An Analysis of the Reaction of Frogbit (Hydrocharis morsus-ranae L.) to Cadmium Contamination with a View to Its Use in the Phytoremediation of Water Bodies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Experimental Designe
2.3. Analytic Methods
- -
- an indicator of the degree of plant contamination with cadmium:
- -
- an indicator of the degree of cadmium contamination of water in which plants grew:
- -
- indicator of the degree of soil material contamination with cadmium:
- -
- tolerance index:
- -
- cadmium uptake efficiency index by the plant:
2.4. Statistical Analysis
3. Results
4. Discussion
4.1. Cadmium Toxicity in Aquatic Ecosystems
4.2. Factors Affecting Cadmium Uptake by Hydrocharis morsus-ranae
4.3. Phytoremediation Properties of Hydrocharis morsus-ranae
4.3.1. Growth of Hydrocharis morsus-ranae in an Environment Polluted with Cadmium and the Efficiency of Cadmium Uptake
4.3.2. Comparison of Potential Cadmium Uptake by Hydrocharis morsus-ranae with Other Pleustophytes
4.3.3. The Advantages and Disadvantages of Using Hydrocharis morsus-ranae in the Phytoremediation of Cadmium-Polluted Waters
4.3.4. Proposal for the Use of Hydrocharis morsus-ranae Together with Other Pleustophyte Species for the Treatment of Cadmium-Polluted Waters
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Szczerbińska, N.; Gałczyńska, M. Biological methods used to assess surface water quality. Arch. Pol. Fish. 2015, 23, 185–196. [Google Scholar] [CrossRef] [Green Version]
- Szpakowska, B.; Świerk, D.; Pajchrowska, M.; Gołdyn, R. Verifying the usefulness of macrophytes as an indicator of the status of small waterbodies. Sci. Total Environ. 2021, 798, 149279. [Google Scholar] [CrossRef] [PubMed]
- Thiemer, K.; Schneider, S.C.; Demars, B.O.L. Mechanical removal of macrophytes in freshwater ecosystems: Implications for ecosystem structure and function. Sci. Total Environ. 2021, 782, 146671. [Google Scholar] [CrossRef] [PubMed]
- Szoszkiewicz, K.; Jusik, S.; Pietruczuk, K.; Gebler, D. The Macrophyte Index for Rivers (MIR) as an advantageous approach to running water assessment in local geographical conditions. Water 2020, 12, 108. [Google Scholar] [CrossRef] [Green Version]
- Croft, M.V.; Chow-Fraser, P. Use and development of the wetland macrophyte index to detect water quality impairment in fish habitat of great lakes coastal marshes. J. Great Lakes Res. 2007, 33, 172–197. [Google Scholar] [CrossRef]
- Laketić, D.; Radulović, S.; Živković, M.; Jurca, T.; Alford, M.H. Lake Macrophyte Nutrient Index of standing waters in Serbia (LIMNIS). Ecol. Indic. 2013, 25, 200–204. [Google Scholar] [CrossRef]
- Hegi, G. Ilustrierte Flora von Mittel-Europa, Band I, Teil 2: Gymnospermae, Angiospermae, Monocotyledoneae 1; Verlag Paul Parey: Berlin/Hamburg, Germany, 1981; p. 269. (In German) [Google Scholar]
- Kim, T.-H.; Yoon, C.Y.; Kim, J.-H. The report on the taxonomic characters, ecological risk and weed risk assessment of putative invasive alien plants which are designated in law by the Ministry of Environment in Korea as Environmentally Harmful Species (III) Korean. J. Plant Res. 2021, 34, 223–248. [Google Scholar] [CrossRef]
- Gałczyńska, M.; Bednarz, K. Influence of water contamination on the accumulation of some metals in Hydrocharis morsus-ranae L. J. Elem. 2012, 17, 31–41. [Google Scholar] [CrossRef]
- Benavent-González, A.; Lumbreras, A.; Molina, J.A. Plant communities as a tool for setting priorities in biodiversity conservation: A novel approach to Iberian aquatic vegetation. Biodivers. Conserv. 2014, 23, 2135–2154. [Google Scholar] [CrossRef]
- Spampinato, G.; Sciandrello, S.; del Galdo, G.G.; Puglisi, M.; Tomaselli, V.; Cannavò, S.; Musarella, C.M. Contribution to the knowledge of Mediterranean wetland biodiversity: Plant communities of the Aquila Lake (Calabria, Southern Italy). Plant Sociol. 2019, 56, 53–68. [Google Scholar] [CrossRef]
- Stefanidis, K.; Sarika, M.; Papastegiadou, E. Exploring environmental predictors of aquatic macrophytes in water—dependent Natura 2000 sites of high conservation value: Results from a long-term study of macrophytes in Greek lakes. Aquatic Conserv. Mar. Freshw. Ecosyst. 2019, 1–16. [Google Scholar] [CrossRef]
- Catling, P.M.; Mitrow, G.; Haber, E.; Posluszny, U.; Charlton, W.A. The biology of Canadian weeds. 124. Hydrocharis morsus-ranae L. Can. J. Plant Sci. 2003, 83, 1001–1016. [Google Scholar] [CrossRef]
- Zhu, B.; Ellis, M.S.; Fancher, K.L.; Rudstam, L.G. Shading as a control method for invasive european frogbit (Hydrocharis morsus-ranae L.). PLoS ONE 2014, 9, e98488. [Google Scholar] [CrossRef]
- Ganie, A.H.; Bashir, A.; Khuroo, A.A.; Tali, B.A.; Reshi, Z.A.; Shah, M.A.; Wafai, B.A. A new record of an invasive aquatic plant Hydrocharis morsus-ranae (Hydrocharitaceae), reaching to the Kashmir Himalaya. J. Jpn. Bot. 2016, 91, 100–104. Available online: http://www.jjbotany.com/pdf/JJB_091_100_104.pdf (accessed on 3 November 2022).
