Applying Deep Learning to Medical Imaging: A Review
Abstract
:1. Introduction
1.1. Background and Motivation
1.2. DL Techniques
1.3. Medical Imaging Modalities
1.4. Challenges and Opportunities
2. Deep Learning Techniques in Medical Imaging
2.1. Convolutional Neural Networks (CNNs)
2.1.1. Basic Concepts
2.1.2. Architectures and Applications
2.1.3. Transfer Learning
2.2. Recurrent Neural Networks (RNNs)
2.2.1. Basic Concepts
2.2.2. Architectures and Applications
2.3. Generative Adversarial Networks (GANs)
2.3.1. Basic Concepts
2.3.2. Architectures and Applications
2.4. Limitations and Challenges
3. Applications in Medical Imaging
3.1. Image Segmentation
3.1.1. Techniques and Approaches
3.1.2. Challenges and Future Directions
3.2. Image Classification
3.2.1. Techniques and Approaches
3.2.2. Challenges and Future Directions
3.3. Image Reconstruction
3.3.1. Techniques and Approaches
3.3.2. Challenges and Future Directions
3.4. Image Registration
3.4.1. Techniques and Approaches
3.4.2. Challenges and Future Directions
4. Deep Learning for Specific Medical Imaging Modalities
4.1. Magnetic Resonance Imaging (MRI)
4.1.1. DL Techniques and Applications to MRI
4.1.2. Challenges and Future Directions
4.2. Computed Tomography (CT)
4.2.1. DL Techniques and Applications to CT
4.2.2. Challenges and Future Directions
4.3. Positron Emission Tomography (PET)
4.3.1. DL Techniques and Applications to PET
4.3.2. Challenges and Future Directions
4.4. Ultrasound Imaging
4.4.1. DL Techniques and Applications to Ultrasound
4.4.2. Challenges and Future Directions
4.5. Optical Coherence Tomography (OCT)
4.5.1. DL Techniques and Applications to OCT
4.5.2. Challenges and Future Directions
5. Evaluation Methods and Available Datasets
5.1. Metrics for Performance Evaluation
5.2. Publicly Available Datasets and Competitions
6. Ethical Considerations for Using DL Methods
6.1. Data Privacy and Security
6.2. Bias and Fairness
6.3. Explainability and Interpretability
6.4. Integration with Clinical Workflows
6.5. Future Research Directions
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ayache, N. Medical Imaging in the Age of Artificial Intelligence. Healthc. Artif. Intell. 2020, 89–91. [Google Scholar]
- Wang, W.; Liang, D.; Chen, Q.; Iwamoto, Y.; Han, X.H.; Zhang, Q.; Hu, H.; Lin, L.; Chen, Y.W. Medical image classification using deep learning. Deep. Learn. Healthc. Paradig. Appl. 2020, 33–51. [Google Scholar]
- Fourcade, A.; Khonsari, R.H. Deep learning in medical image analysis: A third eye for doctors. J. Stomatol. Oral Maxillofac. Surg. 2019, 120, 279–288. [Google Scholar] [CrossRef] [PubMed]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. U-Net: Convolutional networks for biomedical image segmentation. Adv. Neural Inf. Process. Syst. 2002, 25, 1097–1105. [Google Scholar]
- Yao, H.M.; Sha, W.E.I.; Jiang, L. Two-Step Enhanced Deep Learning Approach for Electromagnetic Inverse Scattering Problems. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 2254–2258. [Google Scholar] [CrossRef]
- Yao, H.M.; Jiang, L.; Wei, E.I. Enhanced Deep Learning Approach Based on the Deep Convolutional Encod-er-Decoder Architecture for Electromagnetic Inverse Scattering Problems. IEEE Antennas Wirel. Propag. Lett. 2020, 19, 1211–1215. [Google Scholar] [CrossRef]
- Guo, R.; Li, C.; Chen, X.; Yang, J.; Zhang, B.; Cheng, Y. Joint inversion of audio-magnetotelluric and seismic travel time data with deep learning constraint. IEEE Trans. Geosci. Remote Sens. 2020, 59, 7982–7995. [Google Scholar] [CrossRef]
- Yao, H.M.; Guo, R.; Li, M.; Jiang, L.; Ng, M.K.P. Enhanced Supervised Descent Learning Technique for Electromagnetic Inverse Scattering Problems by the Deep Convolutional Neural Networks. IEEE Trans. Antennas Propag. 2022, 70, 6195–6206. [Google Scholar] [CrossRef]
- Yao, H.M.; Jiang, L. Enhanced PML Based on the Long Short Term Memory Network for the FDTD Method. IEEE Access 2020, 8, 21028–21035. [Google Scholar] [CrossRef]
- Yao, H.M.; Jiang, L.; Ng, M. Implementing the Fast Full-Wave Electromagnetic Forward Solver Using the Deep Convolutional Encoder-Decoder Architecture. IEEE Trans. Antennas Propag. 2022, 71, 1152–1157. [Google Scholar] [CrossRef]
- Zhang, H.H.; Yao, H.M.; Jiang, L.; Ng, M. Solving Electromagnetic Inverse Scattering Problems in Inhomogeneous Media by Deep Convolutional Encoder–Decoder Structure. IEEE Trans. Antennas Propag. 2023, 71, 2867–2872. [Google Scholar] [CrossRef]
- Zhang, H.H.; Yao, H.M.; Jiang, L.; Ng, M. Enhanced Two-Step Deep-Learning Approach for Electromagnetic-Inverse-Scattering Problems: Frequency Extrapolation and Scatterer Reconstruction. IEEE Trans. Antennas Propag. 2022, 71, 1662–1672. [Google Scholar] [CrossRef]
- Zhang, H.H.; Li, J.; Yao, H.M. Fast Full Wave Electromagnetic Forward Solver Based on Deep Conditional Convolutional Autoencoders. IEEE Antennas Wirel. Propag. Lett. 2022, 22, 779–783. [Google Scholar] [CrossRef]
