Clinical and Functional Evolution in Subjects with Parkinson’s Disease during SARS-CoV-2 Pandemic
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Model of Care Applied at the Movement Disorder Center
2.3. Data Analysis
3. Results
3.1. Primary Endpoints
3.2. Secondary Endpoints
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WHO Coronavirus (COVID-19) Dashboard. Available online: https://covid19.who.int (accessed on 20 February 2022).
- Ministero della Salute, Istituto Superiore di Sanità. Monitoraggio Fase 2 Report Settimanale Regione Marche. Available online: https://www.salute.gov.it/imgs/C_17_monitoraggi_95_9_fileRegionale.pdf (accessed on 20 February 2022).
- Negrini, S.; Grabljevec, K.; Boldrini, P.; Kiekens, C.; Moslavac, S.; Zampolini, M.; Christodoulou, N. Up to 2.2 Million People Experiencing Disability Suffer Collateral Damage Each Day of COVID-19 Lockdown in Europe. Eur. J. Phys. Rehabil. Med. 2020, 56, 361–365. [Google Scholar] [CrossRef]
- Fekadu, G.; Bekele, F.; Tolossa, T.; Fetensa, G.; Turi, E.; Getachew, M.; Abdisa, E.; Assefa, L.; Afeta, M.; Demisew, W.; et al. Impact of COVID-19 pandemic on chronic diseases care follow-up and current perspectives in low resource settings: A narrative review. Int. J. Physiol. Pathophysiol. Pharmacol. 2021, 13, 86–93. [Google Scholar]
- Danhieux, K.; Buffel, V.; Pairon, A. The impact of COVID-19 on chronic care according to providers: A qualitative study among primary care practices in Belgium. BMC Fam. Pract. 2020, 21, 255. [Google Scholar] [CrossRef]
- Brasso, C.; Bellino, S.; Blua, C.; Bozzatello, P.; Rocca, P. The Impact of SARS-CoV-2 Infection on Youth Mental Health: A Narrative Review. Biomedicines 2022, 10, 772. [Google Scholar] [CrossRef]
- Tufail, M.; Wu, C. Psychological impact of COVID-19 pandemic on Parkinson’s disease patients. Heliyon 2022, 8, e09604. [Google Scholar] [CrossRef] [PubMed]
- Piano, C.; Bove, F.; Tufo, T.; Imbimbo, I.; Genovese, D.; Stefani, A.; Marano, M.; Peppe, A.; Brusa, L.; Cerroni, R.; et al. Effects of COVID-19 Lockdown on Movement Disorders Patients with Deep Brain Stimulation: A Multicenter Survey. Front. Neurol. 2020, 11, 616550. [Google Scholar] [CrossRef]
- Immovilli, P.; Morelli, N.; Terracciano, C.; Rota, E.; Marchesi, E.; Vollaro, S.; De Mitri, P.; Zaino, D.; Bazzurri, V.; Guidetti, D. Multiple Sclerosis Treatment in the COVID-19 Era: A Risk-Benefit Approach. Neurol. Int. 2022, 14, 368–377. [Google Scholar] [CrossRef]
- Helmich, R.C.; Aarts, E.; de Lange, F.P.; Bloem, B.R.; Toni, I. Increased Dependence of Action Selection on Recent Motor History in Parkinson’s Disease. J. Neurosci. 2009, 29, 6105–6113. [Google Scholar] [CrossRef] [Green Version]
- Brooks, S.K.; Weston, D.; Greenberg, N. Social and Psychological Impact of the COVID-19 Pandemic on People with Parkinson’s Disease: A Scoping Review. Public Health 2021, 199, 77–86. [Google Scholar] [CrossRef] [PubMed]
- Fasano, A.; Antonini, A.; Katzenschlager, R.; Krack, P.; Odin, P.; Evans, A.H.; Foltynie, T.; Volkmann, J.; Merello, M. Management of Advanced Therapies in Parkinson’s Disease Patients in Times of Humanitarian Crisis: The COVID-19 Experience. Mov. Disord. Clin. Pract. 2020, 7, 361–372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cartella, S.M.; Terranova, C.; Rizzo, V.; Quartarone, A.; Girlanda, P. COVID-19 and Parkinson’s Disease: An Overview. J. Neurol. 2021, 268, 4415–4421. [Google Scholar] [CrossRef] [PubMed]