- Zhu, B.; Ottaviani, C.C.; Naddafi, R.; Dai, Z.; Du, D. Invasive european frogbit (Hydrocharis morsus-ranae L.) in North America: An updated review 2003–16. J. Plant Ecol. 2018, 11, 17–25. [Google Scholar] [CrossRef] [Green Version]
- Monks, A.M.; Lishawa, S.C.; Wellons, K.C.; Albert, D.A.; Mudrzynski, B.; Wilcox, D.A. European frogbit (Hydrocharis morsus-ranae) invasion facilitated by non-native cattails (Typha) in the Laurentian Great Lakes. J. Great Lakes Res. 2019, 45, 912–920. [Google Scholar] [CrossRef]
- Gołdyn, H. Changes in plant species diversity of aquatic ecosystems in the agricultural landscape in West Poland in the last 30 years. Biodivers. Conserv. 2010, 19, 61–80. [Google Scholar] [CrossRef]
- Schneider-Binder, E. Aquatic macrophytes and their use as ecological status indicators in restoration projects in the Danube Delta (Romania). Rom. J. Aquat. Ecol. 2011, 1, 45–62. [Google Scholar]
- Toma, C. Reproduction of Hydrocharis morsus-ranae taxa in an oxbow lake of the River Vistula. Limnol. Rev. 2013, 13, 171–179. [Google Scholar] [CrossRef] [Green Version]
- Polechońska, L.; Dambiec, M. Heavy metal accumulation in leaves of Hydrocharis morsus-ranae L. and biomonitoring applications. Civ. Environ. Eng. Rep. 2014, 12, 95–105. [Google Scholar] [CrossRef] [Green Version]
- Gałczyńska, M.; Mańkowska, N.; Milke, J.; Buśko, M. Possibilities and limitations of using Lemna minor, Hydrocharis morsus-ranae and Ceratophyllum demersum in removing metals with contaminated water. J. Water Land Dev. 2019, 40, 161–173. [Google Scholar] [CrossRef]
- Parikh, P.; Unadkat, K. Potential of Free Floating Macrophytes for Bioremediation of Heavy Metals—A Conceptual Review. In Strategies and Tools for Pollutant Mitigation; Aravind, J., Kamaraj, M., Prashanthi Devi, M., Rajakumar, S., Eds.; Springer: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- Shiryaev, G.I.; Borisova, G.G.; Shchukina, D.A.; Chukina, N.V.; Sobenin, A.V.; Maleva, M.G. Redox reactions in Hydrocharis morsus-ranae L. under industrial impacts. J. Sib. Fed. Univ. Biol. 2021, 14, 296–305. [Google Scholar] [CrossRef]
- Kumar, S.; Thakur, N.; Singh, A.K.; Gudade, B.A.; Ghimire, D.; Das, S. 14—Aquatic macrophytes for environmental pollution control. In Phytoremediation Technology for the Removal of Heavy Metals and Other Contaminants from Soil and Water; Kumar, V., Shah, M.P., Shahi, S.K., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 291–308. [Google Scholar] [CrossRef]
- Elznicová, J.; Kiss, T.; Sipos, G.; Faměra, M.; Štojdl, J.; Váchová, V.; Grygar, M.T. A central European alluvial river under anthropogenic pressure: The Ohře River, Czechia. CATENA 2021, 201, 105218. [Google Scholar] [CrossRef]
- Rozemeijer, J.; Noordhuis, R.; Ouwerkerk, K.; Pires, M.D.; Blauw, A.; Hooijboer, A.; van Oldenborgh, G.J. Climate variability effects on eutrophication of groundwater, lakes, rivers, and coastal waters in the Netherlands. Sci. Total Environ. 2021, 771, 145366. [Google Scholar] [CrossRef] [PubMed]
- Harguinteguy, C.A.; Gudińo, G.L.; Arán, D.S.; Pignata, M.L.; Fernandez-Cirelli, A. Comparison between two submerged macrophytes as biomonitors of trace elements related to anthropogenic activities in the Ctalamochita river, Argentina. Bull. Environ. Contam. Toxicol. 2019, 102, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Bai, L.; Liu, X.-L.; Hu, J.; Li, J.; Wang, Z.-L.; Han, G.; Li, S.-L.; Liu, C.-Q. Heavy metal accumulation in common aquatic plants in rivers and lakes in the Taihu Basin. Int. J. Environ. Res. Publ. Health 2018, 15, 2857. [Google Scholar] [CrossRef] [Green Version]
- John, R.; Ahmad, P.; Gadgil, K.; Sharma, S. Effect of cadmium and lead on growth, biochemical parameters and uptake in Lemna polyrrhiza L. Plant Soil Environ. 2008, 54, 262–270. Available online: https://www.agriculturejournals.cz/publicFiles/01591.pdf. (accessed on 18 October 2022). [CrossRef] [Green Version]
- Ghosh, M.; Singh, S.P. A review on phytoremediation of heavy metals and utilization of its by products. Appl. Ecol. Environ. Res. 2005, 3, 1–18. [Google Scholar] [CrossRef]
- Volesky, B. Detoxification of metal-bearing effluents: Biosorption for the next century. Hydrometallurgy 2001, 59, 203–216. [Google Scholar] [CrossRef]
- Rai, P.K. Heavy metal phytoremediation from aquatic ecosystems with special reference to macrophytes. Crit. Rev. Environ. Sci. Technol. 2009, 39, 697–753. [Google Scholar] [CrossRef]
- Milke, J.; Gałczyńska, M.; Wróbel, J. The importance of biological and ecological properties of Phragmites australis (Cav.) Trin. ex Steud., in phytoremendiation of aquatic ecosystems—The review. Water 2020, 12, 1770. [Google Scholar] [CrossRef]
