Speciation Analysis and Pollution Assessment of Heavy Metals in Farmland Soil of a Typical Mining Area: A Case Study of Dachang Tin Polymetallic Ore, Guangxi
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Sample Collection and Chemical Analysis
2.3. Risk Assessment and Data Processing
2.3.1. Single Factor Pollution Index (SFPI)
2.3.2. Nemerow Integrated Pollution Index (NIPI)
2.3.3. Potential Ecological Risk Index (PERI)
2.3.4. The Migration Coefficient (MC) and Bioavailability Coefficient (BC)
2.3.5. Data Processing
3. Results
3.1. Content Characteristics of Heavy Metal in Soil
3.2. Speciation Characteristics of Heavy Metals
Maximum | Minimum | Average | Reference Background * | Risk Screening Values | Risk Intervention Values | |
---|---|---|---|---|---|---|
pH | 7.7 | 3.7 | 5.9 | 5.5 < pH ≤ 6.5 | 5.5 < pH ≤ 6.5 | |
organic matter | 10.5 | 0.5 | 4.3 | |||
Cr | 169.2 | 32.7 | 66.9 | 82.1 | 150 | 850 |
Ni | 151.7 | 9.1 | 42.7 | 26.6 | 70 | |
Cu | 328.7 | 13.4 | 86.5 | 27.8 | 50 | |
Pb | 7104.5 | 1.8 | 730 | 24.0 | 90 | 500 |
Zn | 20,075 | 16.8 | 2422 | 75.6 | 200 | |
As | 4097.9 | 1.2 | 307.1 | 20.5 | 40 | 150 |
Cd | 255.9 | 0.2 | 16.4 | 0.27 | 0.3 | 2.0 |
3.3. Ecological Hazard Assessment
3.4. Source Identification
3.4.1. Correlation Analysis (CA)
3.4.2. Principal Component Analysis (PCA)
3.5. Suggestions for Pollution Remediation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Amuno, S.; Niyogi, S.; Amuno, M.; Attitaq, J. Heavy metal bioaccumulation and histopathological alterations in wild Arctic hares (Lepus arcticus) inhabiting a former lead-zinc mine in the Canadian high Arctic: A preliminary study. Sci. Total Environ. 2016, 556, 252–263. [Google Scholar] [CrossRef] [PubMed]
- Ghayoraneh, M.; Qishlaqi, A. Concentration, distribution and speciation of toxic metals in soils along a transect around a Zn/Pb smelter in the northwest of Iran. J. Geochem. Explor. 2017, 180, 1–14. [Google Scholar] [CrossRef]
- Cai, L.M.; Wang, Q.S.; Luo, J.; Wang, S.; Tang, C.H.; Yan, Z. Contamination characteristics and health risk for heavy metals via consumption of vegetables grown in regions affected by tonglvshan mine in Hubei, China. Resour. Environ. Yangtze Basin 2018, 27, 873–881. [Google Scholar]
- Esmaeili, A.; Moore, F.; Keshavarzi, B.; Jaafarzadeh, N.; Kermani, M. A geochemical survey of heavy metals in agricultural and background soils of the Isfahan industrial zone, Iran. Catena 2014, 121, 88–98. [Google Scholar] [CrossRef]
- Kuang, J.L.; Huang, L.N.; Chen, L.X.; Hua, Z.S.; Li, S.J.; Hu, M.; Li, J.T.; Shu, W.S. Contemporary environmental variation determines microbial diversity patterns in acid mine drainage. ISME J. 2013, 7, 1038–1050. [Google Scholar] [CrossRef] [Green Version]
- China Geological Survey. Investigation Report on Cultivated Land Geochemistry in China: Beijing; Ministry of Natural Resources of the People’s Republic of China: Beijing, China, 2015.