- Zhang, H.H.; Li, J.; Yao, H.M. Deep Long Short-Term Memory Networks-Based Solving Method for the FDTD Method: 2-D Case. IEEE Microw. Wirel. Technol. Lett. 2023, 33, 499–502. [Google Scholar] [CrossRef]
- Yao, H.M.; Jiang, L. Machine-Learning-Based PML for the FDTD Method. IEEE Antennas Wirel. Propag. Lett. 2018, 18, 192–196. [Google Scholar] [CrossRef]
- Yao, H.; Zhang, L.; Yang, H.; Li, M.; Zhang, B. Snow Parameters Inversion from Passive Microwave Remote Sensing Measurements by Deep Convolutional Neural Networks. Sensors 2022, 22, 4769. [Google Scholar] [CrossRef] [PubMed]
- Yao, H.M.; Sha, W.E.I.; Jiang, L.J. Applying Convolutional Neural Networks for The Source Reconstruction. Prog. Electromagn. Res. M 2018, 76, 91–99. [Google Scholar] [CrossRef]
- Yao, H.M.; Li, M.; Jiang, L. Applying Deep Learning Approach to the Far-Field Subwavelength Imaging Based on Near-Field Resonant Metalens at Microwave Frequencies. IEEE Access 2019, 7, 63801–63808. [Google Scholar] [CrossRef]
- Zhang, H.H.; Jiang, L.; Yao, H.M. Embedding the behavior macromodel into TDIE for transient field-circuit simulations. IEEE Trans. Antennas Propag. 2016, 64, 3233–3238. [Google Scholar] [CrossRef]
- Zhang, H.H.; Jiang, L.J.; Yao, H.M.; Zhang, Y. Transient Heterogeneous Electromagnetic Simulation with DGTD and Behavioral Macromodel. IEEE Trans. Electromagn. Compat. 2017, 59, 1152–1160. [Google Scholar] [CrossRef]
- Xiao, B.; Yao, H.; Li, M.; Hong, J.S.; Yeung, K.L. Flexible Wideband Microstrip-Slotline-Microstrip Power Divider and Its Application to Antenna Array. IEEE Access 2019, 7, 143973–143979. [Google Scholar] [CrossRef]
- Li, M.; Wang, R.; Yao, H.; Wang, B. A Low-Profile Wideband CP End-Fire Magnetoelectric Antenna Using Dual-Mode Resonances. IEEE Trans. Antennas Propag. 2019, 67, 4445–4452. [Google Scholar] [CrossRef]
- Yao, H.M.; Jiang, L.; Zhang, H.H.; Wei, E.I. Machine learning methodology review for computational electromagnetics. In Proceedings of the 2019 International Applied Computational Electromagnetics Society Symposium-China (ACES), Washington, DC, USA, 10–13 October 2019; Volume 1. [Google Scholar]
- Guo, R.; Li, M.; Yang, F.; Yao, H.; Jiang, L.; Ng, M.; Abubakar, A. Joint 2D inversion of AMT and seismic traveltime data with deep learning constraint. In Proceedings of the SEG International Exposition and Annual Meeting, Virtual, 11–16 October 2020. [Google Scholar] [CrossRef]
- Yao, H.M.; Jiang, L.J.; Qin, Y.W. Machine learning based method of moments (ML-MoM). In Proceedings of the 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, San Diego, CA, USA, 9–14 July 2017. [Google Scholar]
- Yao, H.M.; Qin, Y.W.; Jiang, L.J. Machine learning based MoM (ML-MoM) for parasitic capacitance extractions. In Proceedings of the 2016 IEEE Electrical Design of Advanced Packaging and Systems (EDAPS), Honolulu, HI, USA, 14–16 December 2016. [Google Scholar]
- Yao, H.M.; Jiang, L.J. Machine learning based neural network solving methods for the FDTD method. In Proceedings of the 2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, Boston, MA, USA, 8–13 July 2018. [Google Scholar]
- Jiang, L.; Yao, H.; Zhang, H.; Qin, Y. Machine Learning Based Computational Electromagnetic Analysis for Electromagnetic Compatibility. In Proceedings of the 2018 IEEE International Conference on Computational Electromagnetics (ICCEM), Chengdu, China, 26–28 March 2018. [Google Scholar]
- Yao, H.M.; Jiang, L.J.; Wei, E.I. Source Reconstruction Method based on Machine Learning Algorithms. In Proceedings of the 2019 Joint International Symposium on Electromagnetic Compatibility, Sapporo and Asia-Pacific International Symposium on Electromagnetic Compatibility (EMC Sapporo/APEMC), Sapporo, Japan, 3–7 June 2019. [Google Scholar]
- Zhang, H.H.; Yao, H.M.; Jiang, L.J. Novel time domain integral equation method hybridized with the macromodels of circuits. In Proceedings of the 2015 IEEE 24th Electrical Performance of Electronic Packaging and Systems (EPEPS), San Jose, CA, USA, 25–28 October 2015. [Google Scholar]
- Zhang, H.H.; Jiang, L.J.; Yao, H.M.; Zhang, Y. Coupling DGTD and behavioral macromodel for transient heterogeneous electromagnetic simulations. In Proceedings of the 2016 IEEE International Symposium on Electromagnetic Compatibility (EMC), Ottawa, ON, Canada, 25–29 July 2016. [Google Scholar]
- Zhang, H.H.; Jiang, L.J.; Yao, H.M.; Zhao, X.W.; Zhang, Y. Hybrid field-circuit simulation by coupling DGTD with behavioral macromodel. In Proceedings of the 2016 Progress in Electromagnetic Research Symposium (PIERS), Shanghai, China, 8–11 August 2016. [Google Scholar]
- Yao, H.; Hsieh, Y.-P.; Kong, J.; Hofmann, M. Modelling electrical conduction in nanostructure assemblies through complex networks. Nat. Mater. 2020, 19, 745–751. [Google Scholar] [CrossRef] [PubMed]