- Saleh, H.M.; Moussa, H.R.; Mahmoud, H.H.; El-Saied, F.A.; Dawoud, M.; Wahed, R.S.A. Potential of the submerged plant Myriophyllum spicatum for treatment of aquatic environments contaminated with stable or radioactive cobalt and cesium. Prog. Nucl. Energy 2020, 118, 103147. [Google Scholar] [CrossRef]
- Singh, M.; Rai, U.; Nadeem, U.; David, A. Role of Potamogeton pectinatus in phytoremediation of metals. Chem. Sci. Rev. Lett. 2014, 3, CS16204407. [Google Scholar]
- Hussner, A.I.; Stiers, M.J.J.M.; Verhofstad, E.S.; Bakker, B.M.C.; Grutters, J.; Haury, J.L.; van Valkenburg, C.H.; Brundu, G.; Newman, J.; Clayton, J.S.; et al. Management and control methods of invasive alien aquatic plants: A review. Aquat. Bot. 2017, 136, 113–137. [Google Scholar] [CrossRef]
- Fasani, E. Plants that hyperaccumulate heavy metals. In Plants and Heavy Metals; Furini, A., Ed.; Springer: Cham, Switzerland, 2012; pp. 55–74. [Google Scholar]
- Gałczyńska, M. The Response of Mare’s-Tail (Hippuris vulgaris L.) and Common Frogbit (Hydrocharis morsus-ranae L.) to the Pollution of Water with Selected Heavy Metals, and the Possibility to Use this Plant in Phytoremediation of Water; Wydaw. ZUT w Szczecinie: Szczecin, Poland, 2012; p. 138. ISBN 978-83-7663-137-0. (In Polish) [Google Scholar]
- Adomako, M.O.; Alpert, P.; Du, D.-L.; Yu, F.-H. Effects of clonal integration, nutrients, and cadmium on growth of the aquatic macrophyte Pistia stratiotes L. J. Plant Ecol. 2020, 13, 765–772. [Google Scholar] [CrossRef]
- Dubey, D.; Kumar, S.; Dutta, V. In-situ anatomical and elemental response of aquatic macrophytes against nutrient enrichment in freshwater tropical lakes. Appl. Water Sci. 2022, 12, 163. [Google Scholar] [CrossRef]
- Zhang, P.; Wang, T.; Zhang, H.; Wang, H.; Hilt, S.; Shi, P.; Cheng, H.; Feng, M.; Pan, M.; Guo, Y.; et al. Heat waves rather than continuous warming exacerbate impacts of nutrient loading and herbicides on aquatic ecosystems. Environ. Int. 2022, 168, 107478. [Google Scholar] [CrossRef]
- Polechońska, L.; Samecka-Cymerman, A. Bioaccumulation of macro- and trace elements by european frog-bit (Hydrocharis morsus-ranae L.) in relation to environmental pollution. Environ. Sci. Pollut. Res. 2016, 23, 3469–3480. [Google Scholar] [CrossRef]
- Polechońska, L.; Klink, A. Validation of Hydrocharis morsus-ranae as a possible bioindicator of trace element pollution in freshwaters using Ceratophyllum demersum as a reference species. Environ. Pollut. 2021, 269, 116–145. [Google Scholar] [CrossRef]
- Almuktar, S.A.A.A.N.; Abed, S.N.; Scholz, M. Wetlands for wastewater treatment and subsequent recycling of treated effluent: A review. Environ. Sci. Pollut. Res. 2018, 25, 23595–23623. [Google Scholar] [CrossRef] [Green Version]
- Sandoval, L.; Zamora-Castro, S.; Vidal-Álvarez, M.; Marín-Muñiz, J. Role of wetland plants and use of ornamental flowering plants in constructed wetlands for wastewater treatment: A review. Appl. Sci. 2019, 9, 685. [Google Scholar] [CrossRef]
- Hasport, N.; Krahe, D.; Kuchendorf, C.M.; Beier, S.; Theilen, U. The potential impact of an implementation of microalgae-based wastewater treatment on the energy balance of a municipal wastewater treatment plant in Central Europe. Bioresour. Technol. 2022, 347, 126695. [Google Scholar] [CrossRef] [PubMed]
- Kasperek, R.; Rosik-Dulewska, C.; Wiatkowski, M. Studies of bottom sediments in the border meanders of upper Odra river. Environ. Protec. Yearbook 2007, 9, 293–302. Available online: https://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-article-BPW8-0009-0072 (accessed on 26 October 2022). (In Polish).
- Obojski, J.; Strączyński, S. Reaction and Richness of Polish Soils in Macro- and Microelements; Wydaw. IUNG: Puławy, Poland, 1995; p. 48. (In Polish) [Google Scholar]
- Gołda, T. Reclamation, Uczelniane Wydawnictwa Naukowo-Techniczne; AGH: Kraków, Poland, 2005; p. 107. ISSN 0239-6114. (In Polish) [Google Scholar]
- Loska, K.; Wiechuła, D.; Peciak, G. Speciation in the investigation of metals biovailability in bottom sediments in the Rybnik Reservoir. Prob. Ekol. 2003, 7, 69–74. (In Polish) [Google Scholar]
- PIOŚ, Report on the Condition of the Environment in the Małopolskie Voivodship in 2009: Water. 2009. Available online: www.krakow.pios.gov.pl/publikacje/raporty/raport09/3_wody.pdf (accessed on 26 October 2022). (In Polish)
- RMI. Regulation of the Minister of Infrastructure of June 25, 2021 on the Classification of Ecological Status, Ecological Potential and Chemical Status and the Method of Classifying the Status of Surface Water Bodies, as Well as Environmental Quality Standards for Priority Substances. 2021. Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20210001475 (accessed on 26 October 2022). (In Polish)
- Meteoblue. Available online: https://www.meteoblue.com/pl/climate-change/szczecin_polska_3083829 (accessed on 18 October 2022).
