Classification and Provenance on Geochemical Lithogenes: A Case Study on Rock–Soil–Sediment System in Wanquan Area of Zhangjiakou, North China
Abstract
:1. Introduction
2. Geographical and Geological Settings
3. Materials and Methods
3.1. Materials
3.2. Methods of Analyses
3.3. Methods on Weathering Indices
4. Results and Discussion
4.1. Weathering Profile
4.2. Gully Sediment Profiles
4.3. Stream Sediments from RGNR Project
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gong, Q.; Yan, T.; Wu, X.; Li, R.; Wang, X.; Liu, N.; Li, X.; Wu, Y.; Li, J. Geochemical gene: A promising concept in discrimination and traceability. Appl. Geochem. 2022, 136, 105133. [Google Scholar] [CrossRef]
- Sun, S.S.; McDonough, W.F. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes; Geological Society: London, UK, 1989; Volume 42, pp. 313–345. [Google Scholar]
- Hou, Z.; Gong, Q.; Liu, N.; Jiang, B.; Li, J.; Wu, Y.; Huang, J.; Gu, W. Elemental abundances of moon samples based on statistical distributions of analytical data. Appl. Sci. 2023, 13, 360. [Google Scholar] [CrossRef]
- Yan, T.; Gong, Q.; Li, J.; Chen, J.; Zhou, W.; Li, R. A12O3/Ti: Protoliths tracer in the process of weathering and alteration. Acta Petrol. Sin. 2016, 32, 2425–2432, (In Chinese with English abstract). [Google Scholar]
- Costa, L.; Mirlean, N.; Johannesson, K.H. Rare earth elements as tracers of sediment contamination by fertilizer industries in Southern Brazil, Patos Lagoon Estuary. Appl. Geochem. 2021, 129, 104965. [Google Scholar] [CrossRef]
- Zhang, Y.; Han, R.; Wang, L.; Wei, P. Zn–S isotopic fractionation effect during the evolution process of ore-forming fluids: A case study of the ultra-large Huize rich Ge-bearing Pb–Zn deposit. Appl. Geochem. 2022, 140, 105240. [Google Scholar] [CrossRef]
- Wu, Y.; Li, X.; Gong, Q.; Wu, X.; Yao, N.; Peng, C.; Chao, Y.; Wang, X.; Pu, X. Test and application of the geochemical lithogene on weathering profiles developed over granitic and basaltic rocks in China. Appl. Geochem. 2021, 128, 104958. [Google Scholar] [CrossRef]
- Li, R.; Liu, N.; Gong, Q.; Wu, X.; Yan, T.; Li, X.; Liu, M. Construction, test and application of a geochemical gold metallogene: Case studies in China. J. Geochem. Explor. 2019, 204, 1–11. [Google Scholar] [CrossRef]
- Gong, Q.; Liu, N.; Wu, X.; Yan, T.; Fan, T.; Li, X.; Liu, M.; Li, R.; Albanese, S. Using regional geochemical survey data to trace anomalous samples through geochemical genes: The Tieshanlong tungsten deposit area (Southeastern China) case study. J. Geochem. Explor. 2020, 219, 106637. [Google Scholar] [CrossRef]
- Gong, Q.J.; Wu, X.; Yan, T.T.; Liu, N.Q.; Li, X.L.; Li, R.K.; Liu, M.X. Construction and test of geochemical genes: Case studies in China. Geoscience 2020, 34, 865–882, (In Chinese with English abstract). [Google Scholar]