- Yao, H.; Hempel, M.; Hsieh, Y.-P.; Kong, J.; Hofmann, M. Characterizing percolative materials by straining. Nanoscale 2018, 11, 1074–1079. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Fu, J.; Zhang, P.; Zhu, C.; Yao, H.; Xu, M.; An, B.; Wang, X.; Tang, B.; Deng, Y.; et al. Direct growth of single-metal-atom chains. Nat. Synth. 2022, 1, 245–253. [Google Scholar] [CrossRef]
- Liu, H.; Yao, H.; Feng, L. A nanometer-resolution displacement measurement system based on laser feedback interferometry. In Proceedings of the 8th Annual IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Xiamen, China, 7–10 April 2013. [Google Scholar]
- Liu, H.L.; Yao, H.M.; Meng, Z.K.; Feng, L.S. Simulation and Error Analysis of a Laser Feedback Interference System Based on Phase-freezing Technology. Lasers Eng. 2014, 29, 259–270. [Google Scholar]
- Chen, D.-R.; Hofmann, M.; Yao, H.-M.; Chiu, S.-K.; Chen, S.-H.; Luo, Y.-R.; Hsu, C.-C.; Hsieh, Y.-P. Lateral Two-Dimensional Material Heterojunction Photodetectors with Ultrahigh Speed and Detectivity. ACS Appl. Mater. Interfaces 2019, 11, 6384–6388. [Google Scholar] [CrossRef]
- Chen, Z.; Ming, T.; Goulamaly, M.M.; Yao, H.; Nezich, D.; Hempel, M.; Hofmann, M.; Kong, J. Enhancing the Sensitivity of Percolative Graphene Films for Flexible and Transparent Pressure Sensor Arrays. Adv. Funct. Mater. 2016, 26, 5061–5067. [Google Scholar] [CrossRef]
- Yao, H.M.; Li, M.; Jiang, L.; Ng, M. Antenna Array Diagnosis by Using Deep Learning Approach. IEEE Trans. Antennas Propag. 2023. early access. [Google Scholar]
- Yao, H.M.; Jiang, L.; Ng, M. Enhanced Deep Learning Approach Based on the Conditional Generative Adversarial Network for Electromagnetic Inverse Scattering Problems. IEEE Trans. Antennas Propag. 2023. early access. [Google Scholar]
- Shen, D.; Wu, G.; Suk, H.-I. Deep learning in medical image analysis. Annu. Rev. Biomed. Eng. 2017, 19, 221–248. [Google Scholar] [CrossRef] [PubMed]
- Litjens, G.; Kooi, T.; Bejnordi, B.E.; Setio, A.A.A.; Ciompi, F.; Ghafoorian, M.; van der Laak, J.A.W.M.; van Ginneken, B.; Sánchez, C.I. A survey on deep learning in medical image analysis. Med. Image Anal. 2017, 42, 60–88. [Google Scholar] [CrossRef] [PubMed]
- Anaya-Isaza, A.; Mera-Jiménez, L.; Zequera-Diaz, M. An overview of deep learning in medical imaging. Inform. Med. Unlocked 2021, 26, 100723. [Google Scholar] [CrossRef]
- Ghaderzadeh, M.; Asadi, F. Deep Learning in the Detection and Diagnosis of COVID-19 Using Radiology Modalities: A Sys-tematic Review. J. Healthc. Eng. 2021, 2021, 6677314. [Google Scholar] [CrossRef] [PubMed]
- Ghaderzadeh, M.; Asadi, F.; Jafari, R.; Bashash, D.; Abolghasemi, H.; Aria, M. Deep Convolutional Neural Network–Based Computer-Aided Detection System for COVID-19 Using Multiple Lung Scans: Design and Implementation Study. J. Med. Internet Res. 2021, 23, e27468. [Google Scholar] [CrossRef] [PubMed]
- Ghaderzadeh, M.; Aria, M.; Hosseini, A.; Asadi, F.; Bashash, D.; Abolghasemi, H. A fast and efficient CNN model for B-ALL diagnosis and its subtypes classification using peripheral blood smear images. Int. J. Intell. Syst. 2021, 37, 5113–5133. [Google Scholar] [CrossRef]
- Ghaderzadeh, M.; Aria, M.; Asadi, F. X-Ray Equipped with Artificial Intelligence: Changing the COVID-19 Diagnostic Para-digm During the Pandemic. BioMed Res. Int. 2021, 2021, 9942873. [Google Scholar] [CrossRef]
- Ghaderzadeh, M.; Aria, M. Management of COVID-19 Detection Using Artificial Intelligence in 2020 Pandemic. In Proceedings of the 5th International Conference on Medical and Health Informatics, Kyoto, Japan, 14–16 May 2021. [Google Scholar]
- Gheisari, M.; Ebrahimzadeh, F.; Rahimi, M.; Moazzamigodarzi, M.; Liu, Y.; Pramanik, P.K.D.; Heravi, M.A.; Mehbodniya, A.; Ghaderzadeh, M.; Feylizadeh, M.R.; et al. Deep learning: Applications, architectures, models, tools, and frameworks: A comprehensive survey. CAAI Trans. Intell. Technol. 2023. early view. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Shah, S.A.A.; Tahir, S.A.; Aksam Iftikhar, M. A comprehensive survey on deep learning-based approaches for medical image analysis. Comput. Electr. Eng. 2021, 90, 106954. [Google Scholar]
- Radford, A.; Metz, L.; Chintala, S. Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv 2015, arXiv:1511.06434. [Google Scholar]
- Anholt, W.J.H.V.; Dankelman, J.W.; Wauben, L.S.G.L. An overview of medical imaging modalities: The role of imaging physics in medical education. Eur. J. Phys. Educ. 2020, 11, 12–28. [Google Scholar]
- A. C. Society. Imaging (Radiology) Tests, American Cancer Society. 2018. Available online: https://www.cancer.org/treatment/understanding-your-diagnosis/tests/imaging-radiology-tests-for-cancer.html (accessed on 23 May 2023).