- Yang, W.; Gao, Y.L.; Kang, Z.Y.; LI, R.F.; Wang, S.; Wu, H.Y. Chemical Forms and Bioavailability of Heavy Metals in Soil of Scenic Adjacent to Iron Ore. Environ. Sci. Technol. 2010, 33, 82–86. [Google Scholar]
- Anju, M.; Banerjee, D.K. Multivariate statistical analysis of heavy metals in soils of a Pb-Zn mining area, India. Environ. Monit. Assess. 2012, 184, 4191–4206. [Google Scholar] [CrossRef]
- Chakraborty, S.; Man, T.; Paulette, L.; DebB, S.; Li, B.; Weindorf, D.C.; Frazier, M. Rapid assessment of smelter/mining soil contamination via portable X-ray fluorescence spectrometry and indicator kriging. Geoderma Int. J. Soil Sci. 2017, 306, 108–119. [Google Scholar] [CrossRef]
- Chen, K.; Huang, L.; Yan, B.Z.; Li, H.B.; Sun, H.; Jun, B. Effect of Lead Pollution Control on Environmental and Childhood Blood Lead Level in Nantong, China: An Interventional Study. Environ. Sci. Technol. 2014, 48, 12930. [Google Scholar] [CrossRef]
- Liu, H.Y.; Probst, A.; Liao, B.H. Metal contamination of soils and crops affected by the Chenzhou lead/zinc mine spill (Hunan, China). Sci. Total Environ. 2005, 339, 153–166. [Google Scholar] [CrossRef] [Green Version]
- Zhuang, P.; McBride, M.B.; Xia, H.P.; Li, N.Y.; Li, Z. Health risk from heavy metals via consumption of food crops in the vicinity of Dabaoshan mine, South China. Sci. Total Environ. 2009, 407, 1551–1561. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Liang, Y.P.; Xu, Q.; Jing, W.H. Spatial Distribution, Contamination Assessment, and Sources of Heavy Metals in the Urban Green Space Soils of a City in North China. Environ. Sci. 2020, 41, 5552–5561. [Google Scholar]
- Wang, R.; Deng, H.; Jia, Z.M.; Wang, J.B.; Yu, F.; Zeng, Q.Q. Spatial Distribution Characteristics, Pollution, and Ecological Risk Assessment of Soil Heavy Metals Around Mercury Mining Areas. Environ. Sci. 2021, 42, 3018–3027. [Google Scholar]
- Redwan, M.; Bamousa, A.O. Characterization and environmental impact assessment of gold mine tailings in arid regions: A case study of Barramiya gold mine area, Eastern Desert, Egypt. J. Afr. Earth Sci. 2019, 160, 103644. [Google Scholar] [CrossRef]
- Akoto, R.; Anning, A.K. Heavy Metal Enrichment and Potential Ecological Risks from Different Solid Mine Wastes at a Mine Site in Ghana. Environ. Adv. 2020, 3, 100028. [Google Scholar] [CrossRef]
- Yun, S.W.; Kim, D.H.; Kang, D.H.; Son, J.; Lee, S.Y.; Lee, C.K.; Lee, S.H.; Ji, W.H.; Baveye, P.C.; Yu, C. Effect of farmland type on the transport and spatial distribution of metal(loid)s in agricultural lands near an abandoned gold mine site: Confirmation of previous observations. J. Geochem. Explor. 2017, 181, 129–137. [Google Scholar] [CrossRef]
- Potra, A.; Dodd, J.W.; Ruhl, L.S. Distribution of trace elements and Pb isotopes in stream sediments of the Tri-State mining district (Oklahoma, Kansas, and Missouri), USA. Appl. Geochem. 2017, 82, 25–37. [Google Scholar] [CrossRef]
- Taylor, M.P.; Mackay, A.K.; Hudson-Edwards, K.A.; Holz, E. Soil Cd, Cu, Pb and Zn contaminants around Mount Isa city, Queensland, Australia: Potential sources and risks to human health. Appl. Geochem. 2010, 25, 841–855. [Google Scholar] [CrossRef]
- Xie, C.W. Soil types and characteristics in Karst area of Guangxi. J. Guangxi Agric. Univ. 1982, 1, 83–93. [Google Scholar]
- HJ 832-2017; Soil and Sediment-Digestion of Total Metal Elements—Microwave Assisted Acid Digestion Method. Ministry of Ecology and Environment of The People’s Republic of China: Beijing, China, 2017.
- DD 2005-03; Technical Requirements for Sample Analysis of Ecological Geochemical Evaluation (Trial). China Geological Survey: Beijing, China, 2005.
- Fan, S.X.; Gan, Z.T.; Li, M.J.; Zhang, Z.Q.; Zhou, Q. Progress of Assessment Methods of Heavy Metal Pollution in Soil. Chin. Agric. Sci. Bull. 2010, 26, 310–315. [Google Scholar]
- Nemerow, N.L. Scientific Stream Pollution Analysis; ScriptaBookCo: Washington, DC, USA, 1974. [Google Scholar]
- NY/T 395-2012; Technical Rules for Monitoring of Environmental Quality of Farmland Soil. China Agriculture Press: Beijing, China, 2012.