- Li, J.; Gong, Q.; Zhang, B.; Liu, N.; Wu, X.; Yan, T.; Li, X.; Wu, Y. Construction, test and application of a tungsten metallogene named MGW11: Case studies in China. Appl. Sci. 2023, 13, 606. [Google Scholar] [CrossRef]
- Li, J.; Liu, N.; Gong, Q.; Wu, X.; Yan, T. Construction and test of a geochemical lithogene based on trace elements: Case studies on weathering profiles in China. Geoscience 2021, 35, 1459–1470, (In Chinese with English abstract). [Google Scholar]
- Yan, T.; Wu, X.; Quan, Y.; Gong, Q.; Li, X.; Wang, P.; Li, R. Heredity, inheritance and similarity of element behaviors among parent rocks and their weathered products: A geochemical lithogene. Geoscience 2018, 32, 453–467, (In Chinese with English abstract). [Google Scholar]
- Chi, Q.; Yan, M. Handbook of Elemental Abundance for Applied Geochemistry; Geological Publishing House: Beijing, China, 2007; pp. 1–148, (In Chinese with English abstract). [Google Scholar]
- Wu, Y.; Gong, Q.; Liu, N.; Wu, X.; Yan, T.; Xu, S.; Li, W. Classification of geological materials on geochemical lithogenes: Illustration on a case study in Gejiu area of Yunnan Province, China. Appl. Geochem. 2022, 146, 105460. [Google Scholar] [CrossRef]
- Wang, Y.; Dong, Y.; Liu, M.; Wang, Y. The spatial distribution of soil properties and their GW correlation: A case in Zhangjiakou City. Sci. Geogr. Sin. 2020, 40, 1191–1201. [Google Scholar]
- Huang, L.; Zhang, Y.; Shao, F.; Yu, X. Soil ecological stoichiometry and its influencing factors in natural secondary forest, North Mountain of Hebei Province. Acta Ecol. Sin. 2021, 41, 6267–6279. [Google Scholar]
- Yang, H.; Liang, R.; Xu, C.; Zhao, J. Prospecting for the north-easterly periphery of Damaping peridot ore in Wanquan County, Hebei Province. Miner. Resour. Geol. 2017, 31, 935–940, (In Chinese with English abstract). [Google Scholar]
- Cui, X.; Su, S.; Song, C.; Jiang, J.; Hei, H.; Wu, Y. Origin and source of the Hannuoba alkaline basalts. Ti Hsueh Ch’ien Yuan 2019, 26, 257–270, (In Chinese with English abstract). [Google Scholar]
- Xiang, Y.; Mu, X.; Ren, T.; Ma, Z.; Liu, R.; Gong, Q.; Wang, M.; Gong, J.; Yang, W.; Yang, Y.; et al. Application of Geochemical Survey Data on Potential Evaluation of Mineral Resources in China; Geological Publishing House: Beijing, China, 2018; pp. 1–445. [Google Scholar]
- Xie, X.; Cheng, H. Sixty years of exploration geochemistry in China. J. Geochem. Explor. 2014, 139, 4–8. [Google Scholar] [CrossRef]
- Li, M.; Xi, X.H.; Xiao, G.Y.; Cheng, H.X.; Yang, Z.F.; Zhou, G.H.; Ye, J.Y.; Li, Z.H. National multi-purpose regional geochemical survey in China. J. Geochem. Explor. 2014, 139, 21–30. [Google Scholar] [CrossRef]