- Kisku, G.C.; Barman, S.C.; Bhargava, S.K. Contamination of soil and plants with potentially toxic elements irrigated with mixed industrial effluent and its impact on the environment. Water Air Soil Pollut. 2000, 120, 121–137. [Google Scholar] [CrossRef]
- Warzyński, H.; Sosnowska, A.; Harasimiuk, A. Effect of variable content of organic matter and carbonates on results of determination of granulometric composition by means of Casagrande’s areometric method in modification by Prószyñski. Soil Sci. Ann. 2018, 69, 39–48. [Google Scholar] [CrossRef]
- Wang, A.Q.; Li, D.C.; Huang, B.; Lu, Y. A Brief study on using to predict pHKCl for acid soils. Agric. Sci. 2019, 10, 142–149. [Google Scholar] [CrossRef] [Green Version]
- Huo, S.; Zan, F.B.; Li, Q.J. Phosphorus fractionation in different trophic sediments of lakes from different regions, China. J. Environ. Monit. 2011, 13, 1088–1095. [Google Scholar] [CrossRef]
- Knudsen, D.; Peterson, G.A.; Pratt, P.F. Methods of Soil Analysis, Part 2, Lithium, Sodium, and Potassium; Chemical and Microbiological Properties; Agronomy Monographs; Page, A.L., Ed.; American Society of Agronomy, Inc.: Madison, WI, USA; Soil Science Society of America, Inc.: Madison, WI, USA, 1983. [Google Scholar] [CrossRef]
- Chan, K.Y.; Davey, B.G.; Geering, H.R. Adsorption of magnesium and calcium by a soil with variable charge. Soil Sci. Soc. Amer. J. 1979, 43, 301–304. [Google Scholar] [CrossRef]
- Schumacher, B.A. Methods for the Determination of Total Organic Carbon (TOC) in Soils and Sediments: Ecological Risk Assessment Support Center; United States Environmental Protection Agency: Washington, DC, USA, 2002; pp. 1–23. [Google Scholar]
- Tabatabai, M.A. Soil organic matter testing: An overview. In Soil Organic Matter: Analysis and Interpretation; Chapter 1, Soil organic matter: Analysis and interpretation; Magdoff, F.R., Tabatabai, M.A., Hanlon, E.A., Eds.; American Society of Agronomy: Madison, WI, USA, 1996; Volume 46. [Google Scholar] [CrossRef]
- Nelson, D.W.; Sommers, L.E. Total nitrogen analysis of soil and plant tissues. J. Associ. Off. Analyt. Chem. 1980, 63, 770–778. [Google Scholar] [CrossRef]
- Jung, W.K.; Kitchen, N.R.; Sudduth, K.A.; Kremer, R.J.; Motavalli, P.P. Relationship of apparent soil electrical conductivity to claypan soil properties. Soil Sci. Soc. Am. J. 2005, 69, 883–892. [Google Scholar] [CrossRef]
- Dung, T.T.T.; Cappuyns, V.; Swennen, R.; Phung, N.K. From geochemical background determination to pollution assessment of heavy metals in sediments and soils. Rev. Environ. Sci. Biotechnol. 2013, 12, 335–353. [Google Scholar] [CrossRef]
- Clesceri, L.S.; Greenberg, A.E.; Eaton, A.D. Standard Methods for the Examination of Water and Wastewater, 20th ed.; American Public Health Association: Washington DC, USA, 1998. [Google Scholar]
- Flame Atomic Absorption Spectrometry, Analytical Methods, Varian Manual Book, Australia. 1989. Available online: https://chemistry.unt.edu/~tgolden/courses/AAS%20cookbook.pdf (accessed on 2 December 2022).
- EP. 2022. Available online: https://www.researchgate.net/publication/345693737_EmployeeProductivity_in_Malaysian_Private_Higher_Educational_Institutions (accessed on 26 October 2022).
- Dojlido, J. Surface Water Chemistry; Economy and Environment: Białystok, Poland, 1995; p. 342. (In Polish) [Google Scholar]
- Maleva, M.G.; Nekrasova, G.F.; Bezel’, V.S. The response of hydrophytes to environmental pollution with heavy metals. Russ. J. Ecol. 2004, 35, 230–235. [Google Scholar] [CrossRef]
- Tkalec, M.; Prebeg, T.; Roje, V.; Pevalek-Kozlina, B.; Ljubesic, N. Cadmium-induced responses in duckweed Lemna minor L. Acta Physiol. Plant. 2008, 30, 881–890. [Google Scholar] [CrossRef]
- Piotrowska, A.; Bajguz, A.; Godlewska-Zyłkiewicz, B.; Zambrzycka, E. Changes in growth, biochemical components, and antioxidant activity in aquatic plant Wolffia arrhiza (Lemnaceae) exposed to cadmium and lead. Arch. Environ. Contam. Toxicol. 2010, 58, 594604. [Google Scholar] [CrossRef]
- Balen, B.; Tkalec, M.; Šikić, S.; Tolić, S.; Cvjetko, P.; Pavlica, M.; Vidaković-Cifrek, Ž. Biochemical responses of Lemna minor experimentally exposed to cadmium and zinc. Ecotoxicology 2011, 20, 815–826. [Google Scholar] [CrossRef]
- Bianconi, D.; Pietrini, F.; Massacci, A.; Iannelli, M.A. Uptake of Cadmium by Lemna minor, a (hyper?) accumulator plant involved in phytoremediation applications. In Proceedings of the 16th International Conference on Heavy Metals in the Environment, Rome, Italy, 23–27 September 2012; Volume 1, pp. 1–4. [Google Scholar] [CrossRef]
- Dhir, B.; Srivastava, S. Heavy metal tolerance in metal hyperaccumulator plant, Salvinia natans. Bull. Environ. Contam. Toxicol. 2013, 1–5. [Google Scholar] [CrossRef]