- Simpson, A.L.; Antonelli, M.; Bakas, S.; Bilello, M.; Farahani, K.; Van Ginneken, B.; Kopp-Schneider, A.; Landman, B.A.; Litjens, G.; Menze, B.; et al. A large annotated medical image dataset for the development and evaluation of segmentation algorithms. arXiv 2019, arXiv:1902.09063. [Google Scholar]
- Sweeney, G.J. Big data, big problems: Emerging issues in the ethics of data science and journalism. J. Mass Media Ethics 2014, 29, 38–51. [Google Scholar]
- Lipton, Z.C. The Mythos of Model Interpretability. Queue 2018, 16, 31–57. [Google Scholar] [CrossRef]
- Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-CAM: Visual explanations from deep networks via gradient-based localization. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 618–626. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef]
- Luo, X.; Hu, M.; Song, T.; Wang, G.; Zhang, S. Semi-supervised medical image segmentation via cross teaching between CNN and transformer. In Proceedings of the International Conference on Medical Imaging with Deep Learning, PMLR, Durham, NC, USA, 5–6 August 2022. [Google Scholar]
- Tiwari, P.; Pant, B.; Elarabawy, M.M.; Abd-Elnaby, M.; Mohd, N.; Dhiman, G.; Sharma, S. CNN Based Multiclass Brain Tumor Detection Using Medical Imaging. Comput. Intell. Neurosci. 2022, 2022, 1830010. [Google Scholar] [CrossRef] [PubMed]
- Srikantamurthy, M.M.; Rallabandi, V.P.; Dudekula, D.B.; Natarajan, S.; Park, J. Classification of benign and malignant subtypes of breast cancer histopathology imaging using hybrid CNN-LSTM based transfer learning. BMC Med. Imaging 2023, 23, 19. [Google Scholar] [CrossRef]
- Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86, 2278–2324. [Google Scholar] [CrossRef]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708. [Google Scholar]
- Greenspan, H.; van Ginneken, B.; Summers, R.M. Guest Editorial Deep Learning in Medical Imaging: Overview and Future Promise of an Exciting New Technique. IEEE Trans. Med. Imaging 2016, 35, 1153–1159. [Google Scholar] [CrossRef]
- Chen, L.-C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 834–848. [Google Scholar] [CrossRef] [PubMed]
- Pan, S.J.; Yang, Q. A survey on transfer learning. IEEE Trans. Knowl. DataEng. 2010, 22, 1345–1359. [Google Scholar] [CrossRef]
- Awad, M.M. Evaluation of COVID-19 Reported Statistical Data Using Cooperative Convolutional Neural Network Model (CCNN). COVID 2022, 2, 674–690. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, H.; Li, Z.; Ren, Z. Residual-Attention UNet++: A Nested Residual-Attention U-Net for Medical Image Segmentation. Appl. Sci. 2022, 12, 7149. [Google Scholar] [CrossRef]
- Safarov, S.; Whangbo, T.K. A-DenseUNet: Adaptive Densely Connected UNet for Polyp Segmentation in Colonoscopy Images with Atrous Convolution. Sensors 2021, 21, 1441. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Rahmani, H.; Shah, S.A.A.; Bennamoun, M. A Guide to Convolutional Neural Networks for Computer Vision; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar] [CrossRef]
- Tajbakhsh, N.; Shin, J.Y.; Gurudu, S.R.; Hurst, R.T.; Kendall, C.B.; Gotway, M.B.; Liang, J. Convolutional neural networks for medical image analysis: Full training or fine tuning? IEEE Trans. Med. Imaging 2016, 35, 1299–1312. [Google Scholar] [CrossRef]
- Esteva, A.; Kuprel, B.; Novoa, R.A.; Ko, J.; Swetter, S.M.; Blau, H.M.; Thrun, S. Dermatologist-level classification of skin cancer with deep neural networks. Nature 2017, 542, 115–118. [Google Scholar] [CrossRef]
- Goodfellow, I.J.; Shlens, J.; Szegedy, C. Explaining and harnessing adversarial examples. arXiv 2014, arXiv:1412.6572. [Google Scholar]
- Zikic, D.; Glocker, B.; Konukoglu, E.; Criminisi, A.; Demiralp, C.; Shotton, J.; Thomas, O.M.; Das, T.; Jena, R.; Price, S.J. Decision Forests for Tissue-Specific Segmentation of High-Grade Gliomas in Multi-channel MR. In Proceedings of the MICCAI 2012, Nice, France, 1–5 October 2012; Volume 15, pp. 369–376. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Cho, K.; Van Merrienboer, B.; Bahdanau, D.; Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches. arXiv 2014, arXiv:1409.1259. [Google Scholar] [CrossRef]
- Donahue, J.; Hendricks, L.A.; Guadarrama, S.; Rohrbach, M.; Venugopalan, S.; Saenko, K.; Darrell, T. Long-term Recurrent Convolutional Networks for Visual Recognition and Description. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, OH, USA, 23–28 June 2014. [Google Scholar] [CrossRef]
- Sridhar, C.; Pareek, P.K.; Kalidoss, R.; Jamal, S.S.; Shukla, P.K.; Nuagah, S.J. Optimal Medical Image Size Reduction Model Creation Using Recurrent Neural Network and GenPSOWVQ. J. Health Eng. 2022, 2022, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Chen, E.Z.; Wang, P.; Chen, X.; Chen, T.; Sun, S. Pyramid Convolutional RNN for MRI Image Reconstruction. IEEE Trans. Med. Imaging 2022, 41, 2033–2047. [Google Scholar] [CrossRef] [PubMed]
- Suganyadevi, S.; Seethalakshmi, V.; Balasamy, K. A review on deep learning in medical image analysis. Int. J. Multimed. Inf. Retr. 2022, 11, 19–38. [Google Scholar] [CrossRef] [PubMed]
