Towards an Intelligent Intrusion Detection System to Detect Malicious Activities in Cloud Computing
Abstract
:1. Introduction
- A novel IDS model leveraging DL algorithms: We demonstrate the effectiveness of utilizing the RBFNN and RF to enhance IDS performance in CC environments.
- Improved ACC and detection rates: By selecting the top-k most essential features using RF and by training the RBFNN classifier accordingly, we achieve an ACC higher than 92% using minimal features, which is a substantial increase from an initial MCC of 28% to 93%.
- Addressing security challenges in CC: Our approach targets explicitly the security challenges posed by CC environments, offering a promising solution to enhance overall security.
- Utilization of real-world datasets: To validate our proposed approach, we employ the Bot-IoT and NSL-KDD datasets, reflecting the relevance and practicality of our findings.
2. Background and Related Works
3. Our Approach
Algorithm 1: Feature Reduction Algorithm |
Input:
ScalerNsl = Normalize (Snsl) ScalerBot = Normalize (Sbot) Snsl = Rf (preprocess (ScalerNsl)) Sbot = Rf (preprocess (ScalerBot)) Model = Hyperparameter (Model (Snsl)) Model = Model.fit(SnslTrain) MeasuresTabNsl = Calculation (Model.predict (SnslTest)) Model = Hyperparameter (Model (Sbot)) Model = Model.fit(SbotTrain) MeasuresTabBot = Calculation (Model.predict (SbotTest)) Display(MeasuresTabNsl, MeasuresTabBot) End. |
3.1. Our Proposed IDS
- -
- Parallel processing: In our implementation, we leverage parallel processing techniques to use modern multi-core processors and accelerate the computation. By distributing the workload across multiple cores, we can significantly reduce the processing time, especially when dealing with large-scale datasets.
- -
- Optimized data structures: We have employed efficient data structures to store and access the dataset, ensuring quick access and retrieval during the training and testing. This optimization minimizes memory usage and improves the overall computational efficiency.
- -
- Data preprocessing and normalization: Proper data preprocessing, including converting categorical attributes into numerical values and the normalization of feature values. It ensures consistent scaling and faster convergence during training. These preprocessing steps improve efficiency by reducing the computational burden and minimizing convergence time.
- -
- Feature reduction with RF: We can identify the most relevant features contributing significantly to intrusion detection by utilizing RF as a feature selection method. This step reduces the dimensionality of the data and focuses the model on the most informative attributes, resulting in faster processing and improved efficiency.
- -
- Smart batching: When training the RBFNN classifier, we employ intelligent batching techniques to batch data efficiently, reducing memory consumption and speeding up the learning process.
- -
- Optimized RBFNN hyperparameters: We carefully tuned the hyperparameters of the RBFNN classifier. This optimization process ensures that the RBFNN performs efficiently and effectively in detecting intrusions. By finding the right balance between complexity and performance, we avoid unnecessary computational overhead, leading to better efficiency.
3.2. Data Preprocessing
3.3. Intrusion Detection
4. Experimental Setting
4.1. Experiment Environment and Datasets
4.2. Evaluation Metrics
- TP: The model shows the attack as true, which it is.
- TN: The model shows normal as false, but it is true.
- FP: The model shows an attack, yet it does not occur.
- FN: The model shows normal but is incorrect.
- MCC: Examine the impact of our model on the dataset’s imbalance. We used the MCC to assess the dependability of our classifier. The MCC’s strength is that it takes into account the confusion matrix’s four categories.