- Pietrini, F.; Bianconi, D.; Massacci, A.; Iannelli, M.A. Combined effects of elevated CO2 and Cd contaminated water on growth, photosynthetic response, Cd accumulation and thiolic components status in Lemna minor L. J. Hazard. Materials 2016, 309, 77–86. [Google Scholar] [CrossRef]
- Lu, Q.; Zhang, T.; Zhang, W.; Su, C.; Yang, Y.; Hu, D.; Xu, Q. Alleviation of cadmium toxicity in Lemna minor by exogenous salicylic acid. Ecotoxicol. Environ. Saf. 2018, 147, 500–508. [Google Scholar] [CrossRef]
- Ozyigit, I.; Arda, L.; Yalcin, B.; Yalcin, I.E.; Ucar, B.; Hocaoglu-Ozyigit, A. Lemna minor, a hyperaccumulator shows elevated levels of Cd accumulation and genomic template stability in binary application of Cd and Ni: A physiological and genetic approach. Inter. J. Phytoremed. 2021, 1–17. [Google Scholar] [CrossRef]
- Nguyen, T.Q.; Sesin, V.; Kisiala, A.; Emery, R.N. Phytohormonal roles in plant responses to heavy metal stress: Implications for using macrophytes in phytoremediation of aquatic ecosystems. Environ. Toxicol. Chem. 2021, 40, 7–22. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.-S.; Zhang, Z. Mechanisms of cadmium phytoremediation and detoxification in plants. J. Crop. Prod. 2021, 9, 521–529. [Google Scholar] [CrossRef]
- Rasafi, T.E.; Oukarroum, A.; Haddioui, A.; Song, H.; Kwon, E.E.; Nanthi, F.M.; Tack, G.; Sebastian, A.; Prasad, M.N.V.; Rinklebe, J. Cadmium stress in plants: A critical review of the effects, mechanisms, and tolerance strategies. Crit. Rev. Environ. Sci. Technol. 2022, 52, 675–726. [Google Scholar] [CrossRef]
- Tran, T.A.; Popova, O.P. Functions and toxicity of cadmium in plants: Recent advances and future prospects. Turk. J. Bot. 2013, 37, 1. [Google Scholar] [CrossRef]
- Zahoor, A.; Ahmad, F.; Hameed, M.; Basra, S.M.A. Structural and functional aspects of photosynthetic response in Eichhornia crassipes (Mart.) Solms under cadmium stress. Pak. J. Bot. 2018, 50, 489–493. [Google Scholar]
- Kabata-Pendias, A.; Szteka, A. Trace Elements in Abiotic and Biotic Environments; CRC Press: Boca Raton, FL, USA, 2015; ISBN -13. [Google Scholar] [CrossRef]
- Mohammed, D.A. Comparative study of the toxicity and phytoextraction capacity of Lemna minor and L. gibba in polluted water by cadmium. Int. J. Plant Animal Env. Sci. 2016, 6, 6–17. [Google Scholar] [CrossRef]
- Haider, F.U.; Liqun, C.; Coulter, J.A.; Cheema, S.A.; Wu, J.; Zhang, R.I.; Wenjun, M.; Farooq, M. Cadmium toxicity in plants: Impacts and remediation strategies. Ecotoxicol. Environ. Safety 2021, 211, 111887. [Google Scholar] [CrossRef]
- Gałczyńska, M.; Wróbel, J.; Bednarz, K. Sensitivity of Hydrocharis morus-ranae L. to selected metals and its suitability for phytoremediation of waters contaminated with metals. A mesocosm study. J. Water Land Dev. 2022, 55, 1–13. [Google Scholar] [CrossRef]
- Jung, M.C. Heavy metal concentration in soils and factors affecting metal uptake by plants in the vicinity of a Korean Cu–W mine. Sensors 2008, 8, 2413–2423. [Google Scholar] [CrossRef] [Green Version]
- Kaczyńska, A.; Zajączkowski, M.; Grzybiak, M. Toxicity influence of Cd on plants and humans. Ann. Acad. Med. Gedan. 2015, 45, 65–70. Available online: https://www.researchgate.net/profile/Agata-Kaczynska/publication/295549037_TOKSYCZNY_WPLYW_KADMU_NA_ROSLINY_I_CZLOWIEKA_CADMIUM_TOXICITY_IN_PLANTS_AND_HUMANS/links/56cb549a08ae1106370b854e/TOKSYCZNY-WPLYW-KADMU-NA-ROSLINY-I-CZLOWIEKA-CADMIUM-TOXICITY-IN-PLANTS-AND-HUMANS.pdf (accessed on 28 November 2022). (In Polish).
- Skwierawski, A.; Skwierawska, M. The role of Hydrocharitetum morsus-ranae in shaping the chemical composition of surface waters. Pol. J. Environ. Stud. 2013, 22, 1825–1833. [Google Scholar]
- Polechońska, L.; Samecka-Cymerman, A.; Dambiec, M. Changes in growth rate and macroelement and trace element accumulation in Hydrocharis morsus-ranae L. during the growing season in relation to environmental contamination. Environ. Sci. Pollut. Res. 2017, 24, 5439–5451. [Google Scholar] [CrossRef] [PubMed]
- Badra, R.; Panda, J.; Sahoo, S. A study on water quality and macrophyte diversity in three wetlands of Sambalpur District, Odisha from ecosystem management perspective. Eco. Env. Cons. 2022, 28, 1395–1403. [Google Scholar] [CrossRef]
- Borišev, M.; Pajević, S.; Stanković, Ž.; Krstić, B. Macrophytes as phytoindicators and Potential Phytoremediators in Aquatic Ecosystems. In Proceedings of the 36th International Conference of IAD, Austrian Committee Danube Research/IAD, Vienna, Austria, 4–8 September 2006; pp. 76–80. Available online: https://www.oen-iad.org/conference/docs/3_macrophytes/borisev_et_al.pdf (accessed on 18 October 2022).
