Plant-Mediated Inorganic Nanoparticles for Anti-Tumor Therapy in Colorectal Cancer: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Eligibility
2.2. Data Sources
2.3. Inclusion Criteria
2.4. Exclusion Criteria
2.5. Study Selection
2.6. Data Extraction
3. Results
3.1. Study Description
3.2. Silver Nanoparticles
3.3. Zinc Nanoparticles
3.4. Gold Nanoparticles
3.5. Other Types of Nanoparticles
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Dekker, E.; Tanis, P.J.; Vleugels, J.L.A.; Kasi, P.M.; Wallace, M.B. Colorectal Cancer. Lancet 2019, 394, 1467–1480. [Google Scholar] [CrossRef] [PubMed]
- Binefa, G.; Rodríguez-Moranta, F.; Teule, À.; Medina-Hayas, M. Colorectal Cancer: From Prevention to Personalized Medicine. World J. Gastroenterol. 2014, 20, 6786–6808. [Google Scholar] [CrossRef]
- Muzny, D.M.; Bainbridge, M.N.; Chang, K.; Dinh, H.H.; Drummond, J.A.; Fowler, G.; Kovar, C.L.; Lewis, L.R.; Morgan, M.B.; Newsham, I.F.; et al. Comprehensive Molecular Characterization of Human Colon and Rectal Cancer. Nature 2012, 487, 330–337. [Google Scholar] [CrossRef]
- Siegel, R.L.; Wagle, N.S.; Cercek, A.; Smith, R.A.; Jemal, A. Colorectal Cancer Statistics, 2023. CA Cancer J. Clin. 2023, 73, 233–254. [Google Scholar] [CrossRef]
- Navarro, M.; Nicolas, A.; Ferrandez, A.; Lanas, A. Colorectal Cancer Population Screening Programs Worldwide in 2016: An Update. World J. Gastroenterol. 2017, 23, 3632. [Google Scholar] [CrossRef]
- Ferlitsch, M.; Moss, A.; Hassan, C.; Bhandari, P.; Dumonceau, J.M.; Paspatis, G.; Jover, R.; Langner, C.; Bronzwaer, M.; Nalankilli, K.; et al. Colorectal Polypectomy and Endoscopic Mucosal Resection (EMR): European Society of Gastrointestinal Endoscopy (ESGE) Clinical Guideline. Endoscopy 2017, 49, 270–297. [Google Scholar] [CrossRef]
- Emmanuel, A.; Haji, A. Complete Mesocolic Excision and Extended (D3) Lymphadenectomy for Colonic Cancer: Is It Worth That Extra Effort? A Review of the Literature. Int. J. Color. Dis. 2016, 31, 797–804. [Google Scholar] [CrossRef]
- Ma, B.; Gao, P.; Song, Y.; Zhang, C.; Zhang, C.; Wang, L.; Liu, H.; Wang, Z. Transanal Total Mesorectal Excision (TaTME) for Rectal Cancer: A Systematic Review and Meta-Analysis of Oncological and Perioperative Outcomes Compared with Laparoscopic Total Mesorectal Excision. BMC Cancer 2016, 16, 380. [Google Scholar] [CrossRef]
- Kuipers, E.J.; Grady, W.M.; Lieberman, D.; Seufferlein, T.; Sung, J.J.; Boelens, P.G.; van de Velde, C.J.H.; Watanabe, T. Colorectal Cancer. Nat. Rev. Dis. Prim. 2015, 1, 15065. [Google Scholar] [CrossRef]
- Biller, L.H.; Schrag, D. Diagnosis and Treatment of Metastatic Colorectal Cancer: A Review. JAMA 2021, 325, 669–685. [Google Scholar] [CrossRef] [PubMed]
