Effects on Long-Range Dependence and Multifractality in Temporal Resolution Recovery of High Frame Rate HEVC Compressed Content
Abstract
:1. Introduction
- −
- HFR HEVC frame size traces show specific behavior in LRD- and multifractal-based analysis, where difference before and after temporal resolution recovery (TRR) exist.
- −
- The experimental results are obtained for HEVC compressed HFR video frame size traces for the first time in multifractal domain, which may contribute to recognition of possible changes like TRR.
- −
- Having in mind the obtained results and spectra behavior, a novel detection method is proposed for TRR detection regardless of compression level expressed through constant rate factors.
- −
- The proposed TRR detection model based on weighted k-nearest neighbors (weighted kNN or WkNN) classifier shows high accuracy detection percentage in the performed experimental analysis using a relatively low number of features.
2. HFR Processing and Challenges
3. Self-Similarity and Multifractal Analysis of Compressed Video Content
4. HFR HEVC Video Traces and Temporal Recovery Data
5. Methods for Estimation of HFR Video Characteristics
5.1. Hurst Index
5.2. Multifractal Spectrum
5.3. Detection Model and Evaluation
6. Experimental Results and Discussion
6.1. Hurst Index Differences between Original and Temporal Recovery Data in LRD Estimation
6.2. Differences between Original and Temporal Recovery Data in Multifractal Spectrum Estimation
6.3. Temporal Recovery Detection Results Using the Proposed Model based on Multifractal Features
7. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mackin, A.; Zhang, F.; Bull, D.R. A study of high frame rate video formats. IEEE Trans. Multimed. 2018, 21, 1499–1512. [Google Scholar] [CrossRef]
- Armstrong, M.G.; Flynn, D.J.; Hammond, M.E.; Jolly, S.J.E.; Salmon, R.A. High frame-rate television. SMPTE Motion Imaging J. 2009, 118, 54–59. [Google Scholar] [CrossRef]
- Sugawara, M.; Choi, S.Y.; Wood, D. Ultra-high-definition television (Rec. ITU-R BT. 2020): A generational leap in the evolution of television [standards in a nutshell]. IEEE Signal Process. Mag. 2014, 31, 170–174. [Google Scholar] [CrossRef]
- Noland, M.; Whitaker, J.; Claudy, L. ATSC: Beyond Standards and a Look at the Future. SMPTE Motion Imaging J. 2021, 130, 29–38. [Google Scholar] [CrossRef]
- Advanced Television Systems Committee (ATSC). ATSC 3.0 Standards. [Online]. Available online: https://www.atsc.org/standards/atsc-3-0-standards/;https://prdatsc.wpenginepowered.com/wp-content/uploads/2021/04/A341-2019-Video-HEVC.pdf (accessed on 20 May 2023).
- You, D.; Kim, S.H.; Kim, D.H. ATSC 3.0 ROUTE/DASH Signaling for Immersive Media: New Perspectives and Examples. IEEE Access 2021, 9, 164503–164509. [Google Scholar] [CrossRef]
- Weber, K.; van Geel, R. History and Future of Connecting Broadcast Television Cameras: From Multicore to Native IP. SMPTE Motion Imaging J. 2021, 130, 46–52. [Google Scholar] [CrossRef]
- Wu, J.; Yuen, C.; Cheung, N.M.; Chen, J.; Chen, C.W. Enabling adaptive high-frame-rate video streaming in mobile cloud gaming applications. IEEE Trans. Circuits Syst. Video Technol. 2015, 25, 1988–2001. [Google Scholar] [CrossRef]
- Berton, J.A.; Chuang, K.L. Effects of very high frame rate display in narrative CGI animation. In Proceedings of the 2016 20th International Conference Information Visualisation (IV), Lisbon, Portugal, 19–22 July 2016; pp. 395–398. [Google Scholar] [CrossRef]