- Babovic, N.; Drazic, G.; Djordjevic, A.; Mihailovic, N. Heavy and Toxic metal Accumulation in Six Macrophyte Species from Fish pond Ecka, Republic of Serbita, BALWOIS Ohrid, Republic of Macedonia. 2010. Available online: https://balwois.com/wp-content/uploads/old_proc/ffp-1452.pdf. (accessed on 18 October 2022).
- Bilyk, T.; Shylo, O.; Karpova, G.; Chumanova, O. Accumulation of heavy metals by higher aquatic vegetation of artificial canals. Proc. Natl. Aviat. Univ. 2014, 59, 125–130. Available online: https://jrnl.nau.edu.ua/index.php/visnik/article/view/6821/7634 (accessed on 18 October 2022). [CrossRef]
- Polechońska, L.; Samecka-Cymerman, A. The effect of environmental contamination on the decomposition of european frog-bit (Hydrocharis morsus-ranae L.) in natural conditions. Aquatic Bot. 2015, 127, 35–43. [Google Scholar] [CrossRef]
- Brooks, R.R.; Robinson, B.H. Aquatic phytoremediation by accumulator plants. In In Plants that Hyperaccumulate Heavy Metals: Their Roles in Phytoremediation, Microbiology, Archaeology, Mineral Exploration and Phytomining; Brooks, R.R., Ed.; CAB International: New York, NY, USA, 1998; pp. 203–226. [Google Scholar]
- Kabata-Pendias, A. Trace Elements in Soils and Plants, 4th ed.; CRC Press: Boca Raton, NY, USA, 2011; p. 528. [Google Scholar] [CrossRef]
- Lewin, I.; Szoszkiewicz, K. Drivers of macrophyte development in rivers in an agricultural area: Indicative species reactions. Cent. Eur. J. Biol. 2012, 7, 731–740. [Google Scholar] [CrossRef] [Green Version]
- Shafaqat, A.; Abbas, Z.; Rizwan, M.; Zaheer, I.E.; Yava¸s, I.; Ünay, A.; Abdel-Daim, M.M.; Bin-Jumah, M.; Hasanuzzaman, M.; Kalderis, D. Application of floating aquatic plants in phytoremediation of heavy metals polluted water: A review. Sustainability 2020, 12, 1927. [Google Scholar] [CrossRef] [Green Version]
- Shuvaeva, O.V.; Belchenko, L.A.; Romanova, T.E. Studies on cadmium accumulation by some selected floating macrophytes. Int. J. Phytoremediat. 2013, 15, 979–990. [Google Scholar] [CrossRef]
- Aurangzeb, N.; Nisa, S.; Bibi, Y.; Javed, F.; Hussain, F. Phytoremediation potential of aquatic herbs from steel foundry effluent. Braz. J. Chem. Eng. 2014, 31, 881–886. [Google Scholar] [CrossRef] [Green Version]
- Fazal, S.; Zhang, B.; Mehmood, Q. Biological treatment of combined industrial wastewater. Ecol. Eng. 2015, 84, 551–558. [Google Scholar] [CrossRef]
- Sekomo, C.B.; Kagisha, V.; Rousseau, D.; Lens, P. Heavy metal removal by combining anaerobic upflow packed bed reactors with water hyacinth ponds. Environ. Technol. 2012, 33, 1455–1464. [Google Scholar] [CrossRef] [PubMed]
- Lu, Q.; He, Z.L.; Graetz, D.A.; Stoffella, P.J.; Yang, X. Uptake and distribution of metals by water lettuce (Pistia stratiotes L.). Environ. Sci. Pollut. Res. 2011, 18, 978–986. [Google Scholar] [CrossRef] [PubMed]
- Lakra, K.C.; Lal, B.; Banerjee, T. Decontamination of coal mine effluent generated at the Rajrappa coal mine using phytoremediation technology. Int. J. Phytoremediat. 2017, 19, 530–536. [Google Scholar] [CrossRef] [PubMed]
- Chaudhuri, D.; Majumder, A.; Misra, A.K.; Bandyopadhyay, K. Cadmium removal by Lemna minor and Spirodela polyrhiza. Int. J. Phytoremediat. 2014, 16, 1119–1132. [Google Scholar] [CrossRef] [PubMed]
- Bokhari, S.H.; Ahmad, I.; Mahmood-Ul-Hassan, M.; Mohammad, A. Phytoremediation potential of Lemna minor L. for heavy metals. Int. J. Phytoremediat. 2016, 18, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Verma, R.; Suthar, S. Lead and cadmium removal from water using duckweed—Lemna gibba L.: Impact of pH and initial metal load. Alexander Eng. J. 2015, 54, 1297–1304. [Google Scholar] [CrossRef]
Conditions | Heavy Metal (HM) | ||||
---|---|---|---|---|---|
PNK Level | Term | 0 | Cd | ||
Average | Standard Error | Average | Standard Error | ||
low | I | 2.7 d | 0.05 | 2.9 d | 0.07 |
II | 2.8 d | 0.08 | 37.6 a | 0.84 | |
high | I | 2.4 d | 0.11 | 23.5 c | 0.26 |