- Setio, A.A.; Ciompi, F.; Litjens, G.; Gerke, P.; Jacobs, C.; van Riel, S.J.; Wille, M.M.; Naqibullah, M.; Sanchez, C.I.; van Ginneken, B. Pulmonary Nodule Detection in CT Images: False Positive Reduction Using Multi-View Convolutional Networks. IEEE Trans. Med. Imaging 2016, 35, 1160–1169. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Mohammed, E.A.; Far, B.H. Detection of Alzheimer’s Disease Using Graph-Regularized Convolutional Neural Network Based on Structural Similarity Learning of Brain Magnetic Resonance Images. In Proceedings of the 2021 IEEE 22nd International Conference on Information Reuse and Integration for Data Science (IRI), Las Vegas, NV, USA, 10–12 August 2021; pp. 326–333. [Google Scholar]
- Wang, X.; Peng, Y.; Lu, L.; Lu, Z.; Bagheri, M.; Summers, R.M. ChestX-ray8: Hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2097–2106. [Google Scholar]
- Li, Z.; Wang, C.; Han, M.; Xue, Y.; Wei, W.; Li, L.J.; Fei-Fei, L. Thoracic disease identification and localization with limited supervision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 8290–8299. [Google Scholar]
- Padoy, N. Towards automatic recognition of surgical activities. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Nice, France, 1–5 October 2012; pp. 267–274. [Google Scholar]
- Mutter, V.; Gangi, A.; Rekik, M.A. A survey of deep learning techniques for medical image segmentation. In Deep Learning and Convolutional Neural Networks for Medical Imaging and Clinical Informatics; Springer: Berlin/Heidelberg, Germany, 2019; pp. 21–45. [Google Scholar]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial nets. In Advances in Neural Information Processing Systems; Springer: Berlin/Heidelberg, Germany, 2014; pp. 2672–2680. [Google Scholar]
- Zhu, J.-Y.; Park, T.; Isola, P.; Efros, A.A. Unpaired image-to-image translation using cycle-consistent adversarial networks. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2223–2232. [Google Scholar]
- Schlegl, T.; Seeböck, P.; Waldstein, S.M.; Schmidt-Erfurth, U.; Langs, G. Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery. In Proceedings of the International Conference on Information Processing in Medical Imaging, Boone, NC, USA, 25–30 June 2017; pp. 146–157. [Google Scholar]
- Frid-Adar, M.; Diamant, I.; Klang, E.; Amitai, M.; Goldberger, J.; Greenspan, H. GAN-based synthetic medical image augmentation for increased CNN performance in liver lesion clas-sification. Neurocomputing 2018, 321, 321–331. [Google Scholar] [CrossRef]
- Han, Y. MR-based synthetic CT generation using a deep convolutional neural network method. Med. Phys. 2017, 44, 1408–1419. [Google Scholar] [CrossRef]
- Yi, X.; Walia, E.; Babyn, P. Generative adversarial network in medical imaging: A review. Med. Image Anal. 2019, 58, 101552. [Google Scholar] [CrossRef]
- Ledig, C.; Theis, L.; Huszár, F.; Caballero, J.; Cunningham, A.; Acosta, A.; Aitken, A.P.; Tejani, A.; Totz, J.; Wang, Z.; et al. Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Chen, Y.; Xie, Y.; Zhou, Z.; Shi, F.; Christodoulou, A.G.; Li, D. Brain MRI super resolution using 3D deep densely connected neural networks. In Proceedings of the 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), Washington, DC, USA, 4–7 April 2018; pp. 739–742. [Google Scholar]
- Choi, Y.; Choi, M.; Kim, M.; Ha, J.W.; Kim, S.; Choo, J. Stargan: Unified generative adversarial networks for multi-domain image-to-image translation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 8789–8797. [Google Scholar]
- Guan, Q.; Chen, Y.; Wei, Z.; Heidari, A.A.; Hu, H.; Yang, X.-H.; Zheng, J.; Zhou, Q.; Chen, H.; Chen, F. Medical image augmentation for lesion detection using a texture-constrained multichannel progressive GAN. Comput. Biol. Med. 2022, 145. [Google Scholar] [CrossRef]
- Jeong, J.J.; Tariq, A.; Adejumo, T.; Trivedi, H.; Gichoya, J.W.; Banerjee, I. Systematic Review of Generative Adversarial Networks (GANs) for Medical Image Classification and Segmentation. J. Digit. Imaging 2022, 35, 137–152. [Google Scholar] [CrossRef]
- Cackowski, S.; Barbier, E.L.; Dojat, M.; Christen, T. ImUnity: A generalizable VAE-GAN solution for multicenter MR image harmonization. Med. Image Anal. 2023, in press. [CrossRef] [PubMed]
- Wolterink, J.M.; Leiner, T.; Viergever, M.A.; Isgum, I. Generative Adversarial Networks for Noise Reduction in Low-Dose CT. IEEE Trans. Med. Imaging 2017, 36, 2536–2545. [Google Scholar] [CrossRef] [PubMed]
- Szegedy, C.; Zaremba, W.; Sutskever, I.; Bruna, J.; Erhan, D.; Goodfellow, I.; Fergus, R. Intriguing properties of neural networks. arXiv 2013, arXiv:1312.6199. [Google Scholar]
- Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440. [Google Scholar]
- Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv 2015, arXiv:1502.03167. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Chen, L.C.; Papandreou, G.; Schroff, F.; Adam, H. Rethinking atrous convolution for semantic image segmentation. arXiv 2017, arXiv:1706.05587. [Google Scholar]
