Off. Publ. Am. Assoc. Orthod. Its Const. Soc. Am. Board Orthod. 2018, 153, 481–488. [Google Scholar] [CrossRef] [PubMed]
- Magesh, V.; Harikrishnan, P.; Singh, D.K.J. Experimental evaluation of orthodontic bracket slot deformation to simulated torque. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2021, 235, 940–946. [Google Scholar] [CrossRef] [PubMed]
- Moga, R.A.; Olteanu, C.D.; Botez, M.D.; Buru, S.M. Assessment of the Orthodontic External Resorption in Periodontal Breakdown—A Finite Elements Analysis (Part I). Healthcare 2023, 11, 1447. [Google Scholar] [CrossRef] [PubMed]
- Chun, K.; Choi, H.; Lee, J. Comparison of mechanical property and role between enamel and dentin in the human teeth. J. Dent. Biomech. 2014, 5, 1758736014520809. [Google Scholar] [CrossRef]
- Maravić, T.; Comba, A.; Mazzitelli, C.; Bartoletti, L.; Balla, I.; di Pietro, E.; Josić, U.; Generali, L.; Vasiljević, D.; Blažić, L.; et al. Finite element and in vitro study on biomechanical behavior of endodontically treated premolars restored with direct or indirect composite restorations. Sci. Rep. 2022, 12, 12671. [Google Scholar] [CrossRef]
- Moga, R.A.; Buru, S.M.; Olteanu, C.D. Assessment of the Best FEA Failure Criteria (Part I): Investigation of the Biomechanical Behavior of PDL in Intact and Reduced Periodontium. Int. J. Environ. Res. Public Health 2022, 19, 12424. [Google Scholar] [CrossRef]
- Moga, R.A.; Buru, S.M.; Olteanu, C.D. Assessment of the Best FEA Failure Criteria (Part II): Investigation of the Biomechanical Behavior of Dental Pulp and Apical-Neuro-Vascular Bundle in Intact and Reduced Periodontium. Int. J. Environ. Res. Public Health 2022, 19, 15635. [Google Scholar] [CrossRef]
- Perez-Gonzalez, A.; Iserte-Vilar, J.L.; Gonzalez-Lluch, C. Interpreting finite element results for brittle materials in endodontic restorations. Biomed. Eng. Online 2011, 10, 44. [Google Scholar] [CrossRef]
- Moga, R.A.; Olteanu, C.D.; Daniel, B.M.; Buru, S.M. Finite Elements Analysis of Tooth—A Comparative Analysis of Multiple Failure Criteria. Int. J. Environ. Res. Public Health 2023, 20, 4133. [Google Scholar] [CrossRef] [PubMed]
- Jang, Y.; Hong, H.T.; Roh, B.D.; Chun, H.J. Influence of apical root resection on the biomechanical response of a single-rooted tooth: A 3-dimensional finite element analysis. J. Endod. 2014, 40, 1489–1493. [Google Scholar] [CrossRef]
- Giannini, M.; Soares, C.J.; de Carvalho, R.M. Ultimate tensile strength of tooth structures. Dent. Mater. Off. Publ. Acad. Dent. Mater. 2004, 20, 322–329. [Google Scholar] [CrossRef] [PubMed]
- Konishi, N.; Watanabe, L.G.; Hilton, J.F.; Marshall, G.W.; Marshall, S.J.; Staninec, M. Dentin shear strength: Effect of distance from the pulp. Dent. Mater. Off. Publ. Acad. Dent. Mater. 2002, 18, 516–520. [Google Scholar] [CrossRef] [PubMed]
- Proffit, W.R.; Fields, H.W.; Sarver, D.M.; Ackerman, J.L. Contemporary Orthodontics, 5th ed.; Elsevier: St. Louis, MO, USA, 2012. [Google Scholar]