- Huang, F. Study on the Removal of Cd(Ⅱ) from Aqueous Solutions by Bacillus Cereus RC-1: Biosorption Characteristics and Mechanism. Ph.D. Thesis, South China University of Technology, Guangzhou, China, 2013. [Google Scholar]
- Xu, Z.Q.; Ni, S.J.; Tuo, X.G.; Zhang, C.J. Calculation of heavy metals’ toxicity coefficient in the evaluation of potential ecological risk index. Environ. Sci. Technol. 2008, 2, 112–115. [Google Scholar]
- Hu, M.H.; Yuan, J.H.; Huang, H.P. Fraction Distributions and Availabilities of Heavy Metals in Fraction Distributions and Availabilities of Heavy Metals in Municipal Sludge of Nanchang City. Bull. Soil Water Conserv. 2010, 30, 63–67. [Google Scholar]
- Li, X.D.; Liu, P.S.; Poon, C.S. Heavy metal contamination of urban soils and street dusts in Hong Kong. Appl. Geochem. 2001, 16, 1361–1368. [Google Scholar] [CrossRef]
- Yang, W.L.; Bi, X.Y.; Han, Z.X. Dust lead contamination in rural households of several provinces in China. Chin. J. Ecol. 2011, 30, 1246–1250. [Google Scholar]
- GB 15618-2018; Soil Environmental Quality Risk Control Standard for Soil Contamination of Agricultural Land. China Environment Publishing Group: Beijing, China, 2018.
- Wang, W.H.; Wong, M.H.; Leharne, S.; Fisher, B. Fractionation and Biotoxicity of Heavy Metals in Urban Dusts Collected from Hong Kong and London. Environ. Geochem. Health 1998, 20, 185–198. [Google Scholar] [CrossRef]
- China National Environmental Monitoring Centre. The Element Background Values of Chinese Soil; China Environment Publishing Group: Beijing, China, 1990. [Google Scholar]
- Pan, H.J.; Cheng, Z.Z.; Yang, R.; Zhou, G.H. Geochemical survey and assessment of tailings of the Gejiu tin-polymetallic mining area, Yunnan Province. Geol. China 2015, 42, 1137–1150. [Google Scholar]
- Wang, F. Prediction and Evaluation of Acidification and Heavy Metal Pollution of Tin-Polymetallic Sulfide Mine Tailings in Dachang, Guangxi. Master’s Thesis, Guilin University of Technology, Guilin, China, 2010. [Google Scholar]
- Wang, B.L.; Xie, Z.M.; Sun, Y.F.; Li, J.; Tian, Z.J.; Chen, Y.X. Effects of phos phorus fertilizers on remediation of lead toxicity in a soil contaminated by lead and zinc mining. Acta Sci. Circumstantiae 2005, 25, 1189–1194. [Google Scholar]
- Wang, F.Y.; Guo, C.H.; Miao, X.F.; Xiao, X.Y. Tolerance and accumulation characteristics of Typha orientalis Presl for As, Cd and Pb in heavily contaminated soils. J. Agro-Environ. Sci. 2011, 30, 1966–1971. [Google Scholar]
Class | Pollution Index of Element i | Pollution Index of Soil | Pollution Class | Pollution Level |
---|---|---|---|---|
1 | Pi ≤ 0.7 | PN ≤ 0.7 | Secure | Clean |
2 | 0.7 < Pi ≤ 1 | 0.7 < PN ≤ 1 | Alert | Unpolluted |
3 | 1 < Pi ≤ 2 | 1 < PN ≤ 2 | Mild | Began to be polluted |
4 | 2 < Pi ≤ 3 | 2 < PN ≤ 3 | Moderate | Moderately polluted |
5 | Pi > 3 | PN > 3 | Heavy | Extremely polluted |
RI | Potential Ecological Risk | |
---|---|---|
≤ 40 | RI ≤ 150 | Light ecological hazards |
40 < ≤ 80 | 150 < RI ≤ 300 | Moderate ecological hazards |
80 < ≤ 160 | 300 < RI ≤ 600 | Relatively strong ecological hazards |
160 < ≤ 320 | Strong ecological hazards | |
> 320 | RI > 600 | Extremely strong ecological hazards |
Element | Water-Soluble Form | Ion Exchange Form | Carbonate Combined Form | Humic Acid Combined Form | Iron–Manganese Oxide Combined Form | Strong Organic Combined Form | Residual Form |
