Principal Hugoniots of Promethium, Terbium, Thulium, Lutetium, and Actinium in a Wide Pressure Range
Abstract
:1. Introduction
2. Principal Hugoniot in a Wide Pressure Range
3. Methods
3.1. New Analytic Model for Principal Hugoniot
3.2. The Choice of the Five Sets of the Hugoniot Parameters
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Morgenstern, A.; Apostolidis, C.; Kratochwil, C.; Sathekge, M.; Krolicki, L.; Bruchertseifer, F. An overview of targeted alpha therapy with 225actinium and 213bismuth. Curr. Radiopharm. 2018, 11, 200. [Google Scholar] [CrossRef]
- Actinium Presents New Data Demonstrating Effective Lymphodepletion with Lutetium-177 for CAR-T at the 2019 Society of Nuclear M; Bloomberg: New York, NY, USA, 2019; Available online: https://www.bloomberg.com/press-releases/2019-06-25/actinium-presents-new-data-demonstrating-effective-lymphodepletion-with-lutetium-177-for-car-t-at-the-2019-society-of-nuclear-m (accessed on 10 April 2023).
- Drozdov, A.P.; Kong, P.P.; Minkov, V.S.; Besedin, S.P.; Kuzovnikov, M.A.; Mozaffari, S.; Balicas, L.; Balakirev, F.F.; Graf, D.E.; Prakapenka, V.B.; et al. Superconductivity at 250 K in lanthanum hydride under high pressures. Nature 2019, 569, 528. [Google Scholar] [CrossRef] [PubMed]
- Sun, D.; Minkov, V.S.; Mozaffari, S.; Sun, Y.; Ma, Y.; Chariton, S.; Prakapenka, V.B.; Eremets, M.I.; Balakirev, L.B.; Balakirev, F.F. High-temperature superconductivity on the verge of a structural instability in lanthanum superhydride. Nat. Commun. 2021, 12, 6863. [Google Scholar] [CrossRef]
- Li, Z.; He, X.; Zhang, C.; Wang, X.; Zhang, S.; Jia, Y.; Feng, S.; Lu, K.; Zhao, J.; Zhang, J. Superconductivity above 200 K discovered in superhydrides of calcium. Nat. Commun. 2022, 13, 2863. [Google Scholar] [CrossRef] [PubMed]
- Samudrala, G.L.; Vohra, Y.K. Structural properties of lanthanides at ultra high pressure. In Handbook on the Physics and Chemistry of Rare Earths; Elsevier B.V.: Amsterdam, The Netherlands, 2013; Volume 43, p. 275. [Google Scholar]
- Al’tshuler, L.V.; Bakanova, A.A.; Dudoladov, I.P. Effect of electron structure on the compressibility of metals at high pressure. Sov. Phys. JETP 1968, 26, 1115. [Google Scholar]
- Carter, W.J.; Fritz, J.N.; Marsh, S.P.; McQueen, R.G. Hugoniot equation of state of the lanthanides. J. Phys. Chem. Solids 1975, 36, 741. [Google Scholar] [CrossRef]
- Walsh, J.M.; Christian, R.R. Equation of state of metals from shock wave measurements. Phys. Rev. 1955, 97, 1544. [Google Scholar] [CrossRef]
- Bancroft, D.; Peterson, E.L.; Minshall, S. Polymorphism of iron at high pressure. J. Appl. Phys. 1956, 27, 291. [Google Scholar] [CrossRef]
- Al’tshuler, L.V.; Krupnikov, K.; Ledenev, B.N.; Zhuchikhin, V.I.; Brazhnik, M.I. Dynamic compressibility and equation of state of iron under high pressure. Soviet Phys. JETP 1958, 34, 606. [Google Scholar]
- Fratanduono, D.E.; Swift, D.; Jenei, A.; Whitley, H. Accessing extreme equation of state conditions on the national ignition facility, LLNL Preprint LLNL-JRNL-739795, 11 October 2017. Available online: https://www.osti.gov/servlets/purl/1455406 (accessed on 10 April 2023).