- Nesbitt, H.W.; Young, G.M. Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations. Geochim. Cosmochim. Acta 1984, 48, 1523–1534. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, Z.; Li, X.; Yan, Y.; Lang, Y.; Ding, H.; Cui, L.; Meng, J.; Liu, C. Extremely enrichment of 7Li in highly weathered saprolites developed on granite from Huizhou, southern China. Appl. Geochem. 2021, 125, 104825. [Google Scholar] [CrossRef]
- Xiong, Y.; Qi, H.; Hu, R.; Xiao, Y.; Wei, L. Lithium isotope behavior under extreme tropical weathering: A case study of basalts from the Hainan Island, South China. Appl. Geochem. 2022, 140, 105295. [Google Scholar] [CrossRef]
- Duzgoren-Aydin, N.S.; Aydin, A.; Malaps, J. Re-assessment of chemical weathering indices: Case study on pyroclastic rocks of Hong Kong Eng. Geol. 2002, 63, 99–119. [Google Scholar] [CrossRef]
- Gong, Q.; Deng, J.; Jia, Y.; Tong, Y.; Liu, N. Empirical equations to describe trace element behaviors due to rock weathering in China. J. Geochem. Explor. 2015, 152, 110–117. [Google Scholar] [CrossRef]
- Nesbitt, H.W.; Young, G.M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 1982, 299, 715–717. [Google Scholar] [CrossRef]
- Gong, Q.; Deng, J.; Wang, C.; Wang, Z.; Zhou, L. Element behaviors due to rock weathering and its implication to geochemical anomaly recognition: A case study on Linglong biotite granite in Jiaodong peninsula, China. J. Geochem. Explor. 2013, 128, 14–24. [Google Scholar] [CrossRef]
- Fedo, C.M.; Nesbitt, H.W.; Young, G.M. Unravelling the effects of potassium metasomatism in sedimentary rocks and paleosols, with Implications for weathering conditions and provenance. Geology 1995, 23, 921–924. [Google Scholar] [CrossRef]
- An, Y.; Yan, T.; Gong, Q.; Wang, X.; Huang, Y.; Zhang, B.; Yin, Z.; Zhao, X.; Liu, N. Chromium (Cr) geochemical mapping based on fixed-values’ method: Case studies in China. Appl. Geochem. 2022, 136, 105168. [Google Scholar] [CrossRef]
Gene | Sequence No. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
LG01 | Gene elements | Zr | Ti | Al2O3 | TFe2O3 | SiO2 | P | Pb | Mn | Th | Nb | U |
Reference values | 147 | 4016 | 14.8 | 6.4 | 60 | 756 | 19 | 940 | 5.72 | 14.5 | 1.2 | |
LG03 | Gene elements | Nb | Ti | Zr | Cr | La | V | Pb | Co | U | Ni | Th |
Reference values | 14.5 | 4016 | 147 | 81 | 35 | 130 | 19 | 24 | 1.2 | 32 | 5.72 |
Rocks | Zr | Ti | Al2O3 | TFe2O3 | SiO2 | P | Pb | Mn | Th | Nb | U | Cr | La | V | Co | Ni |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Acidic rock | 160 | 1770 | 14.20 | 3.00 | 70.85 | 430 | 24 | 380 | 14.5 | 15 | 2.5 | 12 | 40 | 33 | 4.8 | 7.7 |
Intermediate rock | 180 | 5200 | 16.42 | 7.62 | 57.79 | 1200 | 15.5 | 960 | 4.9 | 10.4 | 1.15 | 83 | 35 | 135 | 22 | 34 |
Basic rock | 150 | 9470 | 15.54 | 11.33 | 48.68 | 1570 | 13 | 1310 | 2.8 | 19 | 0.7 | 190 | 24 | 210 | 46 | 100 |
No. | ProfileNo. | SampleNo. | SampleInfo | Sample Description | Depth | SiO2 | Al2O3 | TFe2O3 | K2O | Na2O | CaO | MgO | TiO2 | P2O5 | MnO | Ti | P | Mn | V | Cr | Co | Ni | Pb | Nb | Th | U | Zr | La |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
