An Efficient Finite-Difference Stencil with High-Order Temporal Accuracy for Scalar Wave Modeling
Abstract
:1. Introduction
2. Method
2.1. Review of the Staggered-Grid FD Scheme with the Cross-Rhombus Stencil
2.2. A New Efficient FD Stencil with High-Order Spatial and Temporal Accuracies
2.3. Determining FD Coefficients of the New Stencil through Taylor-Series Expansion
2.4. Determining the FD Coefficients of the New Stencil with the Dispersion Relationship-Preserving Method
3. Dispersion Analysis
4. Stability Analysis
5. Numerical Experiments
5.1. Seismic Modeling of a 2D Homogeneous Velocity Model
5.2. Numerical Accuracy and CPU Execution Time Analyses
5.3. Seismic Modeling of the 2D Inhomogeneous Velocity Model
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
References
- Dablain, M. The application of high-order differencing to the scalar wave equation. Geophysics 1986, 51, 54–66. [Google Scholar] [CrossRef]
- van Vossen, R.; Robertsson, J.O.; Chapman, C.H. Finite-difference modeling of wave propagation in a fluid-solid configuration. Geophysics 2002, 67, 618–624. [Google Scholar] [CrossRef]
- Moczo, P.; Kristek, J.; Halada, L. 3D fourth-order staggered-grid finite-difference schemes: Stability and grid dispersion. Bull. Seismol. Soc. Am. 2000, 90, 587–603. [Google Scholar] [CrossRef]
- Etgen, J.T.; O’ Brien, M.J. Computational methods for large-scale 3D acoustic finite-difference modeling: A tutorial. Geophysics 2007, 72, SM223–SM230. [Google Scholar] [CrossRef] [Green Version]
- Moczo, P.; Kristek, J.; Gális, M. The Finite-Difference Modelling of Earthquake Motions: Waves and Ruptures; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Etemadsaeed, L.; Moczo, P.; Kristek, J.; Ansari, A.; Kristekova, M. A no-cost improved velocity-stress staggered-grid finite-difference scheme for modelling seismic wave propagation. Geophys. J. Int. 2016, 207, 481–511. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.; Wang, Y.; Wang, Z.; Zhang, S. Dispersion-relationship-preserving seismic modelling using the cross-rhombus stencil with the finite-difference coefficients solved by an over-determined linear system. Geophys. Prospect. 2020, 68, 1771–1792. [Google Scholar] [CrossRef]
- Baysal, E.; Dan, D.K.; Sherwood, J. Reverse-Time Migration. Geophysics 1983, 48, 1514–1524. [Google Scholar] [CrossRef] [Green Version]
- Virieux, J.; Operto, S. An overview of full-waveform inversion in exploration geophysics. Geophysics 2009, 74, WCC1–WCC26. [Google Scholar] [CrossRef]
- Chen, G.; Wang, Z. Robust full-waveform inversion based on particle swarm optimization. In SEG Technical Program Expanded Abstracts 2017; Society of Exploration Geophysicists: Houston, TX, USA, 2017; pp. 1302–1306. [Google Scholar] [CrossRef]
- Zhang, C.; Fan, L.; Chen, G.; Li, J. AVO-Friendly Velocity Analysis Based on the High-Resolution PCA-Weighted Semblance. Appl. Sci. 2022, 12, 6098. [Google Scholar] [CrossRef]
- Chen, J.B. High-order time discretizations in seismic modeling. Geophysics 2007, 72, SM115–SM122. [Google Scholar] [CrossRef]
- Chen, J.B. A stability formula for Lax-Wendroff methods with fourth-order in time and general-order in space for the scalar wave equation. Geophysics 2011, 76, T37–T42. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Sen, M.K. Time-space domain dispersion-relation-based finite-difference method with arbitrary even-order accuracy for the 2D acoustic wave equation. J. Comput. Phys. 2013, 232, 327–345. [Google Scholar] [CrossRef]
- Wang, E.; Liu, Y.; Sen, M.K. Effective finite-difference modelling methods with 2-D acoustic wave equation using a combination of cross and rhombus stencils. Geophys. J. Int. 2016, 206, 1933–1958. [Google Scholar] [CrossRef]
- Tan, S.; Huang, L. An efficient finite-difference method with high-order accuracy in both time and space domains for modelling scalar-wave propagation. Geophys. J. Int. 2014, 197, 1250–1267. [Google Scholar] [CrossRef]
- Tan, S.; Huang, L. A staggered-grid finite-difference scheme optimized in the time–space domain for modeling scalar-wave propagation in geophysical problems. J. Comput. Phys. 2014, 276, 613–634. [Google Scholar] [CrossRef] [Green Version]