- De Donno, A.; Acella, A.; Angrisani, C.; Gubinelli, G.; Musci, G.; Gravili, G.; Ciritella, C.; Santamato, A. Suspension of Care for Patients with Spasticity During COVID-19 Pandemic: Ethical and Medico-Legal Point of View Starting From an Italian Study. Front. Med. 2021, 8, 754456. [Google Scholar] [CrossRef] [PubMed]
- Schirinzi, T.; Di Lazzaro, G.; Salimei, C.; Cerroni, R.; Liguori, C.; Scalise, S.; Alwardat, M.; Mercuri, N.B.; Pierantozzi, M.; Stefani, A.; et al. Physical Activity Changes and Correlate Effects in Patients with Parkinson’s Disease during COVID-19 Lockdown. Mov. Disord. Clin. Pract. 2020, 7, 797–802. [Google Scholar] [CrossRef]
- Oppo, V.; Serra, G.; Fenu, G.; Murgia, D.; Ricciardi, L.; Melis, M.; Morgante, F.; Cossu, G. Parkinson’s Disease Symptoms Have a Distinct Impact on Caregivers’ and Patients’ Stress: A Study Assessing the Consequences of the COVID-19 Lockdown. Mov. Disord. Clin. Pract. 2020, 7, 865–867. [Google Scholar] [CrossRef]
- Postuma, R.B.; Berg, D.; Stern, M.; Poewe, W.; Olanow, C.W.; Oertel, W.; Obeso, J.; Marek, K.; Litvan, I.; Lang, A.E.; et al. MDS Clinical Diagnostic Criteria for Parkinson’s Disease. Mov. Disord. Off. J. Mov. Disord. Soc. 2015, 30, 1591–1601. [Google Scholar] [CrossRef]
- Goetz, C.G.; Tilley, B.C.; Shaftman, S.R.; Stebbins, G.T.; Fahn, S.; Martinez-Martin, P.; Poewe, W.; Sampaio, C.; Stern, M.B.; Dodel, R.; et al. Movement Disorder Society-Sponsored Revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): Scale Presentation and Clinimetric Testing Results. Mov. Disord. 2008, 23, 2129–2170. [Google Scholar] [CrossRef]
- Van Wamelen, D.J.; Martinez-Martin, P.; Weintraub, D.; Schrag, A.; Antonini, A.; Falup-Pecurariu, C.; Odin, P.; Ray Chaudhuri, K.; International Parkinson and Movement Disorder Society Parkinson’s Disease Non-Motor Study Group. The Non-Motor Symptoms Scale in Parkinson’s Disease: Validation and Use. Acta Neurol. Scand. 2021, 143, 3–12. [Google Scholar] [CrossRef]
- Tomlinson, C.L.; Stowe, R.; Patel, S.; Rick, C.; Gray, R.; Clarke, C.E. Systematic review of levodopa dose equivalency reporting in Parkinson’s disease. Mov. Disord. 2010, 25, 2649–2653. [Google Scholar] [CrossRef]
- Ellis, T.D.; Cavanaugh, J.T.; Earhart, G.M.; Ford, M.P.; Foreman, K.B.; Thackeray, A.; Thiese, M.S.; Dibble, L.E. Identifying clinical measures that most accurately reflect the progression of disability in Parkinson disease. Parkinsonism Relat. Disord. 2016, 25, 65–71. [Google Scholar] [CrossRef]
- Shulman, L.M.; Gruber-Baldini, A.L.; Anderson, K.E.; Vaughan, C.G.; Reich, S.G.; Fishman, P.S.; Weiner, W.J. The evolution of disa-bility in Parkinson disease. Mov. Disord. 2008, 23, 790–796. [Google Scholar] [CrossRef] [PubMed]
- Alves, G.; Wentzel-Larsen, T.; Aarsland, D.; Larsen, J.P. Progression of motor impairment and disability in Parkinson disease: A population-based study. Neurology. 2005, 65, 1436–1441. [Google Scholar] [CrossRef] [PubMed]