- Davis, T. Rethinking Frame Rate and Temporal Fidelity in a Cinema Workflow. SMPTE Motion Imaging J. 2017, 126, 62–71. [Google Scholar] [CrossRef]
- Gomez-Barquero, D.; Li, W.; Fuentes, M.; Xiong, J.; Araniti, G.; Akamine, C.; Wang, J. IEEE transactions on broadcasting special issue on: 5G for broadband multimedia systems and broadcasting. IEEE Trans. Broadcast. 2019, 65, 351–355. [Google Scholar] [CrossRef]
- Madhusudana, P.C.; Yu, X.; Birkbeck, N.; Wang, Y.; Adsumilli, B.; Bovik, A.C. Subjective and objective quality assessment of high frame rate videos. IEEE Access 2021, 9, 108069–108082. [Google Scholar] [CrossRef]
- Wen, S.; Wang, J. A strong baseline for image and video quality assessment. arXiv 2021, arXiv:2111.07104. [Google Scholar]
- Silva, M.M.; Ramos, W.L.S.; Ferreira, J.P.K.; Campos, M.F.M.; Nascimento, E.R. Towards semantic fast-forward and stabilized egocentric videos. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; Springer: Cham, Switzerland, 2016; pp. 557–571. [Google Scholar] [CrossRef]
- European Broadcasting Union (EBU) TR 050. Subjective Evaluation of 100Hz High Frame Rate; European Broadcasting Union: Geneva, Switzerland, 2019. [Google Scholar]
- Nasiri, R.M.; Wang, J.; Rehman, A.; Wang, S.; Wang, Z. Perceptual quality assessment of high frame rate video. In Proceedings of the 2015 IEEE 17th International Workshop on Multimedia Signal Processing (MMSP), Xiamen, China, 19–21 October 2015; pp. 1–6. [Google Scholar] [CrossRef]
- Lee, D.Y.; Ko, H.; Kim, J.; Bovik, A.C. Space-time video regularity and visual fidelity: Compression, resolution and frame rate adaptation. arXiv 2021, arXiv:2103.16771. [Google Scholar] [CrossRef]
- Rahim, T.; Shin, S.Y. Subjective Evaluation of Ultra-high Definition (UHD) Videos. KSII Trans. Internet Inf. Syst. (TIIS) 2020, 14, 2464–2479. [Google Scholar] [CrossRef]
- Sara, U.; Akter, M.; Uddin, M.S. Image quality assessment through FSIM, SSIM, MSE and PSNR—A comparative study. J. Comput. Commun. 2019, 7, 8–18. [Google Scholar] [CrossRef]
- Li, Z.; Bampis, C.; Novak, J.; Aaron, A.; Swanson, K.; Moorthy, A.; Cock, J.D. VMAF: The journey continues. Netflix Technol. Blog 2018, 25, 1. [Google Scholar]
- Wang, Y.; Inguva, S.; Adsumilli, B. YouTube UGC dataset for video compression research. In Proceedings of the 2019 IEEE 21st International Workshop on Multimedia Signal Processing (MMSP), Kuala Lumpur, Malaysia, 27–29 September 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Hosu, V.; Hahn, F.; Jenadeleh, M.; Lin, H.; Men, H.; Sziranyi, T.; Li, S.; Saupe, D. The Konstanz natural video database (KoNViD-1k). In Proceedings of the 2017 Ninth International Conference on Quality of Multimedia Experience (QoMEX), Erfurt, Germany, 31 May–2 June 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Mercat, A.; Viitanen, M.; Vanne, J. UVG dataset: 50/120fps 4K sequences for video codec analysis and development. In Proceedings of the 11th ACM Multimedia Systems Conference, Istanbul, Turkey, 8–11 June 2020; pp. 297–302. [Google Scholar] [CrossRef]
- Danier, D.; Zhang, F.; Bull, D. A Subjective Quality Study for Video Frame Interpolation. arXiv 2022, arXiv:2202.07727. [Google Scholar] [CrossRef]
- Vanam, R.; Reznik, Y.A. Frame rate up-conversion using bi-directional optical flows with dual regularization. In Proceedings of the 2020 IEEE International Conference on Image Processing (ICIP), Abu Dhabi, United Arab Emirates, 25–28 October 2020; pp. 558–562. [Google Scholar] [CrossRef]
- MPEG. Available online: https://www.mpeg.org/ (accessed on 28 May 2023).