5. Results and Discussions
5.1. NSL-KDD Dataset
5.2. Bot-IoT Dataset
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, I.-H.; Lo, C.-H.; Liu, T.-C.; Li, J.-S.; Liu, C.-G.; Li, C.-F. IDS Malicious Flow Classification. J. Robot. Netw. Artif. Life 2020, 7, 103. [Google Scholar] [CrossRef]
- Tahirkheli, A.I.; Shiraz, M.; Hayat, B.; Idrees, M.; Sajid, A.; Ullah, R.; Ayub, N.; Kim, K.-I. A Survey on Modern Cloud Computing Security over Smart City Networks: Threats, Vulnerabilities, Consequences, Countermeasures, and Challenges. Electronics 2021, 10, 1811. [Google Scholar] [CrossRef]
- Patel, H.B.; Kansara, N. Cloud Computing Deployment Models: A Comparative Study. Int. J. Innov. Res. Comput. Sci. Technol. 2021, 9, 45–50. [Google Scholar] [CrossRef]
- Palumbo; Aceto, F.; Botta, G.; Ciuonzo, A.; Persico, D.; Pescapé, V. A Characterizing Cloud-to-user Latency as perceived by AWS and Azure Users spread over the Globe. In Proceedings of the 2019 IEEE Global Communications Conference, Big Island, HI, USA, 9–13 December 2019. [Google Scholar]
- Hourani, H.; Abdallah, M. Cloud Computing: Legal and Security Issues. In Proceedings of the International Conference on Computer Science and Information Technology, Amman, Jordan, 11–12 July2018. [Google Scholar]
- Hussein; Khalid, N.H. A survey of Cloud Computing Security challenges and solutions. Int. J. Comput. Sci. Inf. Secur. 2017, 14, 52. [Google Scholar]
- Belal, M.M.; Sundaram, D.M. Comprehensive review on intelligent security defenses in the cloud: Taxonomy, security issues, ML/DL techniques, challenges and future trends. J. King Saud Univ. Comput. Inf. Sci. 2022, 34, 9102–9131. [Google Scholar]
- El-Zoghbi, A.M.; Azer, M.A. Cloud Computing Privacy Issues, Challenges and Solutions. In Proceedings of the 2017 12th International Conference on Computer Engineering and Systems (ICCES), Cairo, Egypt, 19–20 December 2017. [Google Scholar]
- Butt, U.A.; Mehmood, M.; Shah, S.B.H.; Amin, R.; Shaukat, M.W.; Raza, S.M.; Suh, D.Y.; Piran, J. A Review of Machine Learning Algorithms for Cloud Computing Security. Electronics 2020, 9, 1379. [Google Scholar] [CrossRef]
- Al-Jaser, N.M.A. A Survey on Cloud Computing Security Challenges and Trust Issues. Int. J. Comput. Sci. Inf. Secur. 2020, 18, 7–12. [Google Scholar]
- Namasudra, S.; Roy, P.; Balusamy, B.; Vijayakumar, P. Data accessing based on the popularity value for cloud computing. In Proceedings of the International Conference on Innovations in Information: Embedded and Communication Systems, Coimbatore, India, 17–18 March 2017. [Google Scholar]
- Namasudra, S.; Roy, P.A. New Table Based Protocol for Data Accessing in Cloud Computing. J. Inf. Sci. Eng. 2017, 33, 585–609. [Google Scholar]
- Chiba, Z.; Abghour, N.; Moussaid, K.; El omri, A.; Rida, M. A cooperative and hybrid network intrusion detection framework in cloud computing-based SNORT and optimized back propagation neural network. Procedia Comput. Sci. 2016, 83, 1200–1206. [Google Scholar] [CrossRef]
- Douiba, M.; Benkirane, S.; Guezzaz, A.; Azrour, M. Anomaly detection model based on gradient boosting and decision tree for IoT environments security. J. Reliab. Intell. Environ. 2022, 1–12. [Google Scholar] [CrossRef]
- Padhy, S.; Dash, S.; Routray, S.; Ahmad, S.; Nazeer, J.; Alam, A. IoT-based hybrid ensemble machine learning model for efficient diabetes mellitus prediction. Comput. Intell. Neurosci. 2022, 2022, 2389636. [Google Scholar] [CrossRef]