- Fan, A.; Wang, B.; Wang, X.; Nie, Y.; Fan, D.; Zhao, X.; Lu, Y. Immunotherapy in Colorectal Cancer: Current Achievements and Future Perspective. Int. J. Biol. Sci. 2021, 17, 3837–3849. [Google Scholar] [CrossRef] [PubMed]
- André, T.; Shiu, K.-K.; Kim, T.W.; Jensen, B.V.; Jensen, L.H.; Punt, C.; Smith, D.; Garcia-Carbonero, R.; Benavides, M.; Gibbs, P.; et al. Pembrolizumab in Microsatellite-Instability–High Advanced Colorectal Cancer. N. Engl. J. Med. 2020, 383, 2207–2218. [Google Scholar] [CrossRef]
- Gustin, D.M.; Brenner, D.E. Chemoprevention of Colon Cancer: Current Status and Future Prospects. Cancer Metastasis Rev. 2002, 21, 323–348. [Google Scholar] [CrossRef]
- Deng, L.-J.; Qi, M.; Li, N.; Lei, Y.-H.; Zhang, D.-M.; Chen, J.-X. Natural Products and Their Derivatives: Promising Modulators of Tumor Immunotherapy. J. Leukoc. Biol. 2020, 108, 493–508. [Google Scholar] [CrossRef]
- Yahfoufi, N.; Alsadi, N.; Jambi, M.; Matar, C. The Immunomodulatory and Anti-Inflammatory Role of Polyphenols. Nutrients 2018, 10, 1618. [Google Scholar] [CrossRef] [PubMed]
- Bhosale, P.B.; Ha, S.E.; Vetrivel, P.; Kim, H.H.; Kim, S.M.; Kim, G.S. Functions of Polyphenols and Its Anticancer Properties in Biomedical Research: A Narrative Review. Transl. Cancer Res. 2020, 9, 7619. [Google Scholar] [CrossRef]
- Menger, L.; Vacchelli, E.; Kepp, O.; Eggermont, A.; Tartour, E.; Zitvogel, L.; Kroemer, G.; Galluzzi, L. Trial Watch: Cardiac Glycosides and Cancer Therapy. Oncoimmunology 2013, 2, e23082. [Google Scholar] [CrossRef]
- Kamran, S.; Sinniah, A.; Abdulghani, M.A.M.; Alshawsh, M.A. Therapeutic Potential of Certain Terpenoids as Anticancer Agents: A Scoping Review. Cancers 2022, 14, 1100. [Google Scholar] [CrossRef]
- Bazana, M.T.; Codevilla, C.F.; de Menezes, C.R. Nanoencapsulation of Bioactive Compounds: Challenges and Perspectives. Curr. Opin. Food Sci. 2019, 26, 47–56. [Google Scholar] [CrossRef]
- Mundekkad, D.; Cho, W.C. Nanoparticles in Clinical Translation for Cancer Therapy. Int. J. Mol. Sci. 2022, 23, 1685. [Google Scholar] [CrossRef]
- Haleem, A.; Javaid, M.; Singh, R.P.; Rab, S.; Suman, R. Applications of Nanotechnology in Medical Field: A Brief Review. Glob. Health J. 2023, 7, 70–77. [Google Scholar] [CrossRef]
- Aboulthana, W.M.; Shousha, W.G.; Essawy, E.A.-R.; Saleh, M.H.; Salama, A.H. Assessment of the Anti-Cancer Efficiency of Silver Moringa Oleifera Leaves Nano-Extract against Colon Cancer Induced Chemically in Rats. Asian Pac. J. Cancer Prev. 2021, 22, 3267–3286. [Google Scholar] [CrossRef] [PubMed]
- Mittal, A.K.; Chisti, Y.; Banerjee, U.C. Synthesis of Metallic Nanoparticles Using Plant Extracts. Biotechnol. Adv. 2013, 31, 346–356. [Google Scholar] [CrossRef]
- Jadoun, S.; Arif, R.; Jangid, N.K.; Meena, R.K. Green Synthesis of Nanoparticles Using Plant Extracts: A Review. Environ. Chem. Lett. 2021, 19, 355–374. [Google Scholar] [CrossRef]