- Poewe, W.; Seppi, K.; Tanner, C.M.; Halliday, G.M.; Brundin, P.; Volkmann, J.; Schrag, A.E.; Lang, A.E. Parkinson disease. Nat. Re-Views Dis. Prim. 2017, 3, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Jankovic, J.; Kapadia, A.S. Functional decline in Parkinson disease. Arch. Neurol. 2001, 58, 1611e1615. [Google Scholar] [CrossRef] [Green Version]
- Marinus, J.; van der Heeden, J.F.; van Hilten, J.J. Calculating clinical progression rates in Parkinson’s disease: Methods matter, Park. Relat. Disord. 2014, 20, 1263e1267. [Google Scholar] [CrossRef]
- Bugalho, P.; Ladeira, F.; Barbosa, R.; Marto, J.P.; Borbinha, C.; da Conceição, L.; Salavisa, M.; Saraiva, M.; Meira, B.; Fernandes, M. Progression in Parkinson’s Disease: Variation in Motor and Non-motor Symptoms Severity and Predictors of Decline in Cognition, Motor Function, Disability, and Health-Related Quality of Life as Assessed by Two Different Methods. Mov Disord Clin. Pract. 2021, 8, 885–895, Erratum in Mov. Disord. Clin. Pract. 2022, 9, 411. [Google Scholar] [CrossRef]
- Post, B.; Muslimovic, D.; van Geloven, N.; Speelman, J.D.; Schmand, B.; de Haan, R.J.; CARPA-study group. Progression and prognostic factors of motor impairment, disability and quality of life in newly diagnosed Parkinson’s disease. Mov. Disord. 2011, 26, 449–456. [Google Scholar] [CrossRef]
- Schrag, A.; Dodel, R.; Spottke, A.; Bornschein, B.; Siebert, U.; Quinn, N.P. Rate of clinical progression in Parkinson’s disease. A prospective study. Mov. Disord. 2007, 22, 938–945. [Google Scholar] [CrossRef] [PubMed]
- Fereshtehnejad, S.M.; Zeighami, Y.; Dagher, A.; Postuma, R.B. Clinical criteria for subtyping Parkinson’s disease: Biomarkers and longitudinal progression. Brain 2017, 140, 1959–1976. [Google Scholar] [CrossRef]
- Leavy, B.; Hagströmer, M.; Conradsson, D.M.; Franzén, E. Physical Activity and Perceived Health in People With Parkinson Disease During the First Wave of COVID-19 Pandemic: A Cross-Sectional Study From Sweden. J. Neurol. Phys. Ther. JNPT 2021, 45, 266–272. [Google Scholar] [CrossRef]
- Suzuki, K.; Numao, A.; Komagamine, T.; Haruyama, Y.; Kawasaki, A.; Funakoshi, K.; Fujita, H.; Suzuki, S.; Okamura, M.; Shiina, T.; et al. Impact of the COVID-19 Pandemic on the Quality of Life of Patients with Parkinson’s Disease and Their Caregivers: A Single-Center Survey in Tochigi Prefecture. J. Park. Dis. 2021, 11, 1047–1056. [Google Scholar] [CrossRef]
- Santos-García, D.; Oreiro, M.; Pérez, P.; Fanjul, G.; Paz González, J.M.; Feal Painceiras, M.J.; Cores Bartolomé, C.; Valdés Aymerich, L.; García Sancho, C.; Castellanos Rodrigo, M.D.M. Impact of Coronavirus Disease 2019 Pandemic on Parkinson’s Disease: A Cross-Sectional Survey of 568 Spanish Patients. Mov. Disord. Off. J. Mov. Disord. Soc. 2020, 35, 1712–1716. [Google Scholar] [CrossRef] [PubMed]
- Balci, B.; Aktar, B.; Buran, S.; Tas, M.; Donmez Colakoglu, B. Impact of the COVID-19 Pandemic on Physical Activity, Anxiety, and Depression in Patients with Parkinson’s Disease. Int. J. Rehabil. Res. Int. Z. Rehabil. Rev. Int. Rech. Readaptation 2021, 44, 173–176. [Google Scholar] [CrossRef] [PubMed]