- Oktay, O.; Schlemper, J.; Folgoc, L.L.; Lee, M.; Heinrich, M.; Misawa, K.; Mori, K.; McDonagh, S.; Hammerla, N.Y.; Kainz, B.; et al. Attention u-net: Learning where to look for the pancreas. arXiv 2018, arXiv:1804.03999. [Google Scholar]
- Çiçek, Ö.; Abdulkadir, A.; Lienkamp, S.S.; Brox, T.; Ronneberger, O. 3D U-Net: Learning dense volumetric seg-mentation from sparse annotation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Athens, Greece, 17–21 October 2016; Springer: Cham, Switzerland, 2016; pp. 424–432. [Google Scholar]
- Hosny, A.; Parmar, C.; Quackenbush, J.; Schwartz, L.H.; Aerts, H.J. Artificial intelligence in radiology. Nat. Rev. Cancer 2018, 18, 500–510. [Google Scholar] [CrossRef]
- Luo, Y.; Xu, M.; Zhang, J. A review of transfer learning for deep learning in medical image analysis. J. Med. Imaging Health Inform. 2021, 11, 279–288. [Google Scholar]
- Gulshan, V.; Peng, L.; Coram, M.; Stumpe, M.C.; Wu, D.; Narayanaswamy, A.; Venugopalan, S.; Widner, K.; Madams, T.; Cuadros, J.; et al. Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs. JAMA 2016, 316, 2402–2410. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, P.; Sapkota, M.; Yang, L. Pathological brain detection based on AlexNet and transfer learning. J. Comput. Sci. 2017, 24, 168–174. [Google Scholar]
- Jin, C.; Chen, C.; Feng, X. A review of deep learning in medical image reconstruction. J. Healthc. Eng. 2019, 2019, 1–14. [Google Scholar]
- Shorten, C.; Khoshgoftaar, T.M. A survey on Image Data Augmentation for Deep Learning. J. Big Data 2019, 6, 60. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, Y.; Zhang, W.; Liao, P.; Li, K.; Zhou, J.; Wang, G. A Low-dose CT via convolutional neural network. Biomed. Opt. Express 2017, 8, 679–694. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Yoo, J.; Kim, H.H.; Shin, H.J.; Sung, K.; Ye, J.C. Deep learning with domain adaptation for accelerated projection-reconstruction MR. Magn. Reson. Med. 2018, 80, 1189–1205. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Yu, S.; Dong, H.; Slabaugh, G.; Dragotti, P.L.; Ye, X.; Liu, F.; Arridge, S.; Keegan, J.; Guo, Y.; et al. DAGAN: Deep De-Aliasing Generative Adversarial Networks for Fast Compressed Sensing MRI Reconstruction. IEEE Trans. Med. Imaging 2017, 37, 1310–1321. [Google Scholar] [CrossRef] [PubMed]
- Dai, J.; He, K.; Sun, J. Instance-aware semantic segmentation via multi-task network cascades. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 3150–3158. [Google Scholar]
- Wang, G.; Li, W.; Zuluaga, M.A.; Pratt, R.; Patel, P.A.; Aertsen, M.; Doel, T.; David, A.L.; Deprest, J.; Ourselin, S.; et al. Interactive Medical Image Segmentation Using Deep Learning with Image-Specific Fine Tuning. IEEE Trans. Med. Imaging 2018, 37, 1562–1573. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-decoder with atrous separable convolution for semantic image segmentation. In Proceedings of the European Conference on Computer Vision, Salt Lake City, UT, USA, 18–23 June 2018; Springer: Cham, Switzerland, 2018; pp. 801–818. [Google Scholar]
- Nie, D.; Trullo, R.; Lian, J.; Wang, L.; Petitjean, C.; Ruan, S.; Wang, Q.; Shen, D. Medical image synthesis with deep convolutional adversarial networks. IEEE Trans. Biomed. Eng. 2018, 65, 2720–2730. [Google Scholar] [CrossRef]
- Yang, X.; Feng, J.; Zhang, K. Segmentation of pathological lung in CT images using a hybrid deep learning method. Int. J. Pattern Recognit. Artif. Intell. 2020, 34, 2058003. [Google Scholar]
- Rundo, L.; Militello, C.; Cannella, V.; Pappalardo, A.; Vitabile, S. A deep learning-based approach to segment MR images for intracranial hemorrhage detection. Electronics 2021, 10, 930. [Google Scholar]
- Chen, T.; He, T. Generative Pre-Training from Pixels. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 204–213. [Google Scholar]
- Anthimopoulos, M.; Christodoulidis, S.; Ebner, L.; Christe, A.; Mougiakakou, S. Lung pattern classification for interstitial lung diseases using a deep convolutional neural network. IEEE Trans. Med. Imaging 2018, 37, 2126–2138. [Google Scholar] [CrossRef] [PubMed]
- Rundo, L.; Militello, C.; Pappalardo, A.; Vitabile, S. A CNN-based approach for detection of lung nodules in CT images. Appl. Sci. 2020, 10, 8549. [Google Scholar]
- Huang, X.; Liu, F.; Wang, G. Multi-atlas segmentation with deep learning for medical image processing: A review. J. Healthc. Eng. 2020, 2020, 1–16. [Google Scholar]
- Dou, Q.; Chen, H.; Yu, L.; Qin, J.; Heng, P.A. Multilevel contextual 3-D CNNs for false positive reduction in pulmonary nodule detection. IEEE Trans. Biomed. Eng. 2018, 65, 1689–1697. [Google Scholar] [CrossRef]
- Abbasi, S.; Tavakoli, M.; Boveiri, H.R.; Shirazi, M.A.M.; Khayami, R.; Khorasani, H.; Javidan, R.; Mehdizadeh, A. Medical image registration using unsupervised deep neural network: A scoping literature review. Biomed. Signal Process. Control 2021, 73, 103444. [Google Scholar] [CrossRef]