- Khan, S.A.; Shahid, S.; Ayaz, A.; Alkahtani, J.; Elshikh, M.S.; Riaz, T. Phytomolecules-Coated NiO Nanoparticles Synthesis Using Abutilon Indicum Leaf Extract: Antioxidant, Antibacterial, and Anticancer Activities. Int. J. Nanomed. 2021, 16, 1757–1773. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Wanden-Berghe, C.; Sanz-Valero, J. Systematic Reviews in Nutrition: Standardized Methodology. Br. J. Nutr. 2012, 107, S3–S7. [Google Scholar] [CrossRef] [PubMed]
- Balkrishna, A.; Sharma, V.K.; Das, S.K.; Mishra, N.; Bisht, L.; Joshi, A.; Sharma, N. Characterization and Anti-Cancerous Effect of Putranjiva Roxburghii Seed Extract Mediated Silver Nanoparticles on Human Colon (HCT-116), Pancreatic (PANC-1) and Breast (MDA-MB 231) Cancer Cell Lines: A Comparative Study. Int. J. Nanomed. 2020, 15, 573–585. [Google Scholar] [CrossRef]
- Deepika, S.; Selvaraj, C.I.; Roopan, S.M. Screening Bioactivities of Caesalpinia pulcherrima L. Swartz and Cytotoxicity of Extract Synthesized Silver Nanoparticles on HCT116 cell Line. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 106, 110279. [Google Scholar] [CrossRef]
- González-Pedroza, M.G.; Argueta-Figueroa, L.; García-Contreras, R.; Jiménez-Martínez, Y.; Martínez-Martínez, E.; Navarro-Marchal, S.A.; Marchal, J.A.; Morales-Luckie, R.A.; Boulaiz, H. Silver Nanoparticles from Annona Muricata Peel and Leaf Extracts as a Potential Potent, Biocompatible and Low Cost Antitumor Tool. Nanomaterials 2021, 11, 1273. [Google Scholar] [CrossRef] [PubMed]
- Javed, B.; Mashwani, Z.-U.-R.; Sarwer, A.; Raja, N.I.; Nadhman, A. Synergistic Response of Physicochemical Reaction Parameters on Biogenesis of Silver Nanoparticles and Their Action against Colon Cancer and Leishmanial Cells. Artif. Cells Nanomed. Biotechnol. 2020, 48, 1340–1353. [Google Scholar] [CrossRef]
- Manikandan, R.; Manikandan, B.; Raman, T.; Arunagirinathan, K.; Prabhu, N.M.; Jothi Basu, M.; Perumal, M.; Palanisamy, S.; Munusamy, A. Biosynthesis of Silver Nanoparticles Using Ethanolic Petals Extract of Rosa Indica and Characterization of Its Antibacterial, Anticancer and Anti-Inflammatory Activities. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015, 138, 120–129. [Google Scholar] [CrossRef] [PubMed]
- Prabhu, D.; Arulvasu, C.; Babu, G.; Manikandan, R.; Srinivasan, P. Biologically Synthesized Green Silver Nanoparticles from Leaf Extract of Vitex negundo L. Induce Growth-Inhibitory Effect on Human Colon Cancer Cell Line HCT15. Process. Biochem. 2013, 48, 317–324. [Google Scholar] [CrossRef]
- Yassin, A.M.; El-Deeb, N.M.; Metwaly, A.M.; El Fawal, G.F.; Radwan, M.M.; Hafez, E.E. Induction of Apoptosis in Human Cancer Cells Through Extrinsic and Intrinsic Pathways by Balanites Aegyptiaca Furostanol Saponins and Saponin-Coated SilverNanoparticles. Appl. Biochem. Biotechnol. 2017, 182, 1675–1693. [Google Scholar] [CrossRef]