- Kritcher, A.L.; Swift, D.C.; Döppner, T.; Bachmann, B.; Benedict, L.X.; Collins, G.W.; DuBois, J.L.; Elsner, F.; Fontaine, G.; Gaffney, J.A. A measurement of the equation of state of carbon envelopes of white dwarfs. Nature 2020, 584, 51. [Google Scholar] [CrossRef]
- Min, B.I.; Jansen, H.J.F.; Oguchi, T.; Freeman, A.J. Local density total energy description of ground and excited state properties of the rare earth metals. J. Magn. Magnet. Mater. 1986, 61, 139. [Google Scholar] [CrossRef]
- Johansson, B.; Rosengren, A. Generalized phase diagram for the rare-earth elements: Calculations and correlations of bulk properties. Phys. Rev. B 1975, 11, 2836. [Google Scholar] [CrossRef]
- Evans, S.R.; Loa, I.; Lundegaard, L.F.; McMahon, M.I. Phase transitions in praseodymium up to 23 GPa: An X-ray powder diffraction study. Phys. Rev. B 2009, 80, 134105. [Google Scholar] [CrossRef]
- McMahon, M.I.; Finnegan, S.E.; Pace, E.J.; Storm, C.V.; Stevenson, M.G.; Macleod, S.G.; Plekhanov, E.; Bonini, N.; Weber, C. New structural systematics in the lanthanide elements at high pressure. Bull. Mater. Sci. 2022, 45, 186. [Google Scholar] [CrossRef]
- Young, D.A. Phase Diagrams of the Elements; University of California Press: Berkeley, CA, USA, 1991; 232p. [Google Scholar]
- Al’tshuler, L.V.; Bakanova, A.A.; Dudoladov, I.P.; Dynin, E.A.; Trunin, R.F.; Checkin, B.S. Shock adiabats for metals. New data, statistical analysis and general regularities. J. Appl. Mech. Tech. Phys. 1981, 22, 145. [Google Scholar]
- Gust, W.H.; Royce, E.B. New electronic interactions in rare-earth metals at high pressure. Phys. Rev. B 1973, 8, 3595. [Google Scholar] [CrossRef]
- Sakun, D.; McCoy, C.; Melton, C.; Knudson, M.; Root, S.; Seagle, C. Structural Evolution of f-Electron Systems under Dynamic Compression. In Proceedings of the APS March Meeting 2022, Chicago, IL, USA, 14–18 March 2022; Available online: https://meetings.aps.org/Meeting/MAR22/Content/4178 (accessed on 10 April 2023).
- Burakovsky, L.; Preston, D.L.; Ramsey, S.D.; Baty, R.S. Analytic model of principal Hugoniot at all pressures. J. Appl. Phys. 2022, 132, 215109. [Google Scholar] [CrossRef]
- Kalitkin, N.N.; Kuzmina, L.V. Quantum-statistical Hugoniots of porous substances. Mat. Model. 1998, 10, 111. [Google Scholar]
- Kalitkin, N.N.; Kuzmina, L.V. Wide-Range Characteristic Thermodynamic Curves. In High-Pressure Shock Compression of Solids VII: Shock Waves and Extreme States of Matter; Fortov, V.E., Al’tshuler, L.V., Trunin, R.F., Funtikov, A.I., Eds.; Springer: New York, NY, USA, 2004; p. 116. [Google Scholar]
- Kalitkin, N.N.; Kuzmina, L.V. Shock Hugoniots of 83 Substances. Chem. Phys. Rep. 2000, 18, 1913. [Google Scholar]
- Johnson, J.D. General Features of Hugoniots, LANL Preprint LA-13137-MS, UC-705. April 1996. Available online: https://www.osti.gov/servlets/purl/230530 (accessed on 10 April 2023).