- Noor, M.; Hassan, H. Current research on the Internet of Things (IoT) security: A survey. Comput. Netw. 2018, 148, 283–294. [Google Scholar] [CrossRef]
- Sethi, P.; Sarangi, S.R. Internet of Things: Architectures, Protocols, and Applications. J. Electr. Comput. Eng. 2017, 2017, 9324035. [Google Scholar] [CrossRef]
- Khraisat, A.; Gondal, I.; Vamplew, P.; Kamruzzaman, J. Survey of intrusion detection systems: Techniques, datasets and challenges. Cybersecurity 2019, 2, 20. [Google Scholar] [CrossRef]
- Almseidin, M.; Alzubi, M.; Kovacs, S.; Alkasassbeh, M. Evaluation of machine learning algorithms for intrusion detection system. In Proceedings of the 2017 IEEE 15th International Symposium on Intelligent Systems and Informatics (SISY) 2017, Avadi, India, 6–8 May 2017. [Google Scholar]
- Buczak, A.L.; Guven, E. A survey of data mining and machine learning methods for cyber security intrusion detection. IEEE Commun. Surv. Tutor. 2016, 18, 1153–1176. [Google Scholar] [CrossRef]
- Li, K.; Gibson, C.; Ho, D.; Zhou, Q.; Kim, J.; Buhisi, O.; Brown, D.E.; Gerber, M. Assessment of machine learning algorithms in cloud computing frameworks. In Proceedings of the 2013 IEEE Systems and Information Engineering Design Symposium, Charlottesville, VA, USA, 26 April 2013; pp. 98–103. [Google Scholar] [CrossRef]
- Dritsas, E.; Trigka, M. Efficient Data-Driven Machine Learning Models for Water Quality Prediction. Computation 2023, 11, 16. [Google Scholar] [CrossRef]
- Guezzaz, A.; Benkirane, S.; Azrour, M. A Novel Anomaly Network Intrusion Detection System for Internet of Things Security. In IoT and Smart Devices for Sustainable Environment; Springer International Publishing: Cham, Switzerland, 2022. [Google Scholar] [CrossRef]
- Guezzaz, A.; Asimi, A.; Asimi, Y.; Tbatou, Z.; Sadqi, Y. A Lightweight Neural Classifier for Intrusion Detection. Gen. Lett. Math. 2017, 2, 57–66. [Google Scholar] [CrossRef]
- Ahmad, S.; Jha, S.; Alam, A.; Alharbi, M.; Nazeer, J. Analysis of intrusion detection approaches for network traffic anomalies with comparative analysis on botnets (2008–2020). Secur. Commun. Netw. 2022, 2022, 9199703. [Google Scholar] [CrossRef]
- Mahadik, S.; Pawar, P.M.; Muthalagu, R. Efficient Intelligent Intrusion Detection System for Heterogeneous Internet of Things (HetIoT). J. Netw. Syst. Manag. 2023, 31, 2. [Google Scholar] [CrossRef]
- Torres, J.M.; Comesaña, C.I.; García-Nieto, P.J. Review: Machine learning techniques applied to cybersecurity. Int. J. Mach. Learn. Cybern. 2019, 10, 2823–2836. [Google Scholar] [CrossRef]
- Fouda, M.; Ksantini, R.; Elmedany, W. A Novel Intrusion Detection System for Internet of Healthcare Things Based on Deep Subclasses Dispersion Information. IEEE Internet Things J. 2022, 10, 8395–8407. [Google Scholar] [CrossRef]
- Elghaish, F.; Matarneh, S.T.; Alhusban, M. The application of “deep learning” in construction site management: Scientometric, thematic and critical analysis. Constr. Innov. 2022, 22, 580–603. [Google Scholar] [CrossRef]
- Halbouni, A.; Gunawan, T.S.; Habaebi, M.H.; Halbouni, M.; Kartiwi, M.; Ahmad, R. Machine Learning and Deep Learning Approaches for CyberSecurity: A Review. IEEE Access 2022, 10, 19572–19585. [Google Scholar] [CrossRef]