- Kailasam, V.; Rangarajan, H.; Easwaran, H.N.; Muthu, M.S. Proximal enamel thickness of the permanent teeth: A systematic review and meta-analysis. Am. J. Orthod. Dentofac. Orthop. Off. Publ. Am. Assoc. Orthod. Its Const. Soc. Am. Board Orthod. 2021, 160, 793–804.e3. [Google Scholar] [CrossRef] [PubMed]
- Gupta, M.; Madhok, K.; Kulshrestha, R.; Chain, S.; Kaur, H.; Yadav, A. Determination of stress distribution on periodontal ligament and alveolar bone by various tooth movements—A 3D FEM study. J. Oral Biol. Craniofacial Res. 2020, 10, 758–763. [Google Scholar] [CrossRef]
- Shaw, A.M.; Sameshima, G.T.; Vu, H.V. Mechanical stress generated by orthodontic forces on apical root cementum: A finite element model. Orthod. Craniofacial Res. 2004, 7, 98–107. [Google Scholar] [CrossRef]
- Merdji, A.; Mootanah, R.; Bachir Bouiadjra, B.A.; Benaissa, A.; Aminallah, L.; Ould Chikh, E.B.; Mukdadi, S. Stress analysis in single molar tooth. Mater. Sci. Eng. C Mater. Biol. Appl. 2013, 33, 691–698. [Google Scholar] [CrossRef]
- Field, C.; Ichim, I.; Swain, M.V.; Chan, E.; Darendeliler, M.A.; Li, W.; Li, Q. Mechanical responses to orthodontic loading: A 3-dimensional finite element multi-tooth model. Am. J. Orthod. Dentofac. Orthop. Off. Publ. Am. Assoc. Orthod. Its Const. Soc. Am. Board Orthod. 2009, 135, 174–181. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Nemoto, R.; Okada, D.; Shin, C.; Saleh, O.; Oishi, Y.; Takita, M.; Nozaki, K.; Komada, W.; Miura, H. Investigation of stress distribution within an endodontically treated tooth restored with different restorations. J. Dent. Sci. 2022, 17, 1115–1124. [Google Scholar] [CrossRef] [PubMed]
- Moga, R.A.; Olteanu, C.D.; Botez, M.; Buru, S.M. Assessment of the Maximum Amount of Orthodontic Force for Dental Pulp and Apical Neuro-Vascular Bundle in Intact and Reduced Periodontium on Bicuspids (Part II). Int. J. Environ. Res. Public Health 2023, 20, 1179. [Google Scholar] [CrossRef] [PubMed]
- Moga, R.A.; Olteanu, C.D.; Botez, M.; Buru, S.M. Assessment of the Maximum Amount of Orthodontic Force for PDL in Intact and Reduced Periodontium (Part I). Int. J. Environ. Res. Public Health 2023, 20, 1889. [Google Scholar] [CrossRef]
- Vikram, N.R.; Senthil Kumar, K.S.; Nagachandran, K.S.; Hashir, Y.M. Apical stress distribution on maxillary central incisor during various orthodontic tooth movements by varying cemental and two different periodontal ligament thicknesses: A FEM study. Indian J. Dent. Res. Off. Publ. Indian Soc. Dent. Res. 2012, 23, 213–220. [Google Scholar] [CrossRef] [PubMed]
- McCormack, S.W.; Witzel, U.; Watson, P.J.; Fagan, M.J.; Groning, F. Inclusion of periodontal ligament fibres in mandibular finite element models leads to an increase in alveolar bone strains. PLoS ONE 2017, 12, e0188707. [Google Scholar] [CrossRef]