- ITU-T, H. 264: Advanced Video Coding for Generic Audiovisual Services. Available online: https://www.itu.int/rec/T-REC-H.264-202108-I/en (accessed on 22 May 2023).
- Wiegand, T.; Sullivan, G.J.; Bjontegaard, G.; Luthra, A. Overview of the H. 264/AVC video coding standard. IEEE Trans. Circuits Syst. Video Technol. 2003, 13, 560–576. [Google Scholar] [CrossRef]
- ITU-T, H. 265: High Efficiency Video Coding. Available online: https://www.itu.int/rec/T-REC-H.265 (accessed on 22 May 2023).
- Bordes, P.; Clare, G.; Henry, F.; Raulet, M.; Viéron, J. An overview of the emerging HEVC standard. In Proceedings of the International Symposium on Signal, Image, Video and Communications, ISIVC, Valenciennes, France, 4–6 July 2012. [Google Scholar]
- Belton, J. Introduction: BEYOND HEVC. SMPTE Motion Imaging J. 2019, 128, 12–13. [Google Scholar] [CrossRef]
- Rahim, T.; Usman, M.A.; Shin, S.Y. Comparing H. 265/HEVC and VP9: Impact of high frame rates on the perceptual quality of compressed videos. arXiv 2020, arXiv:2006.02671. [Google Scholar] [CrossRef]
- FFmpeg. Available online: https://ffmpeg.org/ (accessed on 28 May 2023).
- Mandelbrot, B.B. The Fractal Geometry of Nature; WH Freeman: New York, NY, USA, 1982; Volume 1. [Google Scholar] [CrossRef]
- Durán-Meza, G.; López-García, J.; del Río-Correa, J.L. The self-similarity properties and multifractal analysis of DNA sequences. Appl. Math. Nonlinear Sci. 2019, 4, 267–278. [Google Scholar] [CrossRef]
- Garrett, M.W.; Willinger, W. Analysis, modeling and generation of self-similar VBR video traffic. ACM SIGCOMM Comput. Commun. Rev. 1994, 24, 269–280. [Google Scholar] [CrossRef]
- Willinger, W.; Taqqu, M.S.; Sherman, R.; Wilson, D.V. Self-similarity through high-variability: Statistical analysis of Ethernet LAN traffic at the source level. IEEE/ACM Trans. Netw. 1997, 5, 71–86. [Google Scholar] [CrossRef]
- Ritke, R.; Hong, X.; Gerla, M. Contradictory relationship between Hurst parameter and queueing performance (extended version). Telecommun. Syst. 2001, 16, 159–175. [Google Scholar] [CrossRef]
- Riedi, R.; Véhel, J.L. Multifractal Properties of TCP Traffic: A Numerical Study. Rapport de recherché, L′Institut national de recherche en informatique et en automatique (INRIA), Le Chesnay-Rocquencourt, France. 1997. Available online: https://hal.inria.fr/file/index/docid/73560/filename/RR-3129.pdf (accessed on 20 May 2023).