- Aboulthana, W.M.; Omar, N.I.; El-Feky, A.M.; Hasan, E.A.; Ibrahim, N.E.-S.; Youssef, A.M. In Vitro Study on Effect of Zinc Oxide Nanoparticles on the Biological Activities of Croton tiglium L. Seeds Extracts. Asian Pac. J. Cancer Prev. 2022, 23, 2671–2686. [Google Scholar] [CrossRef]
- Ahlam, A.A.; Shaniba, V.S.; Jayasree, P.R.; Manish Kumar, P.R. Spondias Pinnata (L.f.) Kurz Leaf Extract Derived Zinc Oxide Nanoparticles Induce Dual Modes of Apoptotic-Necrotic Death in HCT 116 and K562 Cells. Biol. Trace Elem. Res. 2021, 199, 1778–1801. [Google Scholar] [CrossRef]
- Selim, Y.A.; Azb, M.A.; Ragab, I.; Abd El-Azim, M.H.M. Green Synthesis of Zinc Oxide Nanoparticles Using Aqueous Extract of Deverra Tortuosa and Their Cytotoxic Activities. Sci. Rep. 2020, 10, 3445. [Google Scholar] [CrossRef]
- Aziz, A.A.; Shaniba, V.S.; Jayasree, P.R.; Manish Kumar, P.R. Physico-Chemical, Photocatalytic and Cytotoxicity Evaluation of Annona muricata L. Fruit Extract Derived Zinc Oxide Nanoparticles in Comparison to the Commercial Chemical Version. Curr. Sci. 2019, 117, 1492. [Google Scholar] [CrossRef]
- Kuppusamy, P.; Ichwan, S.J.A.; Al-Zikri, P.N.H.; Suriyah, W.H.; Soundharrajan, I.; Govindan, N.; Maniam, G.P.; Yusoff, M.M. In Vitro Anticancer Activity of Au, Ag Nanoparticles Synthesized Using Commelina nudiflora L. Aqueous Extract Against HCT-116 Colon Cancer Cells. Biol. Trace Elem. Res. 2016, 173, 297–305. [Google Scholar] [CrossRef]
- Lee, K.X.; Shameli, K.; Nagao, Y.; Yew, Y.P.; Teow, S.-Y.; Moeini, H. Potential Use of Gold-Silver Core-Shell Nanoparticles Derived from Garcinia Mangostana Peel for Anticancer Compound, Protocatechuic Acid Delivery. Front. Mol. Biosci. 2022, 9, 997471. [Google Scholar] [CrossRef] [PubMed]
- Mesas, C.; Garcés, V.; Martínez, R.; Ortiz, R.; Doello, K.; Dominguez-Vera, J.M.; Bermúdez, F.; Porres, J.M.; López-Jurado, M.; Melguizo, C.; et al. Colon Cancer Therapy with Calcium Phosphate Nanoparticles Loading Bioactive Compounds from Euphorbia Lathyris: In Vitro and in Vivo Assay. Biomed. Pharmacother. 2022, 155, 113723. [Google Scholar] [CrossRef] [PubMed]
- Yusefi, M.; Shameli, K.; Su Yee, O.; Teow, S.-Y.; Hedayatnasab, Z.; Jahangirian, H.; Webster, T.J.; Kuča, K. Green Synthesis of Fe3O4 Nanoparticles Stabilized by a Garcinia Mangostana Fruit Peel Extract for Hyperthermia and Anticancer Activities. Int. J. Nanomed. 2021, 16, 2515–2532. [Google Scholar] [CrossRef]
- Kamel, K.M.; Khalil, I.A.; Rateb, M.E.; Elgendy, H.; Elhawary, S. Chitosan-Coated Cinnamon/Oregano-Loaded Solid Lipid Nanoparticles to Augment 5-Fluorouracil Cytotoxicity for Colorectal Cancer: Extract Standardization, Nanoparticle Optimization, and Cytotoxicity Evaluation. J. Agric. Food Chem. 2017, 65, 7966–7981. [Google Scholar] [CrossRef]