---|---|---|---|---|---|---|---|
Cr * | 0.16 | 0.41 | 0.56 | 6.81 | 1.35 | 3.55 | 58.67 |
Ni * | 0.36 | 0.44 | 1.44 | 2.36 | 6.02 | 5.01 | 23.30 |
Cu * | 0.40 | 0.49 | 2.85 | 62.38 | 25.93 | 20.29 | 76.84 |
Pb * | 4.26 | 0.60 | 61.50 | 625.74 | 1017.02 | 188.54 | 2551.00 |
Zn * | 115.21 | 93.73 | 387.57 | 546.96 | 1253.83 | 959.23 | 5273.57 |
As * | 7.01 | 0.97 | 6.43 | 43.51 | 7.27 | 11.55 | 172.02 |
Cd * | 4.72 | 26.72 | 10.53 | 17.64 | 16.08 | 20.03 | 15.04 |
Item | Cr | Ni | Cu | Zn | Cd | Pb | As | Organic Matter | pH | Eh |
---|---|---|---|---|---|---|---|---|---|---|
Cr | 1 | |||||||||
Ni | 0.113 | 1 | ||||||||
Cu | 0.148 | 0.358 ** | 1 | |||||||
Zn | 0.174 | 0.086 | 0.712 ** | 1 | ||||||
Cd | 0.160 | −0.570 * | 0.631 ** | 0.964 ** | 1 | |||||
Pb | 0.037 | −0.058 | 0.633 ** | 0.758 ** | 0.785 ** | 1 | ||||
As | 0.072 | −0.047 | 0.596 ** | 0.815 ** | 0.831 ** | 0.839 ** | 1 | |||
organic matter | −0.560 ** | −0.338 ** | 0.129 | 0.301 | 0.211 | 0.266 ** | 0.385 ** | 1 | ||
pH | −0.083 | 0.369 ** | 0.443 ** | 0.547 ** | 0.628 ** | 0.518 ** | 0.512 ** | 0.248 | 1 | |
Eh | 0.132 | −0.338 * | −0.449 ** | −0.507 ** | −0.581 ** | −0.482 ** | −0.498 ** | −0.206 | −0.945 ** | 1 |
Components | Extraction Sums of Squared Loadings | Rotation Sums of Squared Loadings | ||||
---|---|---|---|---|---|---|
Eigenvalues | % of Variance | Cumulative % | Eigenvalues | % of Variance | Cumulative % | |
PC1 | 3.943 | 56.327 | 56.327 | 3.83 | 54.720 | 54.720 |
PC2 | 1.233 | 17.619 | 73.946 | 1.247 | 17.816 | 72.536 |
PC3 | 0.923 | 13.191 | 87.137 | 1.022 | 14.601 | 87.137 |
PC4 | 0.379 | 5.414 | 92.552 |
Elements | Principal Components Factor Load | Rotated Principal Components Factor Load | ||||
---|---|---|---|---|---|---|
PC1 | PC2 | PC3 | PC1 | PC2 | PC3 | |
Cr | 0.184 | 0.488 | 0.852 | 0.065 | 0.063 | 0.994 |
Ni | 0.132 | 0.866 | −0.396 | −0.039 | 0.959 | 0.052 |
Cu | 0.750 | 0.365 | −0.199 | 0.664 | 0.538 | 0.069 |
Zn | 0.953 | −0.044 | 0.039 | 0.941 | 0.107 | 0.119 |
Cd | 0.963 | −0.039 | 0.014 | 0.951 | 0.125 | 0.100 |
Pb | 0.843 | −0.255 | −0.016 | 0.877 | −0.070 | −0.036 |
As | 0.884 | −0.208 | 0.009 | 0.908 | −0.034 | 0.012 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Liu, Y.; Hong, S.; Wen, M.; Zheng, C.; Liu, P. Speciation Analysis and Pollution Assessment of Heavy Metals in Farmland Soil of a Typical Mining Area: A Case Study of Dachang Tin Polymetallic Ore, Guangxi. Appl. Sci. 2023, 13, 708. https://doi.org/10.3390/app13020708
Zhang J, Liu Y, Hong S, Wen M, Zheng C, Liu P. Speciation Analysis and Pollution Assessment of Heavy Metals in Farmland Soil of a Typical Mining Area: A Case Study of Dachang Tin Polymetallic Ore, Guangxi. Applied Sciences. 2023; 13(2):708. https://doi.org/10.3390/app13020708
Chicago/Turabian StyleZhang, Jiali, Yinghong Liu, Songtao Hong, Meilan Wen, Chaojie Zheng, and Panfeng Liu. 2023. "Speciation Analysis and Pollution Assessment of Heavy Metals in Farmland Soil of a Typical Mining Area: A Case Study of Dachang Tin Polymetallic Ore, Guangxi" Applied Sciences 13, no. 2: 708. https://doi.org/10.3390/app13020708
APA StyleZhang, J., Liu, Y., Hong, S., Wen, M., Zheng, C., & Liu, P. (2023). Speciation Analysis and Pollution Assessment of Heavy Metals in Farmland Soil of a Typical Mining Area: A Case Study of Dachang Tin Polymetallic Ore, Guangxi. Applied Sciences, 13(2), 708. https://doi.org/10.3390/app13020708