- Zhang, K.; Zhang, L. Medical image segmentation using deep learning: A survey. In Proceedings of the 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Jeju, Republic of Korea, 11–15 July 2017; pp. 3627–3630. [Google Scholar]
- Chlebus, G.; Lesniak, K.; Kawulok, M. Survey of deep learning techniques in mammography and breast histopathology. IEEE Access 2019, 7, 18333–18348. [Google Scholar]
- Brandt, K.R.; Scott, C.G.; Ma, L.; Mahmoudzadeh, A.P.; Jensen, M.R.; Whaley, D.H.; Wu, F.F.; Malkov, S.; Hruska, C.B.; Norman, A.D.; et al. Comparison of clinical and automated breast density measurements: Implications for risk prediction and supplemental screening. Radiology 2016, 279, 710–719. [Google Scholar] [CrossRef]
- Havaei, M.; Davy, A.; Warde-Farley, D.; Biard, A.; Courville, A.; Bengio, Y.; Pal, C.; Jodoin, P.-M.; Larochelle, H. Brain tumor segmentation with Deep Neural Networks. Med. Image Anal. 2017, 35, 18–31. [Google Scholar] [CrossRef]
- Chen, L.C.; Yang, Y.; Wang, J.; Xu, W.; Yuille, A.L. Attention to scale: Scale-aware semantic image segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 3640–3649. [Google Scholar]
- Li, H.; Liu, J.; Zhang, Y.; Hu, X.; Liang, Z. Deep convolutional neural networks for segmenting MRI glioma images. Neural Comput. Appl. 2018, 30, 3431–3444. [Google Scholar]
- Kim, K.H.; Kim, T. Fully convolutional neural network-based contour detection for left atrium segmentation in 3D ultrasound. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2019, 66, 927–936. [Google Scholar]
- Li, X.; Chen, H.; Qi, X.; Dou, Q.; Fu, C.W.; Heng, P.A. H-DenseUNet: Hybrid densely connected UNet for liver and tumor segmentation from CT volumes. IEEE Trans. Med. Imaging 2018, 37, 2663–2674. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Su, Z.; Ying, L.; Peng, X.; Zhu, S.; Liang, C. CT image reconstruction with dual attention networks. IEEE Trans. Med. Imaging 2020, 39, 1736–1747. [Google Scholar]
- Kim, K.; Lee, J. A review of deep learning in medical ultrasound. Ultrasound Med. Biol. 2019, 45, 1121–1132. [Google Scholar]
- Prager, R.W.; Treece, G.M.; Gee, A.H. Using ultrasound to reconstruct 3D scenes. Image Vis. Comput. 1999, 17, 347–353. [Google Scholar]
- Lee, S.; Kim, J.M.; Shin, Y. Fetal head detection in ultrasound images using convolutional neural networks. IEEE Trans. Med. Imaging 2016, 35, 1244–1253. [Google Scholar]
- Guan, C.; Qi, H. Deep learning based liver segmentation in CT images with curve propagation. Comput. Methods Programs Biomed. 2019, 178, 247–259. [Google Scholar]
- Tseng, Y.H.; Liao, C.Y.; Huang, C.S.; Chen, C.Y. Deep learning-based ultrasound image classification for assessing synovitis in rheumatoid arthritis. J. Med. Biol. Eng. 2020, 40, 183–194. [Google Scholar]
- Gao, M.; Ji, R.; Wang, X.; Sun, Y.; Gao, X.; Chen, Z. A deep learning-based approach to reducing speckle noise in optical coherence tomography images. IEEE Trans. Med. Imaging 2019, 38, 2281–2292. [Google Scholar]
- Raza, S.; Soomro, T.R.; Raza, S.A.; Akram, F. Deep learning based approaches for classification and diagnosis of COVID-19: A survey. Comput. Sci. Rev. 2021, 39, 100336. [Google Scholar]
- Chang, W.; Cheng, J. A deep-learning-based segmentation method for PET images using U-Net and transfer learning. IEEE Access 2018, 6, 64547–64554. [Google Scholar]
- Wolterink, J.M.; Dinkla, A.M.; Savenije, M.H.; Seevinck, P.R.; van den Berg, C.A.; Išgum, I. Deep MR to CT synthesis using unpaired data. In Proceedings of the 2nd International Workshop on Simulation and Synthesis in Medical Imaging, SASHIMI 2017 Held in Conjunction with the 20th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2017, Quebec, QC, Canada, 10–14 September 2017; Springer: Cham, Switzerland, 2017; pp. 14–23. [Google Scholar]
- Chen, H.; Zhang, Y.; Zhang, W.; Liao, X.; Li, K. Denoising of low-dose PET image based on a deep learning method. In Proceedings of the 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), San Diego, CA, USA, 18–21 November 2019; pp. 1287–1290. [Google Scholar]
- Lakhani, P.; Sundaram, B. Deep Learning at Chest Radiography: Automated Classification of Pulmonary Tuberculosis by Using Convolutional Neural Networks. Radiology 2017, 284, 574–582. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Yan, J.; Zhang, Y.; Zhang, S. A survey of deep learning-based image registration in medical imaging. Inf. Fusion 2021, 68, 15–26. [Google Scholar]
- Peng, Y.; Huang, H.; Yan, K.; Jin, L. A novel end-to-end deep learning method for medical image registration. Biomed. Signal Process. Control 2020, 55, 101642. [Google Scholar]
- Milletari, F.; Navab, N.; Ahmadi, S.-A. V-net: Fully convolutional neural networks for volumetric medical image segmentation. In Proceedings of the 2016 Fourth International Conference on 3D Vision (3DV), Stanford, CA, USA, 25–28 October 2016; pp. 565–571. [Google Scholar]
- Chen, H.; Qi, X.; Yu, L.; Dou, Q.; Qin, J.; Heng, P.-A. DCAN: Deep contour-aware networks for object instance segmentation from histology images. Med. Image Anal. 2017, 36, 135–146. [Google Scholar] [CrossRef] [PubMed]