II | 3.5 d | 0.12 | 25.7 b | 0.62 |
Conditions | Heavy Metal (HM) | ||||
---|---|---|---|---|---|
PNK Level | Term | 0 | Cd | ||
Average | Standard Error | Average | Standard Error | ||
low | I | 2.6 d | 0.06 | 36.7 a | 0.74 |
II | 2.7 d | 0.07 | 31.8 b | 0.63 | |
high | I | 2.0 d | 0.02 | 28.2 c | 0.74 |
II | 2.6 d | 0.06 | 29.3 c | 0.54 |
Conditions | Linear Correlation | ||||
---|---|---|---|---|---|
PNK Level | Term | Equation | Regression Coefficient I | Probability (p) | Value of Correlation |
low | I | Cp = 18.58 + 6233.1 × Cw | r = 0.5536 | p = 0.0619 | - |
II | Cp = 6.28 + 678.1 × Cw | r = 0.9013 | p = 6 × 10−5 | very high | |
high | I | Cp = −18.22 + 1977.7 × Cw | r = 0.6876 | p = 0.0135 | high |
II | Cp = 22.13 + 279.9 × Cw | r = 0.3168 | p = 0.3158 | - |
Conditions | Heavy Metal (HM) | ||||
---|---|---|---|---|---|
PNK Level | Term | 0 | Cd | ||
Average | Standard Error | Average | Standard Error | ||
low | I | 17.2 d | 0.23 | 222.8a | 1.08 |
II | 17.3 d | 0.15 | 151.7c | 1.42 | |
high | I | 17.7 d | 0.14 | 180.4b | 1.03 |
II | 15.1 d | 0.19 | 178.7b | 1.34 |
Conditions | Heavy Metal (HM) | ||||
---|---|---|---|---|---|
PNK Level | Term | 0 | Cd | ||
Average | Standard Error | Average | Standard Error | ||
low | I | 19.9 b | 0.38 | 18.1 cd | 0.34 |
II | 18.9 bc | 0.43 | 14.3 e | 0.37 | |
high | I | 25.8 a | 0.35 | 19.1 bc | 0.43 |
II | 17.3 d | 0.46 | 18.2 cd | 0.38 |
Conditions | Heavy Metal (HM) | ||||
---|---|---|---|---|---|
PNK Level | Term | 0 | Cd | ||
Average | Standard Error | Average | Standard Error | ||
low | I | 15.0 b | 0.6 | 13.3 cd | 0.7 |
II | 14.3 bc | 0.4 | 10.0 e | 1.0 | |
high | I | 20.6 a | 0.8 | 15.4 b | 1.3 |
II | 12.1 d | 1.3 | 13.8 bcd | 0.6 |
Conditions | Heavy Metal (HM) | ||||
---|---|---|---|---|---|
PNK Level | Term | 0 | Cd | ||
Average | Standard Error | Average | Standard Error | ||
low | I | 4.14 b | 0.16 | 4.71 a | 0.09 |
II | 2.83 f | 0.21 | 3.40 de | 0.29 | |
high | I | 3.68 c | 0.06 | 3.55 cd | 0.06 |
II | 3.00 f | 0.35 | 3.29 e | 0.34 |
Conditions | Heavy Metal (HM) | ||||
---|---|---|---|---|---|
PNK Level | Term | 0 | Cd | ||
Average | Standard Error | Average | Standard Error | ||
low | I | 7.11 d | 0.05 | 7.03 e | 0.03 |
II | 7.34 bc | 0.02 | 7.40 a | 0.02 | |
high | I | 7.10 d | 0.02 | 7.39 ab | 0.07 |
II | 7.36 abc | 0.05 | 7.31 c | 0.03 |
Conditions | Heavy Metal (HM) | ||||
---|---|---|---|---|---|
PNK Level | Term | 0 | Cd | ||
Average | Standard Error | Average | Standard Error | ||
low | I | 168.2 f | 1.1 | 169.9 e | 1.0 |
II | 193.9 b | 0.6 | 195.1 b | 0.5 | |
high | I | 176.8 c | 0.5 | 174.7 d | 0.7 |
II | 202.0 a | 0.8 | 201.7 a | 0.6 |
Conditions | Linear Correlation | ||||
---|---|---|---|---|---|
PNK Level | Term | Equation | Regression Coefficient (r) | Probability (p) | Value of Correlation |
low | I | Cp = 128.6 − 13.1 × pH | r = -0.5888 | p = 0.0440 | moderate |
II | Cp = −74.1 + 14.3 × pH | r = 0.5589 | p = 0.0589 | - | |
high | I | Cp = −24.5 + 7.1 × pH | r = 0.6670 | p = 0.0178 | high |
II | Cp = −61.1 + 12.4 × pH | r = 0.6486 | p = 0.0225 | high |
Conditions | Linear Correlation | ||||
---|---|---|---|---|---|
PNK Level | Term | Equation | Regression Coefficient (r) | Probability (p) | Value of Correlation |
low | I | d.w. = −4.7 − 1.53 × pH | r = 0.4507 | p = 0.1414 | - |
II | d.w. = 29.7 − 3.4 × pH | r = −0.6621 | p = 0.0190 | high | |
high | I | d.w. = 16.3 − 1.3 × pH | r = −0.6293 | p = 0.0283 | high |
II | d.w. = 31.3 − 12.4 × pH | r = −0.7621 | p = 0.0040 | high |
Conditions | Linear Correlation | ||||
---|---|---|---|---|---|
PNK Level | Term | Equation | Regression Coefficient (r) | Probability (p) | Value of Correlation |
low | I | d.w. = 19.98 − 0.08 × EC | r = −0.7339 | p = 0.0066 | high |
II | d.w. = 27.48 − 0.13 × EC | r = −0.4767 | p = 0.1171 | - | |
high | I | d.w. = 27.02 − 0.12 × EC | r = −0.5280 | p = 0.0777 | - |
II | d.w. = 20.62 − 0.07 × EC | r = −0.3426 | p = 0.2757 | - |