- Alphandéry, E. Natural Metallic Nanoparticles for Application in Nano-Oncology. Int. J. Mol. Sci. 2020, 21, 4412. [Google Scholar] [CrossRef]
- Gago, L.; Quiñonero, F.; Perazzoli, G.; Melguizo, C.; Prados, J.; Ortiz, R.; Cabeza, L. Nanomedicine and Hyperthermia for the Treatment of Gastrointestinal Cancer: A Systematic Review. Pharmaceutics 2023, 15, 1958. [Google Scholar] [CrossRef]
- Shinn, J.; Kwon, N.; Lee, S.A.; Lee, Y. Smart PH-Responsive Nanomedicines for Disease Therapy. J. Pharm. Investig. 2022, 52, 441. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-López, J.; El-Hammadi, M.M.; Ortiz, R.; Cayero-Otero, M.D.; Cabeza, L.; Perazzoli, G.; Martin-Banderas, L.; Baeyens, J.M.; Prados, J.; Melguizo, C. A Novel Nanoformulation of PLGA with High Non-Ionic Surfactant Content Improves in Vitro and in Vivo PTX Activity against Lung Cancer. Pharm. Pharmacol. Res. 2019, 141, 451–465. [Google Scholar] [CrossRef]
- Barabadi, H.; Vahidi, H.; Damavandi Kamali, K.; Rashedi, M.; Hosseini, O.; Saravanan, M. Emerging Theranostic Gold Nanomaterials to Combat Colorectal Cancer: A Systematic Review. J. Clust. Sci. 2020, 31, 651–658. [Google Scholar] [CrossRef]
- Mlozi, S.H.; Mmongoyo, J.A.; Chacha, M. The in Vivo Toxicity Evaluation of Leaf and Root Methanolic Extracts of Tephrosia Vogelii Hook.f Using Animal Model. Clin. Phytosci. 2020, 6, 73. [Google Scholar] [CrossRef]
- Kifayatullah, M.; Mustafa, M.S.; Sengupta, P.; Sarker, M.M.R.; Das, A.; Das, S.K. Evaluation of the Acute and Sub-Acute Toxicity of the Ethanolic Extract of Pericampylus glaucus (Lam.) Merr. in BALB/c Mice. J. Acute Dis. 2015, 4, 309–315. [Google Scholar] [CrossRef]
- Ying, S.; Guan, Z.; Ofoegbu, P.C.; Clubb, P.; Rico, C.; He, F.; Hong, J. Green Synthesis of Nanoparticles: Current Developments and Limitations. Environ. Technol. Innov. 2022, 26, 102336. [Google Scholar] [CrossRef]
- Quiñonero, F.; Mesas, C.; Peña, M.; Cabeza, L.; Perazzoli, G.; Melguizo, C.; Ortiz, R.; Prados, J. Vegetal-Derived Bioactive Compounds as Multidrug Resistance Modulators in Colorectal Cancer. Appl. Sci. 2023, 13, 2667. [Google Scholar] [CrossRef]
- Gavrilas, L.I.; Cruceriu, D.; Mocan, A.; Loghin, F.; Miere, D.; Balacescu, O. Plant-Derived Bioactive Compounds in Colorectal Cancer: Insights from Combined Regimens with Conventional Chemotherapy to Overcome Drug-Resistance. Biomedicines 2022, 10, 1948. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, D.S.; Svechkarev, D.; Souchek, J.J.; Hill, T.K.; Taylor, M.A.; Natarajan, A.; Mohs, A.M. Impact of Structurally Modifying Hyaluronic Acid on CD44 Interaction. J. Mater. Chem. B 2017, 5, 8183. [Google Scholar] [CrossRef]