- Chaabouni, N.; Mosbah, M.; Zemmari, A.; Sauvignac, C.; Faruki, P. Network Intrusion Detection for IoT Security Based on Learning Techniques. IEEE Commun. Surv. Tutor. 2019, 21, 2671–2701. [Google Scholar] [CrossRef]
- Hady, A.A.; Ghubaish, A.; Salman, T.; Unal, D.; Jain, R. Intrusion Detection System for Healthcare Systems Using Medical and Network Data: A Comparison Study. IEEE Access 2020, 8, 106576–106584. [Google Scholar] [CrossRef]
- Guezzaz, A.; Azrour, M.; Benkirane, S.; Mohy-Eddine, M.; Attou, H.; Douiba, M. A Lightweight Hybrid Intrusion Detection Framework using Machine Learning for Edge-Based IIoT Security. Int. Arab. J. Inf. Technol. 2022, 19, 822–830. [Google Scholar] [CrossRef]
- Hazman, C.; Guezzaz, A.; Benkirane, S.; Azrour, M. IDS-SIoEL: Intrusion Detection Framework for IoT-based Smart Environments Security using Ensemble Learning. Clust. Comput. 2022, 1–15. [Google Scholar] [CrossRef]
- Douiba, M.; Benkirane, S.; Guezzaz, A.; Azrour, M. An improved anomaly detection model for IoT security using decision tree and gradient boosting. J. Supercomput. 2022, 79, 3392–3411. [Google Scholar] [CrossRef]
- Alshammari, A.; Aldribi, A. Apply machine learning techniques to detect malicious network traffic in cloud computing. J. Big Data 2021, 8, 90. [Google Scholar] [CrossRef]
- Mohy-Eddine, M.; Guezzaz, A.; Benkirane, S.; Azrour, M. An efficient network intrusion detection model for IoT security usingK-NN classifier and feature selection. Multimed. Tools Appl. 2023, 82, 23615–23633. [Google Scholar] [CrossRef]
- Jiang, F.; Fu, Y.; Gupta, B.B.; Liang, Y.; Rho, S.; Lou, F.; Meng, F.; Tian, Z. Deep Learning Based Multi-Channel Intelligent Attack Detection for Data Security. IEEE Trans. Sustain. Comput. 2018, 5, 204–212. [Google Scholar] [CrossRef]
- Burhan, F.; Mustafa, G.; Nawaz, A.; Kiani, A.; Ali, T. Securing Cloud Data: A Machine Learning based Data Categorization Approach for Cloud Computing. Res. Sq. 2022. [Google Scholar] [CrossRef]
- Mubarakali, A.; Srinivasan, K.; Mukhalid, R.; Jaganathan, S.C.B.; Marina, N. Security challenges in internet of things: Distributed denial of service attack detection using support vector machine-based expert systems. Comput. Intell. 2020, 36, 1580–1592. [Google Scholar] [CrossRef]
- Mishra, A.; Gupta, B.B.; Perakovic, D.; Penalvo, F.J.G.; Hsu, C.-H. Classification Based Machine Learning for Detection of DDoS attack in Cloud Computing. In Proceedings of the International Conference on Consumer Electronics, Las Vegas, NV, USA, 10–12 January 2021. [Google Scholar] [CrossRef]
- Singh, P.; Ranga, V. Attack and intrusion detection in cloud computing using an ensemble learning approach. Int. J. Inf. Technol. 2021, 13, 565–571. [Google Scholar] [CrossRef]
- Verma, A.; Ranga, V. Machine Learning Based Intrusion Detection Systems for IoT Applications. Wirel. Pers. Commun. 2020, 111, 2287–2310. [Google Scholar] [CrossRef]
- Mohy-Eddine, M.; Guezzaz, A.; Benkirane, S.; Azrour, M. An effective intrusion detection approach based on ensemble learning for IIoT edge computing. J. Comput. Virol. Hacking Tech. 2022, 1–13. [Google Scholar] [CrossRef]
- Liu, Z.; Shi, Y. A Hybrid IDS Using GA-Based Feature Selection Method and Random Forest. Int. J. Mach. Learn. Comput. 2022, 12, 43–50. [Google Scholar]
- Chaabouni, N.; Mosbah, M.; Zemmari, A.; Sauvignac, C. A OneM2M Intrusion Detection and Prevention System based on Edge Machine Learning. In Proceedings of the IEEE/IFIP Network Operations and Management Symposium, Budapest, Hungary, 20–24 April 2020. [Google Scholar] [CrossRef]