- Gao, J.; Rubin, I. Multifractal analysis and modelling of VBR video traffic. Electron. Lett. 2000, 36, 1. [Google Scholar] [CrossRef]
- Vieira, F.H.T.; Bianchi, G.R.; Lee, L.L. A network traffic prediction approach based on multifractal modeling. J. High Speed Netw. 2010, 17, 83–96. [Google Scholar] [CrossRef]
- Ribeiro, V.J.; Riedi, R.H.; Baraniuk, R.G. Wavelets and multifractals for network traffic modeling and inference. In Proceedings of the 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No. 01CH37221), Salt Lake City, UT, USA, 7–11 May 2001; Volume 6, pp. 3429–3432. [Google Scholar] [CrossRef]
- Jiang, J.; Xiong, Z. Wavelet-based modeling and smoothing for call admission control of VBR video traffic. In Proceedings of the Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, Pacific Grove, CA, USA, 9–12 November 2003; Volume 2, pp. 1510–1513. [Google Scholar] [CrossRef]
- Krishna, M.; Gadre, V.; Desai, U. Multiplicative multifractal process based modeling of broadband traffic processes: Variable bit rate video traffic. In Proceedings of the 2002 International Zurich Seminar on Broadband Communications Access-Transmission-Networking (Cat. No. 02TH8599), Zurich, Switzerland, 19–21 February 2002; p. 18. [Google Scholar] [CrossRef]
- Huang, X.D.; Zhou, Y.H.; Zhang, R.F. A multiscale model for MPEG-4 varied bit rate video traffic. IEEE Trans. Broadcast. 2004, 50, 323–334. [Google Scholar] [CrossRef]
- Rocha, F.G.C.; Vieira, F.H.T. Modeling of MPEG-4 video traffic using a multifractal cascade with autoregressive multipliers. IEEE Lat. Am. Trans. 2011, 9, 860–867. [Google Scholar] [CrossRef]
- Yu, Y.; Song, M.; Fu, Y.; Song, J. Traffic prediction in 3G mobile networks based on multifractal exploration. Tsinghua Sci. Technol. 2013, 18, 398–405. [Google Scholar] [CrossRef]
- Ergenç, D.; Onur, E. On network traffic forecasting using autoregressive models. arXiv 2019, arXiv:1912.12220. [Google Scholar] [CrossRef]
- Lazaris, A.; Koutsakis, P. Modeling multiplexed traffic from H.264/AVC videoconference streams. Comput. Commun. 2010, 33, 1235–1242. [Google Scholar] [CrossRef]
- Lucantoni, D.M.; Neuts, M.F.; Reibman, A.R. Methods for performance evaluation of VBR video traffic models. IEEE/ACM Trans. Netw. 1994, 2, 176–180. [Google Scholar] [CrossRef]
- Nogueira, A.; Salvador, P.; Valadas, R.; Pacheco, A. Modeling network traffic with multifractal behavior. Telecommun. Syst. 2003, 24, 339–362. [Google Scholar] [CrossRef]
- Haßlinger, G.; Takes, P. Real time video traffic characteristics and dimensioning regarding QoS demands. In Teletraffic Science and Engineering; Elsevier: Amsterdam, The Netherlands, 2003; Volume 5, pp. 1211–1220. [Google Scholar] [CrossRef]
- De Godoy Stênico, J.W.; Ling, L.L. A multifractal based dynamic bandwidth allocation approach for network traffic flows. In Proceedings of the 2010 IEEE International Conference on Communications, Cape Town, South Africa, 23–27 May 2010; pp. 1–6. [Google Scholar] [CrossRef]
- Dymora, P.; Mazurek, M. An innovative approach to anomaly detection in communication networks using multifractal analysis. Appl. Sci. 2020, 10, 3277. [Google Scholar] [CrossRef]
- Park, C.; Hernández-Campos, F.; Le, L.; Marron, J.S.; Park, J.; Pipiras, V.; Smith, F.D.; Smith, R.L.; Trovero, M.; Zhu, Z. Long-range dependence analysis of Internet traffic. J. Appl. Stat. 2011, 38, 1407–1433. [Google Scholar] [CrossRef]
- Liew, C.H.; Kodikara, C.K.; Kondoz, A.M. MPEG-encoded variable bit-rate video traffic modelling. IEE Proc.-Commun. 2005, 152, 749–756. [Google Scholar] [CrossRef]
- Fitzek, F.H.; Reisslein, M. MPEG-4 and H. 263 video traces for network performance evaluation. IEEE Netw. 2001, 15, 40–54. [Google Scholar] [CrossRef]
- Reljin, I.; Samčović, A.; Reljin, B.H. 264/AVC video compressed traces: Multifractal and fractal analysis. EURASIP J. Adv. Signal Process. 2006, 2006, 75217. [Google Scholar] [CrossRef]