- Hemanth, M.; Deoli, S.; Raghuveer, H.P.; Rani, M.S.; Hegde, C.; Vedavathi, B. Stress Induced in the Periodontal Ligament under Orthodontic Loading (Part I): A Finite Element Method Study Using Linear Analysis. J. Int. Oral Health JIOH 2015, 7, 129–133. [Google Scholar] [PubMed]
- Hemanth, M.; Deoli, S.; Raghuveer, H.P.; Rani, M.S.; Hegde, C.; Vedavathi, B. Stress Induced in Periodontal Ligament under Orthodontic Loading (Part II): A Comparison of Linear versus Non-Linear Fem Study. J. Int. Oral Health JIOH 2015, 7, 114–118. [Google Scholar]
- Reddy, R.T.; Vandana, K.L. Effect of hyperfunctional occlusal loads on periodontium: A three-dimensional finite element analysis. J. Indian Soc. Periodontol. 2018, 22, 395–400. [Google Scholar]
- Jeon, P.D.; Turley, P.K.; Moon, H.B.; Ting, K. Analysis of stress in the periodontium of the maxillary first molar with a three-dimensional finite element model. Am. J. Orthod. Dentofac. Orthop. Off. Publ. Am. Assoc. Orthod. Its Const. Soc. Am. Board Orthod. 1999, 115, 267–274. [Google Scholar] [CrossRef]
- Jeon, P.D.; Turley, P.K.; Ting, K. Three-dimensional finite element analysis of stress in the periodontal ligament of the maxillary first molar with simulated bone loss. Am. J. Orthod. Dentofac. Orthop. Off. Publ. Am. Assoc. Orthod. Its Const. Soc. Am. Board Orthod. 2001, 119, 498–504. [Google Scholar] [CrossRef] [PubMed]
- Hohmann, A.; Wolfram, U.; Geiger, M.; Boryor, A.; Kober, C.; Sander, C.; Sander, F.G. Correspondences of hydrostatic pressure in periodontal ligament with regions of root resorption: A clinical and a finite element study of the same human teeth. Comput. Methods Programs Biomed. 2009, 93, 155–161. [Google Scholar] [CrossRef] [PubMed]
- Hohmann, A.; Wolfram, U.; Geiger, M.; Boryor, A.; Sander, C.; Faltin, R.; Faltin, K.; Sander, F.G. Periodontal ligament hydrostatic pressure with areas of root resorption after application of a continuous torque moment. Angle Orthod. 2007, 77, 653–659. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Liu, Y.; Li, B.; Wang, D.; Dong, X.; Sun, Q.; Chen, G. Numerical simulation of optimal range of rotational moment for the mandibular lateral incisor, canine and first premolar based on biomechanical responses of periodontal ligaments: A case study. Clin. Oral Investig. 2021, 25, 1569–1577. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Liu, Y.; Wang, D.; Zhang, J.; Dong, X.; Jiang, X.; Xu, X. Investigation of effective intrusion and extrusion force for maxillary canine using finite element analysis. Comput. Methods Biomech. Biomed. Eng. 2019, 22, 1294–1302. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.L.; Liu, Y.; Peng, W.; Dong, H.Y.; Zhang, J.X. A biomechanical case study on the optimal orthodontic force on the maxillary canine tooth based on finite element analysis. J. Zhejiang Univ. Sci. B 2018, 7, 535–546. [Google Scholar] [CrossRef] [PubMed]