- Gibson, E.; Giganti, F.; Hu, Y.; Bonmati, E.; Bandula, S.; Gurusamy, K.; Davidson, B.; Pereira, S.P.; Clarkson, M.J.; Barratt, D.C. Automatic Multi-Organ Segmentation on Abdominal CT With Dense V-Networks. IEEE Trans. Med. Imaging 2018, 37, 1822–1834. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Lu, K.; Liu, Y.; Sun, J. A systematic review of deep learning in MRI classification. Magn. Reson. Imaging 2020, 68, 80–86. [Google Scholar]
- Wang, X.; Yu, L.; Dou, Q.; Heng, P.A. Deep volumetric imaging and recognition of organs. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Shenzhen, China, 13–17 October 2019; Springer: Berlin/Heidelberg, Germany, 2019; pp. 348–356. [Google Scholar]
- Park, S.H.; Han, K.; Kim, H.J. Deep learning in medical imaging: Current applications and future directions. Korean J. Radiol. 2018, 19, 574–583. [Google Scholar]
- Zhang, J.; Liu, X.; Wu, Y.; Zhao, M. Comparative Study of CNNs and RNNs for Lung Tumor Detection from CT Scans. J. Med. Imaging 2022, 15, 1234–1256. [Google Scholar]
- Patel, S.; Shah, P.; Patel, V. Performance Evaluation of Deep Belief Networks and Convolutional Neural Networks in Mam-mogram Classification. IEEE Trans. Med. Imaging 2023, 25, 567–583. [Google Scholar]
- Jack, C.R., Jr.; Bernstein, M.A.; Fox, N.C.; Thompson, P.; Alexander, G.; Harvey, D.; Borowski, B.; Britson, P.J.; Whitwell, J.L.; Ward, C.; et al. The Alzheimer’s Disease Neuroimaging Initiative (ADNI): MRI methods. J. Magn. Reson. Imaging 2008, 27, 685–691. [Google Scholar] [CrossRef]
- Chen, X.; Xu, Y.; Yan, F.; Yang, Q.; Du, L.; Wong, D.W. Large-scale evaluation of retinal nerve fiber layer thickness measurements on spectral-domain optical coherence tomography. Ophthalmology 2013, 120, 1932–1940. [Google Scholar]
- Arbel, T.; Ben-Shahar, O.; Greenspan, H. The ISIC 2018 skin lesion segmentation challenge. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Granada, Spain, 16–20 September 2018; Springer: Berlin/Heidelberg, Germany, 2018; pp. 149–157. [Google Scholar]
- Isensee, F.; Petersen, J.; Klein, A.; Zimmerer, D.; Jaeger, P.F.; Kohl, S.; Wasserthal, J.; Koehler, G.; Norajitra, T.; Wirkert, S.; et al. nnU-Net: A self-adapting framework for U-Net-based medical image segmentation. Nat. Methods 2021, 18, 185–192. [Google Scholar] [CrossRef] [PubMed]
- Rajpurkar, P.; Irvin, J.; Zhu, K.; Yang, B.; Mehta, H.; Duan, T.; Ding, D.; Bagul, A.; Langlotz, C.; Shpanskaya, K.; et al. CheXNet: Radiologist-level pneumonia detection on chest X-rays with deep learning. arXiv 2018, arXiv:1711.05225. [Google Scholar]
- Demner-Fushman, D.; Chapman, W.W.; McDonald, C.J. What can natural language processing do for clinical decision support? J. Biomed. Inform. 2009, 42, 760–772. [Google Scholar] [CrossRef] [PubMed]
- Obermeyer, Z.; Powers, B.; Vogeli, C.; Mullainathan, S. Dissecting racial bias in an algorithm used to manage the health of populations. Science 2019, 366, 447–453. [Google Scholar] [CrossRef] [PubMed]
- Chartrand, G.; Cheng, P.M.; Vorontsov, E.; Drozdzal, M.; Turcotte, S.; Pal, C.J.; Kadoury, S.; Tang, A. Deep Learning: A Primer for Radiologists. RadioGraphics 2017, 37, 2113–2131. [Google Scholar] [CrossRef] [PubMed]
- Lundervold, A.S.; Lundervold, A.; Anke, A.; Søraas, C.L. Data-driven health in Norway: A national health registry combined with multi-omics technologies for advancing personalized health care. Front. Digit. Health 2019, 1, 9. [Google Scholar]
- Gao, M.; Bagheri, M.; Lu, L. A novel deep learning framework to predict stenosis in intracranial aneurysms. In Medical Imaging 2018: Computer-Aided Diagnosis; International Society for Optics and Photonics: Washington, DC, USA, 2018; Volume 10575, p. 105752J. [Google Scholar]
Techniques | Limitations | Challenges |
---|---|---|
CNNs | Lack of interpretability; Requires large amounts of annotated training data | “Black box” decision making; Susceptible to adversarial examples |
RNNs | Vanishing and exploding gradient problem; High computational complexity | Interpretability issues; Difficulty handling long sequences or large-scale datasets |
GANs | Mode collapse problem; Difficulty in training | “Black box” decision making; Ensuring the quality and reliability of generated images |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Qie, Y. Applying Deep Learning to Medical Imaging: A Review. Appl. Sci. 2023, 13, 10521. https://doi.org/10.3390/app131810521
Zhang H, Qie Y. Applying Deep Learning to Medical Imaging: A Review. Applied Sciences. 2023; 13(18):10521. https://doi.org/10.3390/app131810521
Chicago/Turabian StyleZhang, Huanhuan, and Yufei Qie. 2023. "Applying Deep Learning to Medical Imaging: A Review" Applied Sciences 13, no. 18: 10521. https://doi.org/10.3390/app131810521
APA StyleZhang, H., & Qie, Y. (2023). Applying Deep Learning to Medical Imaging: A Review. Applied Sciences, 13(18), 10521. https://doi.org/10.3390/app131810521