- Seeling, P.; Reisslein, M. Video transport evaluation with H. 264 video traces. IEEE Commun. Surv. Tutor. 2011, 14, 1142–1165. [Google Scholar] [CrossRef]
- Bestagini, P.; Battaglia, S.; Milani, S.; Tagliasacchi, M.; Tubaro, S. Detection of temporal interpolation in video sequences. In Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada, 26–31 May 2013; pp. 3033–3037. [Google Scholar] [CrossRef]
- Bian, S.; Luo, W.; Huang, J. Detecting video frame-rate up-conversion based on periodic properties of inter-frame similarity. Multimed. Tools Appl. 2014, 72, 437–451. [Google Scholar] [CrossRef]
- Ding, X.; Zhang, D. Detection of motion-compensated frame-rate up-conversion via optical flow-based prediction residue. Optik 2020, 207, 163766. [Google Scholar] [CrossRef]
- Yoon, M.; Nam, S.H.; Yu, I.J.; Ahn, W.; Kwon, M.J.; Lee, H.K. Frame-rate up-conversion detection based on convolutional neural network for learning spatiotemporal features. Forensic Sci. Int. 2022, 340, 111442. [Google Scholar] [CrossRef]
- Wang, S.H.; Qiu, Z.D. A novel multifractal model of MPEG-4 video traffic. In Proceedings of the IEEE International Symposium on Communications and Information Technology, 2005. ISCIT 2005, Beijing, China, 12–14 October 2005; Volume 1, pp. 101–104. [Google Scholar] [CrossRef]
- Zhang, R.; Condomines, J.P.; Lochin, E. A Multifractal Analysis and Machine Learning Based Intrusion Detection System with an Application in a UAS/RADAR System. Drones 2022, 6, 21. [Google Scholar] [CrossRef]
- Zajić, G.J.; Vesić, M.D.; Gavrovska, A.M.; Reljin, I.S. Animation frame analysis. In Proceedings of the 2015 23rd Telecommunications Forum Telfor (TELFOR), Belgrade, Serbia, 24–26 November 2015; pp. 732–735. [Google Scholar] [CrossRef]
- Madhusudana, P.C.; Birkbeck, N.; Wang, Y.; Adsumilli, B.; Bovik, A.C. ST-GREED: Space-time generalized entropic differences for frame rate dependent video quality prediction. IEEE Trans. Image Process. 2021, 30, 7446–7457. [Google Scholar] [CrossRef] [PubMed]
- Mandelbrot, B. Statistical methodology for nonperiodic cycles: From the covariance to R/S analysis. In Annals of Economic and Social Measurement; NBER: Cambridge, MA, USA, 1972; Volume 1, pp. 259–290. [Google Scholar]
- Menkens, O. Value at risk and self-similarity. Numer. Methods Financ. 2007, 1–23. [Google Scholar]
- Weron, R. Estimating long-range dependence: Finite sample properties and confidence intervals. Phys. A Stat. Mech. Its Appl. 2002, 312, 285–299. [Google Scholar] [CrossRef]
- Bărbulescu, A.; Serban, C.; Maftei, C. Evaluation of Hurst exponent for precipitation time series. In Proceedings of the 14th WSEAS International Conference on Computers, Corfu Island, Greece, 23–25 July 2010; Volume 2, pp. 590–595. [Google Scholar]
- Kugiumtzis, D.; Tsimpiris, A. Measures of analysis of time series (MATS): A MATLAB toolkit for computation of multiple measures on time series data bases. arXiv 2010, arXiv:1002.1940. [Google Scholar] [CrossRef]
- García, M.D.L.N.L.; Requena, J.P.R. Different methodologies and uses of the Hurst exponent in econophysics. Stud. Appl. Econ. 2019, 37, 96–108. [Google Scholar] [CrossRef]
- Montanari, A.; Taqqu, M.S.; Teverovsky, V. Estimating long-range dependence in the presence of periodicity: An empirical study. Math. Comput. Model. 1999, 29, 217–228. [Google Scholar] [CrossRef]
- Véhel, J.L.; Tricot, C. On various multifractal spectra. In Fractal Geometry and Stochastics III; Birkhäuser: Basel, Switzerland, 2004; pp. 23–42. [Google Scholar] [CrossRef]
- Ihlen, E.A.; Vereijken, B. Multifractal formalisms of human behavior. Hum. Mov. Sci. 2013, 32, 633–651. [Google Scholar] [CrossRef]
- Krzyszczak, J.; Baranowski, P.; Zubik, M.; Kazandjiev, V.; Georgieva, V.; Sławiński, C.; Siwek, K.; Kozyra, J.; Nieróbca, A. Multifractal characterization and comparison of meteorological time series from two climatic zones. Theor. Appl. Climatol. 2019, 137, 1811–1824. [Google Scholar] [CrossRef]
- Fraclab. Available online: https://project.inria.fr/fraclab/ (accessed on 20 June 2023).