- Johnson, J.D. General Features of Hugoniots—II, LANL Preprint LA-13217-MS, UC-910. January 1997. Available online: https://www.osti.gov/servlets/purl/437718 (accessed on 10 April 2023).
- Johnson, J.D. The features of the principal Hugoniot. AIP Conf. Proc. 1998, 429, 27. [Google Scholar]
- Greef, C.W. Phase changes and the equation of state of Zr. Model. Simul. Mater. Sci. Eng. 2005, 13, 1015. [Google Scholar] [CrossRef]
- Young, D.A.; Cynn, H.; Söderlind, P.; Landa, A. Zero-Kelvin compression isotherms of the elements 1 ≤ Z ≤92 to 100 GPa. J. Phys. Chem. Ref. Data 2016, 45, 043101. [Google Scholar] [CrossRef]
- Gill, N.M.; Starrett, C.E. Tartarus: A relativistic Green’s function quantum average atom code. High Energy Density Phys. 2017, 24, 3338. [Google Scholar] [CrossRef]
- Starrett, C.E.; Gill, N.M.; Sjostrom, T.; Greeff, C.W. Wide ranging equation of state with Tartarus: A hybrid Green’s function/orbital based average atom code. Comput. Phys. Commun. 2019, 235, 50. [Google Scholar] [CrossRef]
- Nikiforov, A.F.; Novikov, V.G.; Uvarov, V.B. Quantum-Statistical Models of Hot Dense Matter. Methods for Computation Opacity and Equation of State; Birkhäuser: Basel, Switzerland, 2005. (In Russian) [Google Scholar]
- Burakovsky, L.; Ticknor, C.; Kress, J.D.; Collins, L.A.; Lambert, F. Transport properties of lithium hydride at extreme conditions from orbital-free molecular dynamics. Phys. Rev. E 2013, 87, 023104. [Google Scholar] [CrossRef] [PubMed]
- Elkin, V.M.; Mikhaylov, V.N.; Ovechkin, A.A.; Smirnov, N.A. A wide-range multiphase equation of state for platinum. J. Phys. Cond. Mat. 2020, 32, 435403. [Google Scholar] [CrossRef]
- Ivanchenko, E.S.; Kalitkin, N.N.; Kuz’mina, L.V. Main Hugoniot Adiabats in the Tefis Database of Thermophysical Properties of Substances (TEFIS). Math. Models Comput. Simul. 2009, 1, 383. [Google Scholar] [CrossRef]
- Belov, A.A.; Golovanov, R.V.; Kalitkin, N.N.; Kozlitin, I.A.; Koriakin, P.V.; Kuzmina, L.V. TEFIS Database. Thermodynamic Properties of Substances, Keldysh IAM Preprint 219, Moscow. 2018. Available online: https://keldysh.ru/papers/2018/prep2018_219.pdf (accessed on 10 April 2023).
