Non-Probabilistic Reliability Analysis of Slopes Based on a Multidimensional Parallelepiped Model
Abstract
:1. Introduction
2. Non-Probabilistic Reliability Analysis Method Based on a Multidimensional Parallelepiped Model
2.1. Construction of the Multidimensional Parallelepiped Model
- (1)
- The parallelogram uncertainty domain is contained in the rectangular domain .
- (2)
- The vertices A, B, C, and D of the parallelogram uncertainty domain are located on the diagonal lines of the rectangular domain .
- (3)
- The parallelogram uncertainty domain is the minimum area parallelogram containing all sample points.
- (4)
- When the uncertainty parameters and are independent of each other, the parallelogram uncertainty domain degenerates into the rectangular domain .
2.2. Non-Probabilistic Reliability Analysis
3. Non-Probabilistic Reliability Analysis of Slopes Based on a Multidimensional Parallelepiped Model
4. Example Analysis
4.1. Basic Information
4.2. Calculation Results and Analysis
4.2.1. Feasibility Validation of the Non-Probabilistic Reliability Analysis Method for the Slope
4.2.2. Influence of Correlation of Shear Strength Parameters on the Non-Probabilistic Reliability of the Slope
4.2.3. Influence of Variability of Shear Strength Parameters on the Non-Probabilistic Reliability of the Slope
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mahmood, K.; Kim, J.M.; Ashraf, M.; Ziaurrehman. The effect of soil type on matric suction and stability of unsaturated slope under uniform rainfall. KSCE J. Civ. Eng. 2016, 20, 1294–1299. [Google Scholar] [CrossRef]
- Prakasam, C.R.A.; Nagarajan, B.; Kanwar, V.S. Site-specific geological and geotechnical investigation of a debris landslide along unstable road cut slopes in the Himalayan region, India. Geomat. Nat. Hazards Risk 2020, 11, 1827–1848. [Google Scholar] [CrossRef]
- Kardani, N.; Zhou, A.; Nazem, M.; Shen, S.-L. Improved prediction of slope stability using a hybrid stacking ensemble method based on finite element analysis and field data. J. Rock Mech. Geotech. Eng. 2021, 13, 188–201. [Google Scholar] [CrossRef]
- Pham, K.; Kim, D.; Park, S.; Choi, H. Ensemble learning-based classification models for slope stability analysis. Catena 2021, 196, 104886. [Google Scholar] [CrossRef]
- Ahangari Nanehkaran, Y.; Pusatli, T.; Chengyong, J.; Chen, J.; Cemiloglu, A.; Azarafza, M.; Derakhshani, R. Application of Machine Learning Techniques for the Estimation of the Safety Factor in Slope Stability Analysis. Water 2022, 14, 3743. [Google Scholar] [CrossRef]
- Ijaz, N.; Ye, W.; Rehman, Z.u.; Dai, F.; Ijaz, Z. Numerical study on stability of lignosulphonate-based stabilized surficial layer of unsaturated expansive soil slope considering hydro-mechanical effect. Transp. Geotech. 2022, 32, 100697. [Google Scholar] [CrossRef]
- Singh, P.; Bardhan, A.; Han, F.; Samui, P.; Zhang, W. A critical review of conventional and soft computing methods for slope stability analysis. Model. Earth Syst. Environ. 2023, 9, 1–17. [Google Scholar] [CrossRef]
- Liu, C.Y.; Zhang, J.Q.; Pan, G.; Song, H.C.; Liu, C.W. Non-Probabilistic Slope Stability Analysis. Adv. Mater. Res. 2011, 243–249, 5627–5631. [Google Scholar] [CrossRef]
- Yu, S.; Chen, Z.; Jiang, X.; Jiang, Y. Non-probabilistic Reliability Analysis of Rock Slope Stability Based on Interval Methods. J. Disaster Prev. Mitig. Eng. 2012, 32, 170–175. (In Chinese) [Google Scholar]
- Mu, H.S. Non-Probabilistic Reliability and Slope Stability Analysis. Appl. Mech. Mater. 2014, 578–579, 1538–1541. [Google Scholar] [CrossRef]
- Han, X.; Chen, H. Non-probabilistic Reliability Analysis Based on the Ellipsoidal Model of Rock Slope Stability. J. Xihua Univ. (Nat. Sci. Ed.) 2015, 34, 96–100. (In Chinese) [Google Scholar]
- Gao, L.-X.; Liang, B.; Wu, Z. Nonprobabilistic Reliability Solution Method of Slope Convex Set Model. J. Highw. Transp. Res. Dev. (Engl. Ed.) 2022, 16, 51–59. [Google Scholar] [CrossRef]
- Shu, S.; Qian, J.; Gong, W.; Pi, K.; Yang, Z. Non-Probabilistic Reliability Analysis of Slopes Based on Fuzzy Set Theory. Appl. Sci. 2023, 13, 7024. [Google Scholar] [CrossRef]
- Ni, B. Interval Process and Interval Field Models with Applications in Uncertainty Analysis of Structures. Ph.D. Thesis, Hunan University, Changsha, China, 2017. [Google Scholar]
- Ni, B.Y.; Jiang, C.; Han, X. An improved multidimensional parallelepiped non-probabilistic model for structural uncertainty analysis. Appl. Math. Model. 2016, 40, 4727–4745. [Google Scholar] [CrossRef]