Plant Species | Cd Form | Cd Level | Duration (Days) | Nutrient | Content of Cd in Plants | Reference |
---|---|---|---|---|---|---|
Wolffia arrhiza | Cd(NO3)2 | 1; 10; 100; 1000 μM | 7; 14 | medium—dilution to 1/50 Hutner’s media | 7 days: 1.0 Cd level = 0.004 mg·g−1 fresh weight; 10.0 = 0.038; 100.0 = 0.055; 1000.0 = 0.083; 14 days: 1.0 Cd level = 0.004 mg·g−1 fresh weight; 10.0 = 0.046; 100.0 = 0.076; 1000.0 = 0.107 | [72] |
Eichhornia crassipes | Cd(NO3)2 | 0; 130 μg dm−3 | 5 | medium | 5 days: 0.0 Cd level = 0.3 mg·kg−1 of d.w.; 130 = 31 | [101] |
Hydrocharis morsus-ranae | 3CdSO4·8H2O | 0.0; 0.1 mg dm−3 | 21; 42 | low NPK PO43−: 0.54 mg·dm−3, NO3−: 7.14, NH4+: 0.22, K+: 4.56; high NKP PO43−: 2.73 mg·dm−3, NO3−: 36.7, NH4+: 1.12, K+: 22.8 | low NPK 21 days: 0.0 Cd level = 2.6 µg·g−1 d.w.; 0.1 = 36.7; 42 days: 0.0 = 2.7; 0.1 = 31.8; high NKP 21 days: 0.0 Cd level = 2.0 µg·g−1 d.w.; 0.1 = 28.2; 42 days: 0.0 = 2.6; 0.1 = 29.3 | Present study |
Plant Species | Cd Form | Cd Level | Duration (Days) | Nutrient | Efficiency of Removal (%) | Reference |
---|---|---|---|---|---|---|
Eichhornia crassipes | no information (n.i.) | 0.0279 ± 0.023 | 30 | n.i. | 82.8 | [102] |
n.i. | 0.25 mg dm−3 | 21 | 56.2 mg PO4 dm−3, 27.2 mg NO3 dm−3, 52.6 mg NH4 mg dm−3, 8.6 mg K dm−3 | 97.5 | [103] | |
Cd(NO3)2·4H2O | 5, 10 mg dm−3 | 130 | 0.5 K2HPO4 g L−1, 0.2 NH4Cl | 97.3 | [104] | |
Pistia stratioides | n.i. | <LOD | 60 | I pond: 0.29 P-PO43− mg dm−3 0.06 N-NO3−; 0.25 N-NH4+; 7.8 K II pond: 0.66 P-PO43− mg/l 0.18 N-NO3−; 0.51 N-NH4+; 3.9 K | 50 | [105] |
n.i. | 0.0279 ± 0.023 | 30 | n.i. | about 50 | [102] | |
Salvinia molesta | n.i | 1.2 ± 0.072a mg dm−3 | 10 | K 31.43 mg dm−3 | 80.99 | [106] |
Lemna minor | CdCl2·H2O | 0,5; 1.0; 1.5; 2.0; 2.5; 3.0 mg dm−3 | 2, 5, 10, 15, 22 | PO4 < 0.05 mg dm−3 NO3 2.53 mg dm−3 K 39.0 mg dm−3 | 42–78 | [107] |
n.i | Industrial sewage 0.038 mg dm−3 Municipal sewage 0.054 mg dm−3 | 3, 10, 17, 24, 31 | industrial sewage: PO4 5.5 mg dm−3, NO3 2.3 mg dm−3, K 24 mg dm−3 municipal sewage: PO4 10 mg dm−3, NO3 10 mg dm−3, K 24 mg dm−3 | 94.7–94.3 | [108] | |
Lemna gibba | 3CdSO4 8H2O | 2; 5; 10 mg dm−3 | 10 | mg dm−3: KNO3: 1515.0-, KH2PO4: 680.0, Ca(NO3)2·4H2O: 1180.0 | 41.6–84.8 | [109] |
Spirodela polyrhiza | CdCl2·H2O | 0,5; 1.0; 1.5; 2.0; 2.5; 3.0 mg dm−3 | 2, 5, 10, 15, 22 | PO4 < 0.05 mg dm−3 NO3 2.53 mg dm−3 K 39.0 mg dm−3 | 52–75 | [107] |
Initial Concentration of Cd (mg dm−3) | Aquatic Plants | Duration Days | Efficiency of Removal Cd (%) | Final Concentration of Cd (mg dm−3) |
---|---|---|---|---|
5.00 | Eichhornia crassipes | 130 | 97.5 | 0.25 |
0.25 | Lemna minor | 15–22 | 42–78 | 0.10 |
0.10 | Hydrocharis morsus-ranae | 21 | 80–100 | 0.00–0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gałczyńska, M.; Gamrat, R.; Ciemniak, A. An Analysis of the Reaction of Frogbit (Hydrocharis morsus-ranae L.) to Cadmium Contamination with a View to Its Use in the Phytoremediation of Water Bodies. Appl. Sci. 2023, 13, 1197. https://doi.org/10.3390/app13021197
Gałczyńska M, Gamrat R, Ciemniak A. An Analysis of the Reaction of Frogbit (Hydrocharis morsus-ranae L.) to Cadmium Contamination with a View to Its Use in the Phytoremediation of Water Bodies. Applied Sciences. 2023; 13(2):1197. https://doi.org/10.3390/app13021197
Chicago/Turabian StyleGałczyńska, Małgorzata, Renata Gamrat, and Artur Ciemniak. 2023. "An Analysis of the Reaction of Frogbit (Hydrocharis morsus-ranae L.) to Cadmium Contamination with a View to Its Use in the Phytoremediation of Water Bodies" Applied Sciences 13, no. 2: 1197. https://doi.org/10.3390/app13021197
APA StyleGałczyńska, M., Gamrat, R., & Ciemniak, A. (2023). An Analysis of the Reaction of Frogbit (Hydrocharis morsus-ranae L.) to Cadmium Contamination with a View to Its Use in the Phytoremediation of Water Bodies. Applied Sciences, 13(2), 1197. https://doi.org/10.3390/app13021197