- Cacciafesta, V.; Sfondrini, M.F.; Lena, A.; Scribante, A.; Vallittu, P.K.; Lassila, L.V. Force levels of fiber-reinforced composites and orthodontic stainless steel wires: A 3-point bending test. Am. J. Orthod. Dentofac. Orthop. Off. Publ. Am. Assoc. Orthod. Its Const. Soc. Am. Board Orthod. 2008, 133, 410–413. [Google Scholar] [CrossRef] [PubMed]
- Maekawa, M.; Kanno, Z.; Wada, T.; Hongo, T.; Doi, H.; Hanawa, T.; Ono, T.; Uo, M. Mechanical properties of orthodontic wires made of super engineering plastic. Dent. Mater. J. 2015, 34, 114–119. [Google Scholar] [CrossRef]
Material | Young’s Modulus, E (GPa) | Poisson Ratio, ʋ | Refs. |
---|---|---|---|
Enamel | 80 | 0.33 | [7,10,11,13,24,25] |
Dentin/Cementum | 18.6 | 0.31 | [7,10,11,13,24,25] |
Pulp | 0.0021 | 0.45 | [7,10,11,13,24,25] |
PDL | 0.0667 | 0.49 | [7,10,11,13,24,25] |
Cortical bone | 14.5 | 0.323 | [7,10,11,13,24,25] |
Trabecular bone | 1.37 | 0.3 | [7,10,11,13,24,25] |
Bracket (stainless steel) | 190 | 0.265 | [7,10,11,13,24,25] |
Resorption (mm) | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | ||
---|---|---|---|---|---|---|---|---|---|---|---|
Intrusion | Tresca | E | 150.94 | 150.94 | 150.94 | 150.94 | 150.03 | 158.45 | 166.60 | 174.70 | 182.93 |
B | 150.94 | 150.94 | 150.94 | 150.94 | 150.03 | 158.45 | 166.60 | 174.70 | 182.91 | ||
B ext. | 158.89 | 158.00 | 158.00 | 158.00 | 157.75 | 166.43 | 175.11 | 183.79 | 192.47 | ||
B int. | 158.89 | 158.00 | 158.00 | 158.00 | 157.75 | 166.43 | 175.11 | 183.79 | 192.47 | ||
VM | E | 131.92 | 131.92 | 131.92 | 131.92 | 131.95 | 139.06 | 146.17 | 153.28 | 160.39 | |
B | 131.98 | 131.92 | 131.92 | 131.92 | 131.95 | 139.06 | 146.17 | 153.28 | 160.39 | ||
B ext. | 138.92 | 138.92 | 138.92 | 138.92 | 138.90 | 146.41 | 153.91 | 161.41 | 168.92 | ||
B int. | 138.91 | 138.92 | 138.92 | 138.92 | 138.90 | 146.41 | 153.91 | 161.41 | 168.92 | ||
Pressure | E | 92.55 | 100.97 | 109.38 | 117.80 | 126.21 | 130.13 | 134.05 | 137.97 | 141.90 | |
B | 250.81 | 251.53 | 252.25 | 252.98 | 253.71 | 278.34 | 302.97 | 327.60 | 352.23 | ||
B ext. | 257.02 | 257.41 | 257.80 | 258.19 | 258.61 | 282.01 | 305.41 | 328.81 | 352.21 | ||
B int. | 85.80 | 92.25 | 98.70 | 105.15 | 111.63 | 113.86 | 116.09 | 118.32 | 120.56 | ||
S1 | E | 183.40 | 183.00 | 183.00 | 181.00 | 180.95 | 183.93 | 186.92 | 189.91 | 192.90 | |
B | −229.91 | −225.53 | −221.15 | −216.78 | −212.42 | −221.15 | −231.89 | −241.62 | −251.36 | ||
B ext. | −229.91 | −225.53 | −221.15 | −216.78 | −212.42 | −221.15 | −231.89 | −241.62 | −251.36 | ||
B int. | 150.25 | 150.25 | 150.25 | 150.25 | 150.88 | 153.58 | 156.28 | 158.99 | 161.69 | ||
S3 | E | −364.85 | −369.24 | −373.63 | −378.02 | −382.41 | −382.41 | −382.41 | −382.41 | −382.31 | |
B | −150.00 | −158.83 | −167.67 | −176.50 | −185.34 | −201.46 | −217.58 | −233.70 | −249.82 | ||
B ext. | −364.85 | −369.24 | −373.63 | −378.02 | −383.24 | −382.41 | −382.41 | −382.41 | −382.31 | ||
B int. | −152.51 | −156.63 | −160.76 | −164.88 | −169.01 | −180.55 | −192.10 | −203.64 | −215.19 | ||
Extrusion | Tresca | E | 150.94 | 150.94 | 150.94 | 150.94 | 150.03 | 158.45 | 166.60 | 174.70 | 182.93 |