- Ullah, I.; Mahmoud, Q.H. Design and Development of a Deep Learning-Based Model for Anomaly Detection in IoT Networks. IEEE Access 2021, 9, 103906–103926. [Google Scholar] [CrossRef]
- Attou, H.; Guezzaz, A.; Benkirane, S.; Azrour, M.; Farhaoui, Y. Cloud-Based Intrusion Detection Approach Using Machine Learning Techniques. Big Data Min. Anal. 2023, 6, 311–320. [Google Scholar] [CrossRef]
- Wani, A.; Revathi; Khali, R. SDN-basedintrusiondetectionsystemforIoTusingdeeplearningclassifier(IDSIoT-SDL). CAAI Trans. Intell. Technol. 2021, 6, 281–290. [Google Scholar] [CrossRef]
- Albahar, M.; Alharbi, A.; Alsuwat, M.; Aljuaid, H. A Hybrid Model based on Radial basis Function Neural Network for Intrusion Detection. Int. J. Adv. Comput. Sci. Appl. 2020, 11, 781–791. [Google Scholar] [CrossRef]
- Reis, I.; Baron, D.; Shahaf, S. Probabilistic Random Forest: A Machine Learning Algorithm for Noisy Data Sets. Astron. J. 2018, 157, 16. [Google Scholar] [CrossRef]
- Kumar, P.; Gupta, G.P.; Tripathi, R. An ensemble learning and fog-cloud architecture-driven cyber-attack detection framework for IoMT networks. Comput. Commun. 2020, 166, 110–124. [Google Scholar] [CrossRef]
- Alrashdi, I.; Alqazzaz, A.; Alharthi, R.; Aloufi, E.; Zohdy, M.A.; Ming, H. FBAD: Fog-based Attack Detection for IoT Healthcare in Smart Cities. In Proceedings of the 10th Annual Ubiquitous Computing, Electronics Mobile Communication Conference, New York, NY, USA, 10–12 October2019; pp. 515–522. [Google Scholar] [CrossRef]
- Thamilarasu, G.; Odesile, A.; Hoang, A. An Intrusion Detection System for Internet of Medical Things. IEEE Access 2020, 8, 181560–181576. [Google Scholar] [CrossRef]
- Palimote, J.; Atu, L.; Osuigbo, E. A Model to Detect Network Intrusion using Machine Learning. J. Emerg. Technol. Innov. Res. 2021, 8, 521–527. [Google Scholar]
- Zhang, Q.; Wilson, F. RBNN application and simulation in big data set classification. J. Intell. Fuzzy Syst. 2019, 37, 4467–4475. [Google Scholar] [CrossRef]
- Devarakonda, A.; Sharma, N.; Saha, P.; Ramya, S. Network intrusion detection: A comparative study of four classifiers using the NSL-KDD and KDD’99 datasets. J. Phys. Conf. Ser. 2022, 2161, 012043. [Google Scholar] [CrossRef]
- Koroniotis, N.; Moustafa, N.; Sitnikova, E.; Turnbull, B. Towards the development of realistic botnet dataset in the internet of things for network forensic analytics: Bot-iot dataset. Future Gener. Comput. Syst. 2019, 100, 779–796. [Google Scholar] [CrossRef]
- Ferrag, M.A.; Maglaras, L.; Moschoyiannis, S.; Janicke, H. Deep learning for cyber security intrusion detection: Approaches, datasets, and comparative study. J. Inf. Secur. Appl. 2019, 50, 102419. [Google Scholar] [CrossRef]
- Zeeshan, M.; Riaz, Q.; Bilal, M.; Shahzad, M.K.; Haider, H.J.; Rahim, A. Protocol-Based Deep Intrusion Detection for DoS and DDoS Attacks Using UNSW-NB15 and Bot-IoT Data-Sets. IEEE Access 2021, 10, 2269–2283. [Google Scholar] [CrossRef]
- Shafiq, M.; Tian, Z.; Sun, Y.; Du, X.; Guizani, M. Selection of effective machine learning algorithm and Bot-IoT attacks traffic identification for the internet of things in smart city. Future Gener. Comput. Syst. 2020, 107, 433–442. [Google Scholar] [CrossRef]
Contribution | Year | Methods | Data | ACC (%) |