- Gavrovska, A.; Zajić, G.; Reljin, I.; Reljin, B. Classification of prolapsed mitral valve versus healthy heart from phonocardiograms by multifractal analysis. Comput. Math. Methods Med. 2013, 2013, 376152. [Google Scholar] [CrossRef] [PubMed]
- Gajan, S. Modeling of seismic energy dissipation of rocking foundations using nonparametric machine learning algorithms. Geotechnics 2021, 1, 534–557. [Google Scholar] [CrossRef]
- Fan, G.F.; Guo, Y.H.; Zheng, J.M.; Hong, W.C. Application of the weighted k-nearest neighbor algorithm for short-term load forecasting. Energies 2019, 12, 916. [Google Scholar] [CrossRef]
- Sharma, A.; Jigyasu, R.; Mathew, L.; Chatterji, S. Bearing fault diagnosis using weighted K-nearest neighbor. In Proceedings of the 2018 2nd International Conference on Trends in Electronics and Informatics (ICOEI), Tirunelveli, India, 11–12 May 2018; pp. 1132–1137. [Google Scholar] [CrossRef]
- Chomboon, K.; Chujai, P.; Teerarassamee, P.; Kerdprasop, K.; Kerdprasop, N. An empirical study of distance metrics for k-nearest neighbor algorithm. In Proceedings of the 3rd International Conference on Industrial Application Engineering, Kitakyushu, Japan, 28–31 March 2015; Volume 2. [Google Scholar] [CrossRef]
- Jusman, Y.; Anam, M.K.; Puspita, S.; Saleh, E.; Kanafiah, S.N.A.M.; Tamarena, R.I. Comparison of dental caries level images classification performance using knn and svm methods. In Proceedings of the 2021 IEEE International Conference on Signal and Image Processing Applications (ICSIPA), Kuala Terengganu, Malaysia, 13–15 September 2021; pp. 167–172. [Google Scholar]
No. | Source (YUV) | Spatial Resolution | Frame Rate | Frame Number | Bit Depth |
---|---|---|---|---|---|
1 | Beauty | 3180 × 2160 (2160 p) | 120 fps | 600 | 8 |
2 | Bosphorus | 3180 × 2160 (2160 p) | 120 fps | 600 | 8 |
3 | HoneyBee | 3180 × 2160 (2160 p) | 120 fps | 600 | 8 |
4 | Jockey | 3180 × 2160 (2160 p) | 120 fps | 600 | 8 |
5 | ReadySetGo | 3180 × 2160 (2160 p) | 120 fps | 600 | 8 |
6 | YachtRide | 3180 × 2160 (2160 p) | 120 fps | 600 | 8 |
No. | Hurst Method | crf20 | crf24 | crf28 | crf32 | crf36 | crf40 |
---|---|---|---|---|---|---|---|
1 | Hurst (Generalized) | 0.6928 | 0.7058 | 0.7164 | 0.7138 | 0.7126 | 0.7089 |
2 | Hurst (DFA) | 0.7527 | 0.7962 | 0.8132 | 0.8024 | 0.7975 | 0.7832 |
3 | Periodogram | 0.7554 | 0.6036 | 0.5154 | 0.5512 | 0.5901 | 0.6113 |
4 | R/S statistics | 0.8652 | 0.8943 | 0.8848 | 0.8721 | 0.8678 | 0.8585 |
No. | Description | crf20 | crf24 | crf28 | crf32 | crf36 | crf40 |
---|---|---|---|---|---|---|---|
1 | Temporal recovery | 0.7910 | 0.7840 | 0.7807 | 0.7957 | 0.8100 | 0.8212 |