m | % | % | % | % | % | % | % | % | % | % | μg/g | μg/g | μg/g | μg/g | μg/g | μg/g | μg/g | μg/g | μg/g | μg/g | μg/g | μg/g | μg/g | |||||
1 | PM-1 | Y10 | Soil | Dark brown loamy soil with small amount of weathered debris, containing humus, plant root development | 0.1 | 52.8 | 12.3 | 7.10 | 1.80 | 1.20 | 2.36 | 2.35 | 1.10 | 0.273 | 0.100 | 6620 | 1192 | 776 | 108 | 70.2 | 29.2 | 74.5 | 17.0 | 25.9 | 10.5 | 1.99 | 318 | 33.8 |
2 | Y09 | Soil | Brownish yellow chalky loam with a few plant roots visible | 0.3 | 54.5 | 11.8 | 5.97 | 1.92 | 1.35 | 2.09 | 2.09 | 1.01 | 0.238 | 0.091 | 6066 | 1038 | 702 | 99.1 | 60.7 | 22.6 | 56.2 | 19.4 | 27.4 | 8.90 | 2.18 | 355 | 31.5 | |
3 | Y08 | Soil | Brown clay, with obvious rainwater drainage marks visible on the external surface | 0.6 | 59.4 | 12.4 | 4.87 | 2.34 | 1.34 | 1.14 | 2.00 | 0.66 | 0.135 | 0.084 | 3931 | 590 | 647 | 82.5 | 59.7 | 14.7 | 33.9 | 22.7 | 17.0 | 11.2 | 2.14 | 250 | 35.0 | |
4 | Y07 | Soil | Brownish chalky soil, a little weathered debris, easy to crush by hand | 1.3 | 59.2 | 12.1 | 4.80 | 2.26 | 1.43 | 1.39 | 2.02 | 0.74 | 0.146 | 0.097 | 4429 | 637 | 752 | 86.7 | 66.4 | 16.4 | 36.6 | 23.2 | 19.9 | 10.3 | 2.35 | 388 | 34.5 | |
5 | Y06 | Soil | Brownish yellow clayey sandy soil with occasional mixed gravels | 2.0 | 59.1 | 12.1 | 4.82 | 2.31 | 1.61 | 1.57 | 1.97 | 0.81 | 0.162 | 0.076 | 4847 | 707 | 590 | 89.7 | 76.2 | 15.4 | 32.6 | 22.0 | 28.3 | 10.9 | 2.29 | 535 | 47.7 | |
6 | Y05 | Soil | Light yellow sandy soil, a large number of gravels can be seen, the grain size is 0.4–5 cm, the gravels are poorly rounded and sorted | 2.8 | 52.1 | 14.7 | 9.63 | 2.31 | 1.01 | 1.89 | 2.48 | 1.64 | 0.375 | 0.155 | 9814 | 1637 | 1200 | 105 | 71.6 | 34.0 | 78.6 | 11.7 | 51.0 | 10.1 | 2.17 | 454 | 57.2 | |
7 | Y04 | Soil | Light gray clayey soil | 3.9 | 59.4 | 11.9 | 4.68 | 2.26 | 1.42 | 1.33 | 1.71 | 0.71 | 0.189 | 0.064 | 4246 | 825 | 498 | 81.6 | 59.0 | 14.6 | 31.4 | 22.2 | 17.6 | 10.9 | 2.36 | 324 | 38.5 | |
8 | Y03 | Soil | Brownish gray loamy sandy soil, a large number of debris can be seen, the debris composition is mainly strongly weathered basalt, particle size varies | 4.4 | 54.7 | 13.4 | 7.38 | 2.24 | 1.43 | 2.11 | 2.23 | 1.16 | 0.312 | 0.125 | 6936 | 1360 | 969 | 108 | 65.6 | 27.5 | 55.4 | 17.6 | 34.5 | 11.1 | 2.41 | 486 | 46.0 | |
9 | Y02 | Weathered debris | Strongly weathered basalt, weathered debris to gravel approximately 1:2, residual original rock structure | 5.6 | 46.8 | 14.1 | 11.5 | 2.10 | 2.58 | 5.23 | 3.78 | 1.94 | 0.701 | 0.160 | 11631 | 3059 | 1242 | 131 | 72.0 | 39.5 | 82.3 | 6.82 | 72.6 | 7.22 | 1.86 | 427 | 54.5 | |
