Methods and Applications of Data Mining in Business Domains
1. Introduction
2. Categorized Overview of Papers (Based on the Areas of Focus)
2.1. Category 1: Retail and Customer Analysis
2.2. Category 2: Marketing and Business Decision Support
2.3. Category 3: Business Process Optimization and Automation
3. Overview of Significant Findings That Have Emerged from the Papers
4. Overall Perspective
5. Conclusions
Author Contributions
Conflicts of Interest
References
- van der Spoel, S. Prediction Instrument Development for Complex Domains. Ph.D. Thesis, University of Twente, Enschede, The Netherlands, 2016. [Google Scholar]
- van der Spoel, S.; Amrit, C.; van Hillegersberg, J. Predictive analytics for truck arrival time estimation: A field study at a European distribution centre. Int. J. Prod. Res. 2017, 55, 5062–5078. [Google Scholar] [CrossRef]
- Checkland, P.B. Soft systems methodology. Hum. Syst. Manag. 1989, 8, 273–289. [Google Scholar] [CrossRef]
- Forrester, J.W. System dynamics, systems thinking, and soft OR. Syst. Dyn. Rev. 1994, 10, 245–256. [Google Scholar] [CrossRef]
- Cao, L.; Yu, P.S.; Zhang, C.; Zhao, Y. Domain Driven Data Mining; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Gu, J.; Tang, X. Meta-synthesis approach to complex system modeling. Eur. J. Oper. Res. 2005, 166, 597–614. [Google Scholar] [CrossRef]
- Cao, L. Domain-driven data mining: Challenges and prospects. IEEE Trans. Knowl. Data Eng. 2010, 22, 755–769. [Google Scholar] [CrossRef]
- Chen, A.H.-L.; Gunawan, S. Enhancing Retail Transactions: A Data-Driven Recommendation Using Modified RFM Analysis and Association Rules Mining. Appl. Sci. 2023, 13, 10057. [Google Scholar] [CrossRef]
- Han, M.; Li, A.; Gao, Z.; Mu, D.; Liu, S. Hybrid Sampling and Dynamic Weighting-Based Classification Method for Multi-Class Imbalanced Data Stream. Appl. Sci. 2023, 13, 5924. [Google Scholar] [CrossRef]
- Zhou, M.; Yao, X.; Zhu, Z.; Hu, F. Equilibrium Optimizer-Based Joint Time-Frequency Entropy Feature Selection Method for Electric Loads in Industrial Scenario. Appl. Sci. 2023, 13, 5732. [Google Scholar] [CrossRef]
- Hou, R.; Ye, X.; Zaki, H.B.O.; Omar, N.A.B. Marketing Decision Support System Based on Data Mining Technology. Appl. Sci. 2023, 13, 4315. [Google Scholar] [CrossRef]
- Ali, A.A.; Khedr, A.M.; El-Bannany, M.; Kanakkayil, S. A Powerful Predicting Model for Financial Statement Fraud Based on Optimized XGBoost Ensemble Learning Technique. Appl. Sci. 2023, 13, 2272. [Google Scholar] [CrossRef]
- Li, C.; Qian, G. Stock Price Prediction Using a Frequency Decomposition Based GRU Transformer Neural Network. Appl. Sci. 2022, 13, 222. [Google Scholar] [CrossRef]
- Kołakowska, A.; Godlewska, M. Analysis of Factors Influencing the Prices of Tourist Offers. Appl. Sci. 2022, 12, 12938. [Google Scholar] [CrossRef]
- Cubillas, J.J.; Ramos, M.I.; Feito, F.R. Use of Data Mining to Predict the Influx of Patients to Primary Healthcare Centres and Construction of an Expert System. Appl. Sci. 2022, 12, 11453. [Google Scholar] [CrossRef]