B | 150.94 | 150.94 | 150.94 | 150.94 | 150.03 | 158.45 | 166.60 | 174.70 | 182.91 | ||
B ext. | 158.89 | 158.00 | 158.00 | 158.00 | 157.75 | 166.43 | 175.11 | 183.79 | 192.47 | ||
B int. | 158.89 | 158.00 | 158.00 | 158.00 | 157.75 | 166.43 | 175.11 | 183.79 | 192.47 | ||
VM | E | 131.92 | 131.92 | 131.92 | 131.92 | 131.95 | 139.06 | 146.17 | 153.28 | 160.39 | |
B | 131.98 | 131.92 | 131.92 | 131.92 | 131.95 | 139.06 | 146.17 | 153.28 | 160.39 | ||
B ext. | 138.92 | 138.92 | 138.92 | 138.92 | 138.90 | 146.41 | 153.91 | 161.41 | 168.92 | ||
B int. | 138.91 | 138.92 | 138.92 | 138.92 | 138.90 | 146.41 | 153.91 | 161.41 | 168.92 | ||
Pressure | E | −92.26 | −92.78 | −93.30 | −93.82 | −94.35 | −97.48 | −100.63 | −103.76 | −106.90 | |
B | −314.10 | −314.95 | −315.80 | −316.66 | −317.51 | −326.19 | −334.86 | −343.53 | −352.21 | ||
B ext. | −314.11 | −314.95 | −315.80 | −316.66 | −317.51 | −326.19 | −334.86 | −343.53 | −352.21 | ||
B int. | −85.81 | −85.90 | −85.91 | −86.00 | −86.19 | −86.42 | −86.72 | −87.02 | −87.42 | ||
S1 | E | 242.19 | 252.73 | 262.27 | 273.81 | 284.35 | 297.80 | 311.23 | 324.67 | 338.12 | |
B | 364.81 | 369.18 | 373.55 | 377.92 | 382.33 | 382.30 | 382.30 | 382.30 | 382.32 | ||
B ext. | 364.81 | 369.18 | 373.55 | 377.92 | 382.33 | 382.30 | 382.30 | 382.30 | 386.34 | ||
B int. | 243.50 | 254.53 | 265.56 | 276.59 | 287.62 | 301.59 | 315.57 | 329.54 | 343.52 | ||
S3 | E | −183.40 | −183.90 | −184.40 | −184.90 | −185.80 | −187.57 | −189.35 | −191.12 | −192.90 | |
B | 229.90 | 229.98 | 230.00 | 230.15 | 230.24 | 235.50 | 240.77 | 246.00 | 251.31 | ||
B ext. | 229.90 | 229.98 | 230.00 | 230.15 | 230.25 | 235.50 | 240.77 | 246.00 | 251.31 | ||
B int. | −150.21 | −150.21 | −150.21 | −150.21 | −150.89 | −153.58 | −156.27 | −158.96 | −161.66 | ||
Translation | Tresca | E | 419.83 | 402.93 | 385.90 | 368.00 | 351.81 | 351.56 | 351.31 | 351.06 | 350.51 |
B | 503.61 | 483.22 | 462.84 | 442.46 | 422.08 | 442.00 | 442.00 | 442.00 | 422.09 | ||
B ext. | 503.61 | 483.22 | 462.84 | 442.46 | 422.08 | 442.00 | 442.00 | 442.00 | 422.87 | ||
B int. | 384.37 | 368.82 | 353.26 | 337.70 | 322.15 | 322.10 | 322.10 | 322.10 | 322.76 | ||
VM | E | 364.77 | 352.16 | 339.55 | 326.94 | 314.34 | 314.34 | 314.34 | 314.34 | 314.71 | |
B | 437.51 | 422.41 | 407.32 | 392.22 | 377.13 | 377.13 | 377.13 | 377.13 | 377.54 | ||
B ext. | 437.51 | 422.41 | 407.32 | 392.22 | 377.13 | 377.13 | 377.13 | 377.13 | 377.54 | ||
B int. | 333.91 | 322.48 | 311.06 | 299.63 | 288.21 | 288.21 | 288.21 | 288.21 | 288.14 | ||
Pressure | E | 159.60 | 152.65 | 145.70 | 138.75 | 131.80 | 131.70 | 131.60 | 131.40 | 131.21 | |
B | 245.10 | 235.50 | 225.90 | 216.30 | 206.71 | 206.70 | 206.70 | 206.70 | 206.87 | ||
B ext. | 243.31 | 234.41 | 225.51 | 216.61 | 207.71 | 207.70 | 207.70 | 207.70 | 207.77 | ||
B int. | 113.11 | 108.91 | 104.71 | 100.50 | 96.31 | 96.30 | 96.30 | 96.30 | 96.36 | ||