- Wang, Z.; Tang, Y.; Xie, L.; Huang, A.; Xue, C.; Gu, Z.; Wang, K.; Zong, S. The Prognostic and Clinical Value of CD44 in Colorectal Cancer: A Meta-Analysis. Front. Oncol. 2019, 9, 309. [Google Scholar] [CrossRef] [PubMed]
- Abd Ellah, N.H.; Abouelmagd, S.A. Surface Functionalization of Polymeric Nanoparticles for Tumor Drug Delivery: Approaches and Challenges. Expert. Opin. Drug. Deliv. 2017, 14, 201–214. [Google Scholar] [CrossRef] [PubMed]
- Subbiah, R.; Veerapandian, M.; Yun, K.S. Nanoparticles: Functionalization and Multifunctional Applications in Biomedical Sciences. Curr. Med. Chem. 2010, 17, 4559–4577. [Google Scholar] [CrossRef]
- Shi, Y.; van der Meel, R.; Chen, X.; Lammers, T. The EPR Effect and beyond: Strategies to Improve Tumor Targeting and Cancer Nanomedicine Treatment Efficacy. Theranostics 2020, 10, 7921–7924. [Google Scholar] [CrossRef]
- Shinde, V.R.; Revi, N.; Murugappan, S.; Singh, S.P.; Rengan, A.K. Enhanced Permeability and Retention Effect: A Key Facilitator for Solid Tumor Targeting by Nanoparticles. Photodiagnos. Photodyn. Ther. 2022, 39, 102915. [Google Scholar] [CrossRef]
- Cabeza, L.; Perazzoli, G.; Mesas, C.; Jiménez-Luna, C.; Prados, J.; Rama, A.R.; Melguizo, C. Nanoparticles in Colorectal Cancer Therapy: Latest In Vivo Assays, Clinical Trials, and Patents. AAPS Pharm. Sci. Tech. 2020, 21, 178. [Google Scholar] [CrossRef] [PubMed]
- Fernández, J.; Silván, B.; Entrialgo-Cadierno, R.; Villar, C.J.; Capasso, R.; Uranga, J.A.; Lombó, F.; Abalo, R. Antiproliferative and Palliative Activity of Flavonoids in Colorectal Cancer. Biomed. Pharmacother. 2021, 143, 112241. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Zhou, Y.; Liu, L.; Xu, Y.; Chen, Q.; Wang, Y.; Wu, S.; Deng, Y.; Zhang, J.; Shao, A. Nanoparticle-Based Drug Delivery in Cancer Therapy and Its Role in Overcoming Drug Resistance. Front. Mol. Biosci. 2020, 7, 558493. [Google Scholar] [CrossRef] [PubMed]
Material | Extract (Reference) | Cell Line/Animal Model | IC50/LD50 | Results |
---|---|---|---|---|
Silver | ME (10%) of Moringa oleifera leaves [23] | 36 Wistar rats: chemical induction by AOM | - |
|
AE of leaves (LE) and peel (PE) of Annona muricata [31] | HCT-116 | AgNPs-PE: 1.285 µg/mL AgNPs-LE: 2.004 µg/mL PE: 309.3 µg/mL LE: 404.8 µg/mL |
| |
AE of leaves of Mentha lonqifolia [32] | HCT-116 | - | Encapsulation of phytochemicals by nanoparticles is low, so there is no cytotoxic activity. | |
AE of seeds of Putranjiva roxburghii [29] | HCT-116 | PJSNPs: 0.54 µg/mL PJ: 6.0 µg/mL | The nanoparticles encapsulating the extract induce genotoxicity, triggering cell apoptosis to a greater extent than the free extract. | |
AE, ME, EAE, PEE and CE of leaves of Caesalpinia pulcherrima [30] | HCT-116 | AE: 18,7 µg/mL ME: 51 µg/mL EAE: 72 µg/mL PEE: 69.3 µg/mL CE: 77 µg/mL |
| |