- Del Prete, E.; Francesconi, A.; Palermo, G.; Mazzucchi, S.; Frosini, D.; Morganti, R.; Coleschi, P.; Raglione, L.M.; Vanni, P.; Ramat, S.; et al. Prevalence and Impact of COVID-19 in Parkinson’s Disease: Evidence from a Multi-Center Survey in Tuscany Region. J. Neurol. 2021, 268, 1179–1187. [Google Scholar] [CrossRef]
- Cao, X.; Yang, F.; Zheng, J.; Wang, X.; Huang, Q. Aberrant Structure MRI in Parkinson’s Disease and Comorbidity with Depression Based on Multinomial Tensor Regression Analysis. J. Pers. Med. 2022, 12, 89. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, M.; Spekker, E.; Szabó, Á.; Polyák, H.; Vécsei, L. Modelling the neurodevelopmental pathogenesis in neuropsychiatric disorders. Bioactive kynurenines and their analogues as neuroprotective agents-in celebration of 80th birthday of Professor Peter Riederer. J. Neural. Transm. 2022, 129, 627–642. [Google Scholar] [CrossRef]
- Battaglia, S.; Fabius, J.H.; Moravkova, K.; Fracasso, A.; Borgomaneri, S. The Neurobiological Correlates of Gaze Perception in Healthy Individuals and Neurologic Patients. Biomedicines 2022, 10, 627. [Google Scholar] [CrossRef]
- Haahr, A.; Groos, H.; Sørensen, D. Striving for normality’ when coping with Parkinson’s disease in everyday life: A metasynthesis. Int J Nurs Stud. 2021, 118, 103923. [Google Scholar] [CrossRef]
- Fabbri, M.; Leung, C.; Baille, G.; Béreau, M.; Brefel Courbon, C.; Castelnovo, G.; Carriere, N.; Damier, P.; Defebvre, L.; Doe de Maindreville, A.; et al. A French Survey on the Lockdown Consequences of COVID-19 Pandemic in Parkinson’s Disease. The ERCOPARK Study. Parkinsonism Relat. Disord. 2021, 89, 128–133. [Google Scholar] [CrossRef] [PubMed]
- Knapik, A.; Szefler-Derela, J.; Wasiuk-Zowada, D.; Siuda, J.; Krzystanek, E.; Brzęk, A. Isolation Related to the COVID-19 Pandemic in People Suffering from Parkinson’s Disease and Activity, Self-Assessment of Physical Fitness and the Level of Affective Disorders. Healthcare 2021, 9, 1562. [Google Scholar] [CrossRef]
- Feeney, M.P.; Xu, Y.; Surface, M.; Shah, H.; Vanegas-Arroyave, N.; Chan, A.K.; Delaney, E.; Przedborski, S.; Beck, J.C.; Alcalay, R.N. The Impact of COVID-19 and Social Distancing on People with Parkinson’s Disease: A Survey Study. NPJ Park. Dis. 2021, 7, 10. [Google Scholar] [CrossRef]
- Kumar, N.; Gupta, R.; Kumar, H.; Mehta, S.; Rajan, R.; Kumar, D.; Kandadai, R.M.; Desai, S.; Wadia, P.; Basu, P.; et al. Impact of Home Confinement during COVID-19 Pandemic on Sleep Parameters in Parkinson’s Disease. Sleep Med. 2021, 77, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Brown, E.G.; Chahine, L.M.; Goldman, S.M.; Korell, M.; Mann, E.; Kinel, D.R.; Arnedo, V.; Marek, K.L.; Tanner, C.M. The Effect of the COVID-19 Pandemic on People with Parkinson’s Disease. J. Park. Dis. 2020, 10, 1365–1377. [Google Scholar] [CrossRef] [PubMed]
- Fasano, A.; Elia, A.E.; Dallocchio, C.; Canesi, M.; Alimonti, D.; Sorbera, C.; Alonso-Canovas, A.; Pezzoli, G. Predictors of COVID-19 Outcome in Parkinson’s Disease. Parkinsonism Relat. Disord. 2020, 78, 134–137. [Google Scholar] [CrossRef]