- Ren, Z.; Li, Z.C. Temporal high-order staggered-grid finite-difference schemes for elastic wave propagationTemporal high-order SFD schemes. Geophysics 2017, 82, T207–T224. [Google Scholar] [CrossRef]
- Liu, Y.; Sen, M.K. A new time–Space domain high-order finite-difference method for the acoustic wave equation. J. Comput. Phys. 2009, 228, 8779–8806. [Google Scholar] [CrossRef]
- Ye, F.; Chu, C. Dispersion-relation-preserving finite difference operators: Derivation and application. In SEG Technical Program Expanded Abstracts 2005; Society of Exploration Geophysicists: Houston, TX, USA, 2005; pp. 1783–1786. [Google Scholar]
- Liang, W.; Wang, Y.; Yang, C. Determining finite difference weights for the acoustic wave equation by a new dispersion-relationship-preserving method. Geophys. Prospect. 2015, 63, 11–22. [Google Scholar] [CrossRef]
- Liu, Y. Globally optimal finite-difference schemes based on least squares. Geophysics 2013, 78, T113–T132. [Google Scholar] [CrossRef]
- Chen, G.; Peng, Z.; Li, Y. A framework for automatically choosing the optimal parameters of finite-difference scheme in the acoustic wave modeling. Comput. Geosci. 2022, 159, 104948. [Google Scholar] [CrossRef]
- Liu, Y.; Sen, M.K. Scalar Wave Equation Modeling with Time-Space Domain Dispersion-Relation-Based Staggered-Grid Finite-Difference Schemes. Bull. Seismol. Soc. Am. 2011, 101, 141–159. [Google Scholar] [CrossRef]
- Moczo, P.; Gregor, D.; Kristek, J.; de la Puente, J. A discrete representation of material heterogeneity for the finite-difference modelling of seismic wave propagation in a poroelastic medium. Geophys. J. Int. 2019, 216, 1072–1099. [Google Scholar] [CrossRef] [Green Version]
- Gregor, D.; Moczo, P.; Kristek, J.; Mesgouez, A.; Lefeuve-Mesgouez, G.; Kristekova, M. Subcell-resolution finite-difference modelling of seismic waves in Biot and JKD poroelastic media. Geophys. J. Int. 2020, 224, 760–794. [Google Scholar] [CrossRef]
- Fomel, S.; Sava, P.; Vlad, I.; Liu, Y.; Bashkardin, V. Madagascar: Open-source software project for multidimensional data analysis and reproducible computational experiments. J. Open Res. Softw. 2013, 1, e8. [Google Scholar]
Abbreviations | FD Coefficients | FD Stencils |
---|---|---|
TE-C | TE-based FD coefficients | Cross-stencil |
TE-CR | TE-based FD coefficients | Cross-rhombus stencil |
TE-R | TE-based FD coefficients | Radiation stencil |
DRP-R | DRP-based FD coefficients | Radiation stencil |
Cases | Methods | M | N | Total Relative Errors ( Pa) | Execution Times (s) |
---|---|---|---|---|---|
1 | TE-C | 12 | ∖ | 42.63832 | 41.22905 |
2 | TE-CR | 12 | 6 | 2.02534 | 80.51018 |
3 | TE-R | 12 | 6 | 3.86926 | 53.72843 |
4 | TE-CR | 12 | 8 | 1.48282 | 109.32694 |
5 | TE-R | 12 | 8 | 2.51165 | 61.30650 |
6 | TE-CR | 12 | 10 | 0.85564 | 156.39934 |
7 | TE-R | 12 | 10 | 1.52663 | 65.83632 |
8 | TE-CR | 12 | 12 | 0.24282 | 204.95636 |
9 | TE-R | 12 | 12 | 0.72446 | 70.14191 |
Orders | Total Relative Errors (Pa) | ||||
---|---|---|---|---|---|
M | N | TE-C | TE-CR | TE-R | DRP-R |
8 | 8 | 7.974763 | 2.203247 | 2.348245 | 0.715832 |
8 | 4 | ∖ | 2.390345 | 2.499854 | 0.846557 |
6 | 6 | 12.522196 | 4.380239 | 4.473768 | 1.091585 |
6 | 3 | ∖ | 4.502392 | 4.628571 | 1.154466 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, G.; Peng, Z.; Li, Y. An Efficient Finite-Difference Stencil with High-Order Temporal Accuracy for Scalar Wave Modeling. Appl. Sci. 2023, 13, 1140. https://doi.org/10.3390/app13021140
Chen G, Peng Z, Li Y. An Efficient Finite-Difference Stencil with High-Order Temporal Accuracy for Scalar Wave Modeling. Applied Sciences. 2023; 13(2):1140. https://doi.org/10.3390/app13021140
Chicago/Turabian StyleChen, Guiting, Zhenming Peng, and Yalin Li. 2023. "An Efficient Finite-Difference Stencil with High-Order Temporal Accuracy for Scalar Wave Modeling" Applied Sciences 13, no. 2: 1140. https://doi.org/10.3390/app13021140
APA StyleChen, G., Peng, Z., & Li, Y. (2023). An Efficient Finite-Difference Stencil with High-Order Temporal Accuracy for Scalar Wave Modeling. Applied Sciences, 13(2), 1140. https://doi.org/10.3390/app13021140