10 | Y01 | Weathered debris | Weakly weathered basalt, W-S oriented joints developed, hard | 6.8 | 45.8 | 14.3 | 11.9 | 1.93 | 2.54 | 5.74 | 3.81 | 2.03 | 0.754 | 0.182 | 12189 | 3291 | 1413 | 135 | 55.4 | 46.9 | 85.2 | 6.51 | 81.1 | 6.84 | 1.56 | 479 | 53.6 | |
11 | PM-2 | B06 | Weathered debris | Strongly weathered basalt, mainly coarse debris, grain size 0.3–1.8 cm, containing more gravel | 9.0 | 48.0 | 13.9 | 14.9 | 1.50 | 0.41 | 2.05 | 2.50 | 2.90 | 0.305 | 0.086 | 17371 | 1330 | 663 | 227 | 140 | 51.3 | 115 | 18.2 | 60.3 | 8.06 | 4.07 | 305 | 42.5 |
12 | B05 | Weathered debris | Moderately weathered basalt, mainly small gravels, 1–6 cm in size, broken by hammering | 9.9 | 44.9 | 12.6 | 12.3 | 1.42 | 1.14 | 6.62 | 4.86 | 1.92 | 0.757 | 0.202 | 11517 | 3302 | 1566 | 201 | 115 | 53.6 | 168 | 5.24 | 60.3 | 5.10 | 1.18 | 312 | 43.6 | |
13 | B04 | Weathered debris | Weakly weathered basalt with layers of 210~250 cm | 10.7 | 43.6 | 12.4 | 12.4 | 1.24 | 1.87 | 7.11 | 6.11 | 1.94 | 0.772 | 0.179 | 11622 | 3371 | 1390 | 185 | 116 | 48.5 | 164 | 3.87 | 59.0 | 4.87 | 1.27 | 336 | 44.8 | |
14 | B03 | Basalt | Fresh basalt, hard, weathered surface yellow-green | 11.9 | 49.2 | 15.5 | 11.7 | 2.26 | 3.30 | 6.42 | 4.37 | 2.34 | 0.741 | 0.123 | 14018 | 3232 | 955 | 132 | 60.2 | 43.5 | 73.1 | 3.40 | 85.4 | 9.90 | 1.77 | 388 | 43.1 | |
15 | B02 | Basalt | Fresh basalt, hard, weathered surface grayish white | 13.2 | 49.1 | 15.1 | 12.2 | 2.81 | 3.10 | 6.29 | 4.85 | 2.39 | 0.677 | 0.134 | 14353 | 2956 | 1039 | 138 | 65.9 | 45.2 | 76.3 | 4.20 | 84.5 | 9.00 | 1.59 | 376 | 43.8 | |
16 | B01 | Basalt | Fresh basalt, hard, weathered surface gray-black | 14.5 | 51.4 | 15.2 | 10.1 | 1.24 | 3.26 | 7.01 | 4.89 | 1.58 | 0.382 | 0.117 | 9454 | 1666 | 903 | 139 | 113 | 47.7 | 126 | 4.00 | 27.5 | 3.80 | 0.57 | 151 | 21.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
An, Y.; Yin, X.; Gong, Q.; Li, X.; Liu, N. Classification and Provenance on Geochemical Lithogenes: A Case Study on Rock–Soil–Sediment System in Wanquan Area of Zhangjiakou, North China. Appl. Sci. 2023, 13, 1008. https://doi.org/10.3390/app13021008
An Y, Yin X, Gong Q, Li X, Liu N. Classification and Provenance on Geochemical Lithogenes: A Case Study on Rock–Soil–Sediment System in Wanquan Area of Zhangjiakou, North China. Applied Sciences. 2023; 13(2):1008. https://doi.org/10.3390/app13021008
Chicago/Turabian StyleAn, Yonglong, Xiulan Yin, Qingjie Gong, Xiaolei Li, and Ningqiang Liu. 2023. "Classification and Provenance on Geochemical Lithogenes: A Case Study on Rock–Soil–Sediment System in Wanquan Area of Zhangjiakou, North China" Applied Sciences 13, no. 2: 1008. https://doi.org/10.3390/app13021008
APA StyleAn, Y., Yin, X., Gong, Q., Li, X., & Liu, N. (2023). Classification and Provenance on Geochemical Lithogenes: A Case Study on Rock–Soil–Sediment System in Wanquan Area of Zhangjiakou, North China. Applied Sciences, 13(2), 1008. https://doi.org/10.3390/app13021008