- Lv, H.; Yang, K.; Yin, H.; Shangguan, W.; Yu, D. Inherent Characteristic Analysis of Powertrain Mounting SystemBased on Multidimensional Parallelepiped Model. Automot. Eng. 2020, 42, 498–504. (In Chinese) [Google Scholar]
- Zhao, M.-Y.; Yan, W.-J.; Yuen, K.-V.; Beer, M. Non-probabilistic uncertainty quantification for dynamic characterization functions using complex ratio interval arithmetic operation of multidimensional parallelepiped model. Mech. Syst. Signal Process. 2021, 156, 107559. [Google Scholar] [CrossRef]
- Zheng, J.; Luo, Z.; Jiang, C.; Ni, B.; Wu, J. Non-probabilistic reliability-based topology optimization with multidimensional parallelepiped convex model. Struct. Multidiscip. Optim. 2018, 57, 2205–2221. [Google Scholar] [CrossRef]
- Jena, S.K.; Chakraverty, S.; Malikan, M. Implementation of non-probabilistic methods for stability analysis of nonlocal beam with structural uncertainties. Eng. Comput. 2021, 37, 2957–2969. [Google Scholar] [CrossRef]
- Ni, B.Y.; Jiang, C.; Huang, Z.L. Discussions on non-probabilistic convex modelling for uncertain problems. Appl. Math. Model. 2018, 59, 54–85. [Google Scholar] [CrossRef]
- Jiang, C.; Fu, C.-M.; Ni, B.-Y.; Han, X. Interval arithmetic operations for uncertainty analysis with correlated interval variables. Acta Mech. Sin. 2016, 32, 743–752. [Google Scholar] [CrossRef]
- Wang, M.R.; Fan, J.P.; Hu, J. A non-probabilistic reliability-based design optimization method for structures based on interval models. Fatigue Fract. Eng. Mater. Struct. 2018, 41, 425–439. [Google Scholar] [CrossRef]
- Guo, S.; Zhang, L.; Li, Y. Procedures for Computing the Non-Probabilistic Reliability Index of Uncertain structures. Chin. J. Comput. Mech. 2005, 22, 227–231. (In Chinese) [Google Scholar]
- Gill, P.E.; Wong, E. Sequential Quadratic Programming Methods. In Mixed Integer Nonlinear Programming; Springer: New York, NY, USA, 2012; pp. 147–224. [Google Scholar]
- Fan, J.; Chen, X. Theoretical Analysis of Non-Probabilistic Reliability Based on Interval Model. Chin. J. Solid Mech. 2014, 35, 476–484. (In Chinese) [Google Scholar]
- Xia, Y.; Zhang, N.; Li, J.; Xu, D. The relationship between probabilistic and non-probabilistic reliability index of structure. J. Guangxi Univ. (Nat. Sci. Ed.) 2016, 41, 1279–1284. (In Chinese) [Google Scholar]
- McKay, M.D.; Beckman, R.J.; Conover, W.J. A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code. Technometrics 2000, 42, 55–61. [Google Scholar] [CrossRef]
- Cho, S.E. Probabilistic Assessment of Slope Stability That Considers the Spatial Variability of Soil Properties. J. Geotech. Geoenviron. Eng. 2010, 136, 975–984. [Google Scholar] [CrossRef]
Sample Number | Cohesion, kPa | Internal Friction Angle, ° |
---|---|---|
1 | 15.50 | 30.82 |
2 | 11.65 | 32.19 |
3 | 15.36 | 27.83 |
4 | 16.96 | 27.48 |
5 | 12.82 | 30.53 |
6 | 16.08 | 32.33 |
7 | 16.30 | 28.78 |
8 | 14.47 | 31.29 |
9 | 20.47 | 22.34 |
10 | 10.78 | 33.28 |
11 | 15.43 | 27.52 |
12 | 11.82 | 31.44 |
13 | 12.43 | 35.15 |
14 | 15.92 | 33.74 |
15 | 17.88 | 29.74 |
16 | 15.11 | 30.85 |
17 | 18.51 | 30.56 |
18 | 11.81 | 33.42 |
19 | 15.61 | 25.04 |
20 | 13.01 | 28.28 |
21 | 12.33 | 30.81 |
22 | 9.92 | 33.65 |
23 | 16.88 | 25.98 |
24 | 22.56 | 25.21 |
25 | 16.10 | 28.21 |
Correlation Coefficient | Non-Probabilistic Reliability Index (MP-1 Model) | Non-Probabilistic Reliability Index (MP-2 Model) | Failure Probability (Monte Carlo Method) |
---|---|---|---|
−0.7 | 1.1972 | 1.1973 | 0 |
0 | 0.6023 | 0.6023 | 0.0032 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shu, S.; Qian, J.; Gong, W.; Yang, Z.; Pi, K. Non-Probabilistic Reliability Analysis of Slopes Based on a Multidimensional Parallelepiped Model. Appl. Sci. 2023, 13, 9874. https://doi.org/10.3390/app13179874
Shu S, Qian J, Gong W, Yang Z, Pi K. Non-Probabilistic Reliability Analysis of Slopes Based on a Multidimensional Parallelepiped Model. Applied Sciences. 2023; 13(17):9874. https://doi.org/10.3390/app13179874
Chicago/Turabian StyleShu, Suxun, Jiajun Qian, Wenhui Gong, Zhiquan Yang, and Kang Pi. 2023. "Non-Probabilistic Reliability Analysis of Slopes Based on a Multidimensional Parallelepiped Model" Applied Sciences 13, no. 17: 9874. https://doi.org/10.3390/app13179874
APA StyleShu, S., Qian, J., Gong, W., Yang, Z., & Pi, K. (2023). Non-Probabilistic Reliability Analysis of Slopes Based on a Multidimensional Parallelepiped Model. Applied Sciences, 13(17), 9874. https://doi.org/10.3390/app13179874