S1 | E | 239.09 | 237.54 | 236.00 | 234.46 | 232.92 | 232.90 | 232.90 | 232.90 | 232.39 | |
B | 293.51 | 290.00 | 286.62 | 283.17 | 279.73 | 279.70 | 279.70 | 279.70 | 279.04 | ||
B ext. | 250.51 | 246.90 | 243.29 | 239.68 | 236.07 | 236.00 | 236.00 | 236.00 | 235.59 | ||
B int. | 204.11 | 202.18 | 200.26 | 198.34 | 196.42 | 196.00 | 196.00 | 196.00 | 196.22 | ||
S3 | E | −285.63 | −283.42 | −281.22 | −279.01 | −276.81 | −276.81 | −276.81 | −276.81 | −276.81 | |
B | −395.81 | −293.11 | −290.42 | −287.73 | −385.03 | −385.03 | −385.03 | −385.03 | −385.03 | ||
B ext. | −397.16 | −394.53 | −391.90 | −389.27 | −386.64 | −386.64 | −386.64 | −386.64 | −386.65 | ||
B int. | −290.72 | −280.12 | −269.52 | −258.92 | −248.32 | −248.32 | −248.32 | −248.32 | −248.32 | ||
Rotation | Tresca | E | 592.03 | 592.00 | 592.00 | 592.00 | 592.60 | 592.00 | 592.00 | 592.00 | 592.92 |
B | 370.53 | 370.00 | 370.00 | 370.00 | 370.68 | 370.00 | 370.00 | 370.00 | 370.92 | ||
B ext. | 353.75 | 356.28 | 358.82 | 361.36 | 363.90 | 363.93 | 363.98 | 364.00 | 364.05 | ||
B int. | 553.82 | 555.37 | 556.92 | 558.47 | 560.03 | 560.00 | 560.00 | 560.00 | 560.97 | ||
VM | E | 518.80 | 518.80 | 518.80 | 518.80 | 519.24 | 519.24 | 519.24 | 519.24 | 519.44 | |
B | 324.70 | 324.70 | 324.70 | 324.70 | 324.80 | 324.80 | 324.80 | 324.80 | 324.52 | ||
B ext. | 309.60 | 311.73 | 313.86 | 315.99 | 318.13 | 318.13 | 318.13 | 318.13 | 318.15 | ||
B int. | 485.04 | 486.12 | 487.20 | 488.02 | 489.36 | 489.36 | 489.36 | 489.36 | 489.57 | ||
Pressure | E | −403.03 | −395.98 | −388.94 | −381.90 | −374.86 | −370.53 | −366.21 | −361.88 | −357.56 | |
B | −479.22 | −474.36 | −469.51 | −464.65 | −459.80 | −458.85 | −457.91 | −456.97 | −456.03 | ||
B ext. | −479.21 | −474.36 | −469.51 | −464.65 | −459.80 | −458.85 | −457.91 | −456.97 | −456.03 | ||
B int. | −174.43 | −169.26 | −164.09 | −158.92 | −153.75 | −153.70 | −153.70 | −153.70 | −153.77 | ||
S1 | E | 439.93 | 437.13 | 343.33 | 431.53 | 428.73 | 428.00 | 428.00 | 428.00 | 428.53 | |
B | 645.11 | 642.18 | 639.26 | 636.34 | 633.42 | 633.50 | 633.50 | 633.50 | 634.72 | ||
B ext. | 645.11 | 642.18 | 639.26 | 636.34 | 633.42 | 633.50 | 633.50 | 633.50 | 634.72 | ||
B int. | 337.43 | 334.02 | 330.62 | 327.22 | 323.82 | 324.22 | 324.62 | 325.02 | 325.42 | ||
S3 | E | −441.82 | −452.34 | −462.87 | −473.39 | −483.92 | −474.67 | 465.42 | −456.17 | −446.92 | |
B | −549.31 | −560.34 | −571.38 | −582.42 | −593.45 | −583.00 | −572.59 | −562.16 | −551.74 | ||
B ext. | −549.31 | −557.14 | −564.97 | −572.80 | −580.63 | −573.40 | −566.18 | −558.95 | −551.74 | ||
B int. | −441.82 | −452.34 | −462.87 | −473.39 | −483.92 | −474.67 | −465.42 | −456.17 | −446.93 | ||
Tipping | Tresca | E | 254.60 | 246.45 | 238.30 | 230.15 | 222.01 | 221.81 | 221.61 | 221.41 | 221.21 |
B | 102.25 | 95.27 | 88.30 | 81.31 | 74.34 | 74.27 | 74.20 | 74.15 | 74.11 | ||
B ext. | 81.79 | 76.76 | 71.74 | 66.70 | 61.70 | 61.60 | 61.50 | 61.40 | 61.42 | ||