- World Health Organization. WHO Guidelines on Physical Activity and Sedentary Behaviour; World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- Helmich, R.C.; Bloem, B.R. The Impact of the COVID-19 Pandemic on Parkinson’s Disease: Hidden Sorrows and Emerging Opportunities. J. Park. Dis. 2020, 10, 351–354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Artusi, C.A.; Romagnolo, A.; Ledda, C.; Zibetti, M.; Rizzone, M.G.; Montanaro, E.; Bozzali, M.; Lopiano, L. COVID-19 and Parkinson’s Disease: What Do We Know So Far? J. Park. Dis. 2021, 11, 445–454. [Google Scholar] [CrossRef]
- El-Qushayri, A.E.; Ghozy, S.; Reda, A.; Kamel, A.M.A.; Abbas, A.S.; Dmytriw, A.A. The Impact of Parkinson’s Disease on Manifestations and Outcomes of COVID-19 Patients: A Systematic Review and Meta-Analysis. Rev. Med. Virol. 2021, 32, e2278. [Google Scholar] [CrossRef]
- Ahmad Malik, J.; Ahmed, S.; Shinde, M.; Hajjaj Saeid Al-Marmash, M.; Alghamdi, S.; Hussain, A.; Anwar, S. The Impact of COVID-19 on the Comorbidities: A Review of Recent Updates for Combating It. Saudi J. Biol. Sci. 2022, 29, 3586–3599. [Google Scholar] [CrossRef]
- Nwabuobi, L.; Zhang, C.; Henchcliffe, C.; Shah, H.; Sarva, H.; Lee, A.; Kamel, H. Characteristics and Outcomes of Parkinson’s Disease Individuals Hospitalized with COVID-19 in a New York City Hospital System. Mov. Disord. Clin. Pract. 2021, 8, 1100–1106. [Google Scholar] [CrossRef]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical Features of Patients Infected with 2019 Novel Coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [Green Version]
- Onder, G.; Rezza, G.; Brusaferro, S. Case-Fatality Rate and Characteristics of Patients Dying in Relation to COVID-19 in Italy. JAMA 2020, 323, 1775–1776. [Google Scholar] [CrossRef]
- Iloanusi, S.; Mgbere, O.; Essien, E.J. Polypharmacy among COVID-19 Patients: A Systematic Review. J. Am. Pharm. Assoc. JAPhA 2021, 61, e14–e25. [Google Scholar] [CrossRef] [PubMed]
Parameter | 2018 | 2019 | 2020 | 2021 | %Change (2018–2019)/2018 | %Change (2019–2020)/2019 | %Change (2020–2021)/2020 | Wilcoxon Rank Test (2018–2019 vs. 2019–2020) Z; Tied P | Wilcoxon Rank Test (2019–2020 vs. 2020–2021) Z; Tied P |
---|---|---|---|---|---|---|---|---|---|
UPDRS II Mean ± SD [median; IQR] | 15.02 ± 8.0 [14; 12] | 14.10 ± 8.4 [13; 11.3] | 15.47 ± 8.6 [14; 13] | 16.13 ± 8.1 [15; 11.3] | 0.3 ± 33.0 [0; 26.4] | 22 ± 55.3 [10.0; 36.6] | 12.0 ± 58.3 [0; 31.8] | −3.4; p = 0.0007 | −2.3; p = 0.01 |
UPDRS III Mean (SD) [median; IQR] | 22.63 ± 13.1 [20; 17.5] | 20.68 ± 12.7 [18; 17] | 23.52 ± 13.7 [21; 19] | 23.26 ± 13.3 [22; 18] | −3.8 ± 39.3 [4.7; 39.9] | 28.8 ± 64.2 [14.3; 50.9] | 0.01 ± 0.4 [0; 0.39] | −3.9; p = 0.0001 | −5.8; p = 0.0001 |
NMSS Mean (SD) [median; IQR] | 65.89 ± 34.6 [62.5; 44] | 55.95 ± 31.1 [50; 42.8] | 60.42 ± 35.7 [52.5; 46] | 58.69 ± 34.3 [53.5; 50.5] | −11.5 ± 32.4 [−13.0; 38.1] | 12.5 ± 8.1 [2.3; 51.1] | 12.5 ± 49.5 [4.7; 55.7] | −3.2; p = 0.001 | −0.67; p = 0.49 |
Dependent Variable | |||
---|---|---|---|
Independent Variable (2019 Values) | UPDRS II % Change 2019–2020 | UPDRS III % Change 2019–2020 | NMSS % Change 2019–2020 |
Age | Coeff. 0.569; R2:0.008 p = 0.21 | Coeff. 0.361; R2:0.002 p = 0.50 | Coeff. −0.543; R2:0.010 p = 0.17 |
Disease duration | Coeff.− 0.347; R2:0.002 p = 0.49 | Coeff. −1.36; R2:0.027 p = 0.02 | Coeff. −0.261; R2:0.002 p = 0.55 |
BMI | Coeff. −0.558; R2:0.002 p = 0.54 | Coeff. −0.731; R2:0.003 p = 0.48 | Coeff. 0.139; R2:0.0001 p = 0.86 |