AE, EEAE, NBE of fruits of Balanites aegyptiaca [35] | Caco-2 | Extracts: 0.625–1.25 µg/mL AgNPs: 0.625 µg/mL |
| |
EA (70%) of petals of Rose indica [33] | HCT-15 | Extract: >250 mg/mL AgNPs: 300 μg/mL |
| |
ME of leaves of Vitex negundo [34] | HCT-15 | ME: 150 μg/mL AgNPs: 20 µg/mL |
| |
Zinc | AE, EE and PEE of seeds of Croton tiglium [36] | Caco-2 | EE: 309.70 μg/mL AE: 176.90 μg/mL PEE: 692.10 μg/mL ZnO-EE: 252.50 μg/mL ZnO-AE: 100.20 μg/mL ZnO-PEE: 353.30 μg/mL |
|
AE of leaves of Spondias pinnata (SpL) [37] | HCT-116 | SpL-ZnNPs: 53 µg/mL ZnNPs: 60 µg/mL |
| |
AE of aerated parts of Deverra tortuosa [38] | Caco-2 | ZnO-NPs: 50.81 μg/mL AE: 136.12 μg/mL |
| |
AE of fruits of Annona muricata [39] | HCT-116 | ZnNPs: 60 μg/mL Am-ZnNPs: 60 μg/mL | The encapsulation of Annona muricata extract did not exert any additional cytotoxic effect compared to the administration of ZnNPs alone. | |
Gold | EE of Commelina nudiflora [40] | HCT-116 | AuNPs: 200 μg/mL AgNPs: 100 μg/mL |
|
AE of skin of Garcinia mangostana [41] | HCT-116 | GM extract: 35.74 µg/mL AuNPs: 82.99 µg/mL Au-AgNPs: 24.36 µg/mL |
| |
Calcium phosphate | AE, EE and CHA of seeds of Euphrobia lathyrism [42] | T84 | BC-ACP (0.25/0.02): 50% of cell growth inhibition Esculetin/Euphorbetin (0.25/0.02): 10% inhibition |
|
Iron | AE of skin of Garcinia mangostana [43] | HCT-116 | Fe3O4 NPs: 99.8 µg/mL (after hyperthermia treatment) |
|
Chitosan-coated | EE (70%) of bark of Cinnamomum cassia (CI) and leaves of Origanum vulgare (OR) [44] | HCT-116 | CI: 19.90 µg/mL OR: 26.48 µg/mL CI-NPs: 29.80 µg/mL OR-NPs: 37.22 µg/mL |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mesas, C.; Quiñonero, F.; Revueltas, F.; Cabeza, L.; Perazzoli, G.; Melguizo, C.; Prados, J. Plant-Mediated Inorganic Nanoparticles for Anti-Tumor Therapy in Colorectal Cancer: A Systematic Review. Appl. Sci. 2023, 13, 10156. https://doi.org/10.3390/app131810156
Mesas C, Quiñonero F, Revueltas F, Cabeza L, Perazzoli G, Melguizo C, Prados J. Plant-Mediated Inorganic Nanoparticles for Anti-Tumor Therapy in Colorectal Cancer: A Systematic Review. Applied Sciences. 2023; 13(18):10156. https://doi.org/10.3390/app131810156
Chicago/Turabian StyleMesas, Cristina, Francisco Quiñonero, Francisco Revueltas, Laura Cabeza, Gloria Perazzoli, Consolación Melguizo, and Jose Prados. 2023. "Plant-Mediated Inorganic Nanoparticles for Anti-Tumor Therapy in Colorectal Cancer: A Systematic Review" Applied Sciences 13, no. 18: 10156. https://doi.org/10.3390/app131810156
APA StyleMesas, C., Quiñonero, F., Revueltas, F., Cabeza, L., Perazzoli, G., Melguizo, C., & Prados, J. (2023). Plant-Mediated Inorganic Nanoparticles for Anti-Tumor Therapy in Colorectal Cancer: A Systematic Review. Applied Sciences, 13(18), 10156. https://doi.org/10.3390/app131810156