B int. | 225.42 | 219.25 | 213.08 | 206.91 | 200.74 | 200.48 | 200.22 | 199.96 | 199.71 | ||
VM | E | 220.92 | 208.73 | 196.55 | 184.37 | 172.19 | 172.19 | 172.19 | 172.19 | 172.31 | |
B | 88.67 | 83.76 | 78.85 | 73.94 | 69.03 | 69.03 | 69.03 | 69.03 | 69.21 | ||
B ext. | 75.54 | 70.74 | 65.95 | 61.15 | 56.36 | 56.36 | 56.36 | 56.36 | 56.22 | ||
B int. | 210.16 | 195.96 | 181.77 | 167.57 | 153.38 | 153.38 | 153.38 | 153.38 | 153.41 | ||
Pressure | E | 138.49 | 138.96 | 139.44 | 139.92 | 140.40 | 140.69 | 140.99 | 141.29 | 141.59 | |
B | 138.49 | 138.96 | 139.44 | 139.92 | 140.40 | 140.69 | 140.99 | 141.29 | 141.59 | ||
B ext. | 122.30 | 122.93 | 123.56 | 124.19 | 124.82 | 124.90 | 124.98 | 125.06 | 125.14 | ||
B int. | 63.75 | 63.43 | 63.12 | 62.81 | 62.50 | 62.24 | 61.99 | 61.73 | 61.48 | ||
S1 | E | −130.11 | −130.11 | −130.11 | −130.11 | −130.80 | −131.08 | −131.08 | −131.08 | −131.18 | |
B | −130.81 | −130.11 | −130.11 | −130.11 | −130.86 | −131.08 | −131.08 | −131.08 | −131.11 | ||
B ext. | −124.46 | −126.44 | −128.43 | −130.41 | −132.40 | −132.40 | −132.40 | −132.40 | −132.37 | ||
B int. | −71.46 | −72.69 | −73.93 | −75.15 | −76.39 | −76.39 | −76.39 | −76.39 | −76.77 | ||
S3 | E | −398.51 | −403.92 | −409.34 | −414.75 | −420.17 | −420.17 | −420.17 | −420.17 | −420.61 | |
B | −148.61 | −150.24 | −151.87 | −153.50 | −155.14 | −155.14 | −155.14 | −155.14 | −155.57 | ||
B ext. | −164.91 | −167.51 | −170.11 | −172.71 | −175.31 | −175.31 | −175.31 | −175.31 | −175.36 | ||
B int. | −164.91 | −167.51 | −170.11 | −172.71 | −175.31 | −175.31 | −175.31 | −175.31 | −173.61 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moga, R.A.; Olteanu, C.D.; Buru, S.M.; Botez, M.D.; Delean, A.G. Finite Elements Analysis of Biomechanical Behavior of the Bracket in a Gradual Horizontal Periodontal Breakdown—A Comparative Analysis of Multiple Failure Criteria. Appl. Sci. 2023, 13, 9480. https://doi.org/10.3390/app13169480
Moga RA, Olteanu CD, Buru SM, Botez MD, Delean AG. Finite Elements Analysis of Biomechanical Behavior of the Bracket in a Gradual Horizontal Periodontal Breakdown—A Comparative Analysis of Multiple Failure Criteria. Applied Sciences. 2023; 13(16):9480. https://doi.org/10.3390/app13169480
Chicago/Turabian StyleMoga, Radu Andrei, Cristian Doru Olteanu, Stefan Marius Buru, Mircea Daniel Botez, and Ada Gabriela Delean. 2023. "Finite Elements Analysis of Biomechanical Behavior of the Bracket in a Gradual Horizontal Periodontal Breakdown—A Comparative Analysis of Multiple Failure Criteria" Applied Sciences 13, no. 16: 9480. https://doi.org/10.3390/app13169480
APA StyleMoga, R. A., Olteanu, C. D., Buru, S. M., Botez, M. D., & Delean, A. G. (2023). Finite Elements Analysis of Biomechanical Behavior of the Bracket in a Gradual Horizontal Periodontal Breakdown—A Comparative Analysis of Multiple Failure Criteria. Applied Sciences, 13(16), 9480. https://doi.org/10.3390/app13169480