2 | Original | 0.8652 | 0.8943 | 0.8848 | 0.8721 | 0.8678 | 0.8585 |
3 | Hdiff | −8.58% | −12.33% | −11.77% | −8.76% | −6.67% | −4.34% |
4 | Hdiff,average | −8.74% | −11.51% | −7.65% | −7.94% | −3.29% | +1.30% |
No. | Parameter | crf20 | crf24 | crf28 | crf32 | crf36 | crf40 |
---|---|---|---|---|---|---|---|
1 | αmin | 0.8901 | 0.8891 | 0.8820 | 0.8899 | 0.9100 | 0.9129 |
2 | α1 | 0.9888 | 0.9894 | 0.9889 | 0.9882 | 0.9876 | 0.9856 |
3 | α0 | 1.10112 | 1.0106 | 1.0112 | 1.0120 | 1.0129 | 1.0154 |
4 | αmax | 1.2182 | 1.1941 | 1.2052 | 1.2126 | 1.2262 | 1.2314 |
5 | w | 0.3282 | 0.3050 | 0.3231 | 0.3227 | 0.3162 | 0.3185 |
No. | Parameter | crf20 | crf24 | crf28 | crf32 | crf36 | crf40 |
---|---|---|---|---|---|---|---|
1 | αmin | 0.9376 | 0.9350 | 0.9178 | 0.8949 | 0.8882 | 0.8698 |
2 | α1 | 0.9921 | 0.9929 | 0.9924 | 0.9913 | 0.9906 | 0.9901 |
3 | α0 | 1.0083 | 1.0073 | 1.0076 | 1.0086 | 1.0092 | 1.0095 |
4 | αmax | 1.1602 | 1.1285 | 1.1115 | 1.1084 | 1.1093 | 1.1010 |
5 | w | 0.2225 | 0.1934 | 0.1937 | 0.2135 | 0.2212 | 0.2312 |
No. | Classifier Type | True Positive Rate (TPR) | Positive Predictive Value (PPV) | Accuracy (Acc) |
---|---|---|---|---|
1 | WkNN with Euclidean metric (13) | 66.7 | 80 | 75 |
2 | WkNN with Cityblock metric (14) | 70 | 80.8 | 76.7 |
3 | WkNN with Mahalanobis metric (15) (proposed approach) | 96.7 | 100 | 98.3 |
No. | Classifier Type | True Positive Rate (TPR) | Positive Predictive Value (PPV) | Accuracy (Acc) |
---|---|---|---|---|
1 | kNN | 70 | 77.8 | 75 |
2 | Decision tree | 60 | 56.3 | 56.7 |
3 | Linear SVM | 46.7 | 56 | 55 |
4 | Cubic SVM | 93.3 | 90.3 | 91.7 |
5 | Quadratic SVM | 89.3 | 83.3 | 86.7 |
6 | WkNN with Mahalanobis metric (proposed approach) | 96.7 | 100 | 98.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gavrovska, A. Effects on Long-Range Dependence and Multifractality in Temporal Resolution Recovery of High Frame Rate HEVC Compressed Content. Appl. Sci. 2023, 13, 9851. https://doi.org/10.3390/app13179851
Gavrovska A. Effects on Long-Range Dependence and Multifractality in Temporal Resolution Recovery of High Frame Rate HEVC Compressed Content. Applied Sciences. 2023; 13(17):9851. https://doi.org/10.3390/app13179851
Chicago/Turabian StyleGavrovska, Ana. 2023. "Effects on Long-Range Dependence and Multifractality in Temporal Resolution Recovery of High Frame Rate HEVC Compressed Content" Applied Sciences 13, no. 17: 9851. https://doi.org/10.3390/app13179851
APA StyleGavrovska, A. (2023). Effects on Long-Range Dependence and Multifractality in Temporal Resolution Recovery of High Frame Rate HEVC Compressed Content. Applied Sciences, 13(17), 9851. https://doi.org/10.3390/app13179851