- Johnson, J.D. Bound and estimate for the maximum compression of single shocks. Phys. Rev. E 1999, 59, 3727. [Google Scholar] [CrossRef]
- Ivanchenko, E.S.; Kalitkin, N.N.; Kuzmina, L.V. Quantum-statistical calculations of thermodynamics and Hugoniots (codes QSM). Math. Model. 2008, 20, 30. [Google Scholar]
- Ivanchenko, E.S.; Kalitkin, N.N. Shock wave data interpretation in the TEFIS database. Math. Models Comput. Simul. 2010, 2, 526. [Google Scholar] [CrossRef]
- Kadatskiy, M.A.; Khishchenko, K.V. Comparison of Hugoniots calculated for aluminum in the framework of three quantum-statistical models. J. Phys. Conf. Ser. 2015, 653, 012079. [Google Scholar] [CrossRef]
- Kadatskiy, M.A.; Khishchenko, K.V. Shock compressibility of iron calculated in the framework of quantum-statistical models with different ionic parts. J. Phys. Conf. Ser. 2016, 774, 012005. [Google Scholar] [CrossRef]
- Kadatskiy, M.A.; Khishchenko, K.V. Theoretical investigation of the shock compressibility of copper in the average-atom approximation. Phys. Plasmas 2018, 25, 112701. [Google Scholar] [CrossRef]
- Orlov, N.Y.; Kadatskiy, M.A.; Denisov, O.B.; Khishchenko, K.V. Application of quantum-statistical methods to studies of thermodynamic and radiative processes in hot dense plasmas. Matter Radiat. Extrem. 2019, 4, 054403. [Google Scholar] [CrossRef]
- Ramsey, S.D.; Schmidt, E.M.; Boyd, Z.M.; Lilieholm, J.F.; Baty, R.S. Converging shock flows for a Mie-Grüneisen equation of state. Phys. Fluids 2018, 30, 046101. [Google Scholar] [CrossRef]
- Fde, G.; Rudnick, L.; Finoguenov, A.; Wittor, D.; Akamatsu, H.; Brüggen, M.; Chibueze, J.O.; Clarke, T.E.; Cotton, W. MeerKAT view of the diffuse radio sources in Abell 3667 and their interactions with the thermal plasma. Astron. Astrophys. 2022, 659, A146. [Google Scholar]
Z | C | B | c | b | L | d | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pm | 61 | 7.25 | 1.68 | 1.34 | −0.401859 | 3.48843 | 1.16798 | 7.20958 | 116803 | 16.8604 | −12.0145 | 21.0258 | 219.968 | 1532.46 |
Tb | 65 | 8.23 | 1.72 | 1.29 | −0.198052 | 3.53354 | 1.16804 | 6.99278 | 126383 | 36.9251 | −17.0929 | 29.7399 | 224.792 | 1574.89 |
Tm | 69 | 9.32 | 1.90 | 1.19 | −6.83647 | 3.63814 | 1.16834 | 6.67959 | 136038 | 20.3201 | −12.2217 | 160.493 | 233.381 | 1649.44 |
Lu | 71 | 9.84 | 0.98 | 1.65 | −2.15897 | 3.65839 | 1.16833 | 6.56206 | 140890 | 19.4395 | −11.7463 | 11.1213 | 236.116 | 1679.54 |
Ac | 89 | 10.05 | 1.535 | 1.225 | −0.109446 | 2.49698 | 1.15830 | 6.17184 | 185075 | 6.05256 | −5.71868 | 28.8450 | 201.141 | 1913.82 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Burakovsky, L.; Preston, D.L.; Ramsey, S.D.; Sjue, S.K.; Starrett, C.E.; Baty, R.S. Principal Hugoniots of Promethium, Terbium, Thulium, Lutetium, and Actinium in a Wide Pressure Range. Appl. Sci. 2023, 13, 9643. https://doi.org/10.3390/app13179643
Burakovsky L, Preston DL, Ramsey SD, Sjue SK, Starrett CE, Baty RS. Principal Hugoniots of Promethium, Terbium, Thulium, Lutetium, and Actinium in a Wide Pressure Range. Applied Sciences. 2023; 13(17):9643. https://doi.org/10.3390/app13179643
Chicago/Turabian StyleBurakovsky, Leonid, Dean L. Preston, Scott D. Ramsey, Sky K. Sjue, Charles E. Starrett, and Roy S. Baty. 2023. "Principal Hugoniots of Promethium, Terbium, Thulium, Lutetium, and Actinium in a Wide Pressure Range" Applied Sciences 13, no. 17: 9643. https://doi.org/10.3390/app13179643
APA StyleBurakovsky, L., Preston, D. L., Ramsey, S. D., Sjue, S. K., Starrett, C. E., & Baty, R. S. (2023). Principal Hugoniots of Promethium, Terbium, Thulium, Lutetium, and Actinium in a Wide Pressure Range. Applied Sciences, 13(17), 9643. https://doi.org/10.3390/app13179643