UPDRS II | Coeff. −2.42; R2:0.113 p = 0.0001 | Coeff.−1.24; R2:0.023 p = 0.03 | Coeff. −0.109; R2:0.0001 p = 0.80 |
UPDRS III | Coeff. −0.509; R2:0.013 p = 0.10 | Coeff. −1.84; R2:0.128 p = 0.0001 | Coeff. 0.204; R2:0.003 p = 0.46 |
NMSS | Coeff. −0.218; R2:0.014 p = 0.09 | Coeff. −0.084; R2:0.002 p = 0.58 | Coeff. −0.477; R2:0.090 p = 0.0001 |
Dependent Variable | ||||||
---|---|---|---|---|---|---|
Independent Variable | UPDRS II % Change 2018–2019 | UPDRS III % Change 2018–2019 | NMSS % Change 2018–2019 | UPDRS II % Change 2020–2021 | UPDRS III % Change 2020–2021 | NMSS % Change 2020–2021 |
UPDRS II 2018 | Coeff. −0.759; R2: 0.032 p = 0.01 | Coeff. −0.055; R2: 0.0001 p = 0.88 | Coeff. 0.088; R2: 0.0001 p = 0.78 | |||
UPDRS III 2018 | Coeff. −0.013; R2: 0.0001 p = 0.94 | Coeff. −0.342; R2: 0.013 p = 0.13 | Coeff. 0.136; R2: 0.003 p = 0.49 | |||
NMSS 2018 | Coeff. −0.072; R2: 0.006 p = 0.32 | Coeff. −0.069; R2: 0.004 p = 0.42 | Coeff. −0.119; R2: 0.016 p = 0.10 | |||
UPDRS II 2020 | Coeff. −2.51; R2: 0.131 p = 0.0001 | Coeff. −0.007; R2: 0.023 p = 0.04 | Coeff. −0.439; R2: 0.005 p = 0.38 | |||
UPDRS III 2020 | Coeff. −0.573; R2: 0.017 p = 0.08 | Coeff. −0.007; R2: 0.064 p = 0.0007 | Coeff. −0.279; R2: 0.005 p = 0.37 | |||
NMSS 2020 | Coeff. −0.427; R2: 0.056 p = 0.002 | Coeff. −0.002; R2: 0.017 p = 0.08 | Coeff. −0.394; R2: 0.054 p = 0.003 |
Parameter | 2018 | 2019 | 2020 | 2021 | Wilcoxon Rank Test (2018 vs. 2019) Z; Tied P | Wilcoxon Rank Test (2019 vs. 2020) Z; Tied P | Wilcoxon Rank Test (2020 vs. 2021) Z; Tied P |
---|---|---|---|---|---|---|---|
BMI Mean ± SD [median; IQR] | 26.3 ± 4.9 [25.7; 5.5] | 25.9 ± 4.5 [25.4; 4.9] | 25.8 ± 4.8 [25.0; 5.5] | 25.9 ± 5.3 [25.5; 5.5] | −2.4 p = 0.01 | −0.76 p = 0.44 | −1.58 p = 0.11 |
UPDRS IV Mean ± SD [median; IQR] | 3.30 ± 3.2 [3; 5] | 2.63 ± 2.8 [2; 4] | 3.06 ± 3.0 [3; 5] | 2.93 ± 3.1 [2; 5] | −1.8 p = 0.06 | −2.5 p = 0.009 | −0.4 p = 0.67 |
LEDD Mean ± SD [median; IQR] | 689.7 ± 374.7 [650; 464.3] | 701.9 ± 436.4 [606.5; 411.0] | 668.1 ± 383.4 [562, 471.5] | 661.7 ± 414.0 [560; 472.7] | 0.34 p = 0.73 | 1.5 p = 0.12 | 0.0 p > 0.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Capecci, M.; Baldini, N.; Campignoli, F.; Lombardo, L.P.; Andrenelli, E.; Ceravolo, M.G. Clinical and Functional Evolution in Subjects with Parkinson’s Disease during SARS-CoV-2 Pandemic. Appl. Sci. 2023, 13, 1126. https://doi.org/10.3390/app13021126
Capecci M, Baldini N, Campignoli F, Lombardo LP, Andrenelli E, Ceravolo MG. Clinical and Functional Evolution in Subjects with Parkinson’s Disease during SARS-CoV-2 Pandemic. Applied Sciences. 2023; 13(2):1126. https://doi.org/10.3390/app13021126
Chicago/Turabian StyleCapecci, Marianna, Nicolò Baldini, Francesca Campignoli, Lorenzo Pasquale Lombardo, Elisa Andrenelli, and Maria Gabriella Ceravolo. 2023. "Clinical and Functional Evolution in Subjects with Parkinson’s Disease during SARS-CoV-2 Pandemic" Applied Sciences 13, no. 2: 1126. https://doi.org/10.3390/app13021126
APA StyleCapecci, M., Baldini, N., Campignoli, F., Lombardo, L. P., Andrenelli, E., & Ceravolo, M. G. (2023). Clinical and Functional Evolution in Subjects with Parkinson’s Disease during SARS-CoV-2 Pandemic. Applied Sciences, 13(2), 1126. https://doi.org/10.3390/app13021126