- Usman-Hamza, F.E.; Balogun, A.O.; Capretz, L.F.; Mojeed, H.A.; Mahamad, S.; Salihu, S.A.; Akintola, A.G.; Basri, S.; Amosa, R.T.; Salahdeen, N.K. Intelligent Decision Forest Models for Customer Churn Prediction. Appl. Sci. 2022, 12, 8270. [Google Scholar] [CrossRef]
- Mirkovic, M.; Lolic, T.; Stefanovic, D.; Anderla, A.; Gracanin, D. Customer Churn Prediction in B2B Non-Contractual Business Settings Using Invoice Data. Appl. Sci. 2022, 12, 5001. [Google Scholar] [CrossRef]
- Zhao, Q.; Gao, T.; Zhou, S.; Li, D.; Wen, Y. Legal Judgment Prediction via Heterogeneous Graphs and Knowledge of Law Articles. Appl. Sci. 2022, 12, 2531. [Google Scholar] [CrossRef]
- Ou-Yang, C.; Chou, S.-C.; Juan, Y.-C. Improving the Forecasting Performance of Taiwan Car Sales Movement Direction Using Online Sentiment Data and CNN-LSTM Model. Appl. Sci. 2022, 12, 1550. [Google Scholar] [CrossRef]
- Wen, W.; Yuan, Y.; Yang, J. Reinforcement Learning for Options Trading. Appl. Sci. 2021, 11, 11208. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, X.; Cao, Z. Few-Shot Charge Prediction with Data Augmentation and Feature Augmentation. Appl. Sci. 2021, 11, 10811. [Google Scholar] [CrossRef]
- Kaewyotha, J.; Songpan, W. Multi-Objective Design of Profit Volumes and Closeness Ratings Using MBHS Optimizing Based on the PrefixSpan Mining Approach (PSMA) for Product Layout in Supermarkets. Appl. Sci. 2021, 11, 10683. [Google Scholar] [CrossRef]
- Camacho-Urriolagoitia, O.; López-Yáñez, I.; Villuendas-Rey, Y.; Camacho-Nieto, O.; Yáñez-Márquez, C. Dynamic Nearest Neighbor: An Improved Machine Learning Classifier and Its Application in Finances. Appl. Sci. 2021, 11, 8884. [Google Scholar] [CrossRef]
- Su, W.-H.; Chen, K.-Y.; Lu, L.Y.Y.; Wang, J.-J. Knowledge Development Trajectories of the Radio Frequency Identification Domain: An Academic Study Based on Citation and Main Paths Analysis. Appl. Sci. 2021, 11, 8254. [Google Scholar] [CrossRef]
- Yu, X.; Li, D. Important Trading Point Prediction Using a Hybrid Convolutional Recurrent Neural Network. Appl. Sci. 2021, 11, 3984. [Google Scholar] [CrossRef]
- Alsibhawi, I.A.A.; Yahaya, J.B.; Mohamed, H.B. Business Intelligence Adoption for Small and Medium Enterprises: Conceptual Framework. Appl. Sci. 2023, 13, 4121. [Google Scholar] [CrossRef]
- Gomes, P.; Verçosa, L.; Melo, F.; Silva, V.; Filho, C.B.; Bezerra, B. Artificial Intelligence-Based Methods for Business Processes: A Systematic Literature Review. Appl. Sci. 2022, 12, 2314. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amrit, C.; Abdi, A. Methods and Applications of Data Mining in Business Domains. Appl. Sci. 2023, 13, 10774. https://doi.org/10.3390/app131910774
Amrit C, Abdi A. Methods and Applications of Data Mining in Business Domains. Applied Sciences. 2023; 13(19):10774. https://doi.org/10.3390/app131910774
Chicago/Turabian StyleAmrit, Chintan, and Asad Abdi. 2023. "Methods and Applications of Data Mining in Business Domains" Applied Sciences 13, no. 19: 10774. https://doi.org/10.3390/app131910774
APA StyleAmrit, C., & Abdi, A. (2023). Methods and Applications of Data Mining in Business Domains. Applied Sciences, 13(19), 10774. https://doi.org/10.3390/app131910774