---|---|---|---|---|
[13] | 2016 | ANN | - | - |
[14] | 2022 | Gradient Boosting DT | NSL-KDD Bot-IoT IoT 23 | 100 100 100 |
[36] | 2021 | ANN KNN DT SVM NB RF | ISOT-CID | 92 100 100 81 60 100 |
[38] | 2018 | LSTM | NSL-KDD | 98.94 |
[39] | 2022 | RF, NB, SVM, KNN | - | 92 |
[40] | 2020 | SVM | - | 96.23 |
[41] | 2021 | RF, KNN, NB | - | 99.76 |
[42] | 2021 | Ensemble Learning | CICIDS 2017, CloudSim | 97.24 |
[45] | 2022 | RF, GA | NSL-KDD UNSW-NB15 | 92 96 |
[43] | 2019 | RF, GBM, Adaboost | NSL-KDD | 99.5 |
[46] | 2020 | DT, J48 | OneM2Mdata | 92 |
[47] | 2021 | CNN | Bot-IoT | - |
[44] | 2022 | Ensemble learning | Bot-IoT wustl_IIoT_2021 | 99.99 99.12 |
[48] | 2023 | RF | NSL-KDD Bot-IoT | 98.3 100 |
[49] | 2021 | LSTM | KDDCup’99 NSD-KDD DARPA KDD CSE-CIC-IDS2018 | 99.05 |
Dataset | Number of Features | Class | Total |
---|---|---|---|
NSL-KDD | 41 | Normal, DoS, Probe, Remote to Local (R2L), User to Root (U2R). | 125,192 |
Bot-IoT | 46 | Normal, DoS, DDoS, Information Gathering, Information Theft. | 73,370,443 |
Dataset | Number of Features | Features |
---|---|---|
NSL-KDD | 10 | “dst_bytes”, “src_bytes”, “flag”, “logged_in”, “same_srv_rate”, “protocol_type”, “dst_host_srv_count”, “dst_host_same_srv_rate”, “count”, “dst_host_same_src_port_rate”, “class”. |
NSL-KDD | 4 | “flag”, “logged_in”, “same_srv_rate”, “protocol_type”, “class”. |
Bot-IoT | 10 | “daddr”, “TnP_PerProto”, “TnP_PSrcIP”, “saddr”, “TnP_PDstIP”, “TnBPSrcIP”, “bytes”, “stime”, “TnP_Per_Dport”, “TnBPDstIP”, “attack”. |
Bot-IoT | 3 | “daddr”, “TnP_PerProto”, “TnP_PSrcIP”, “attack”. |
Actually Positive | Actually Negative | |
---|---|---|
Predict positive | True positive (TP) | False positive (FP) |
Predict negative | False negative (FN) | True negative (TN) |
Features | ACC (%) | Precision (%) | Recall (%) | MCC (%) |
---|---|---|---|---|
Full Dataset | 90.49 | 91.69 | 48.05 | 81.00 |
10 Features | 92.12 | 91.12 | 46.90 | 84.19 |
4 Features | 94.16 | 90.83 | 45.74 | 88.39 |
Features | ACC (%) | Precision (%) | Recall (%) | MCC (%) |
---|---|---|---|---|
Full Dataset | 99.98 | 100 | 99.99 | 28.47 |
10Features | 99.99 | 100 | 99.99 | 83.83 |
3Features | 99.99 | 100 | 99.98 | 93.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Attou, H.; Mohy-eddine, M.; Guezzaz, A.; Benkirane, S.; Azrour, M.; Alabdultif, A.; Almusallam, N. Towards an Intelligent Intrusion Detection System to Detect Malicious Activities in Cloud Computing. Appl. Sci. 2023, 13, 9588. https://doi.org/10.3390/app13179588
Attou H, Mohy-eddine M, Guezzaz A, Benkirane S, Azrour M, Alabdultif A, Almusallam N. Towards an Intelligent Intrusion Detection System to Detect Malicious Activities in Cloud Computing. Applied Sciences. 2023; 13(17):9588. https://doi.org/10.3390/app13179588
Chicago/Turabian StyleAttou, Hanaa, Mouaad Mohy-eddine, Azidine Guezzaz, Said Benkirane, Mourade Azrour, Abdulatif Alabdultif, and Naif Almusallam. 2023. "Towards an Intelligent Intrusion Detection System to Detect Malicious Activities in Cloud Computing" Applied Sciences 13, no. 17: 9588. https://doi.org/10.3390/app13179588
APA StyleAttou, H., Mohy-eddine, M., Guezzaz, A., Benkirane, S., Azrour, M., Alabdultif, A., & Almusallam, N. (2023). Towards an Intelligent Intrusion Detection System to Detect Malicious Activities in Cloud Computing. Applied Sciences, 13(17), 9588. https://doi.org/10.3390/app13179588