Penicillium spp. XK10, Fungi with Potential to Repair Cadmium and Antimony Pollution
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Samples Collected and Culture Medium Preparation
2.2. Isolation and Identification of Cd and Sb Tolerant Fungi
2.3. Determination of the Growth Curve and Tolerance
2.4. One-Factor Experiments Design
2.5. Statistical Analysis
3. Results
3.1. The Phylogenetic Relationship and Morphological Characteristics of XK10
3.2. Growth Curve of XK10
3.3. Heavy Metal Tolerance Analysis of XK10
3.4. Effect of Initial Cd and Sb Concentrations on the Adsorption of XK10
3.5. Effect of Initial pH on the Adsorption of Cd and Sb by XK10
3.6. Effect of Adsorption Time on the Adsorption of Cd and Sb by XK10
3.7. Adsorption Isothermal Model
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, Z.; Ma, Z.; van der Kuijp, T.J.; Yuan, Z.; Huang, L. A review of soil heavy metal pollution from mines in China: Pollution and health risk assessment. Sci. Total Environ. 2014, 468–469, 843–853. [Google Scholar] [CrossRef] [PubMed]
- Rajendran, S.; Priya, T.A.K.; Khoo, K.S.; Hoang, T.K.A.; Ng, H.-S.; Munawaroh, H.S.H.; Karaman, C.; Orooji, Y.; Show, P.L. A critical review on various remediation approaches for heavy metal contaminants removal from contaminated soils. Chemosphere 2022, 287, 132369. [Google Scholar] [CrossRef] [PubMed]
- Tu, X. Research Progress on Remediation of Heavy Metal Antimony Pollution in Soil. Guangdong Chem. Ind. 2021, 48, 93–94+115. [Google Scholar]
- Khan, S.; Cao, Q.; Zheng, Y.M.; Huang, Y.Z.; Zhu, Y.G. Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China. Environ. Pollut. 2008, 152, 686–692. [Google Scholar] [CrossRef]
- Huang, H.; Zhao, Y.; Xu, Z.; Zhang, W.; Jiang, K. Physiological responses of Broussonetia papyrifera to manganese stress, a candidate plant for phytoremediation. Ecotoxicol. Environ. Saf. 2019, 181, 18–25. [Google Scholar] [CrossRef]
- Xu, Z.; Ding, Y.; Huang, H.; Wu, L.; Zhao, Y.; Yang, G. Biosorption Characteristics of Mn (II) by Bacillus cereus Strain HM-5 Isolated from Soil Contaminated by Manganese Ore. Pol. J. Environ. Stud. 2018, 28, 463–472. [Google Scholar]
- Huang, H.; Fan, L.; Zhao, Y.; Jin, Q.; Yang, G.; Zhao, D.; Xu, Z. Integrating Broussonetia papyrifera and Two Bacillus Species to Repair Soil Antimony Pollutions. Front. Microbiol. 2022, 13, 871581. [Google Scholar] [CrossRef]
- Zhao, D.; Li, C.; Zheng, M.; Zhao, Y.; Xu, Z.; Yang, G. Curvularia coatesiae XK8, a Potential Bioadsorbent Material for Adsorbing Cd(II) and Sb(III) Compound Pollution: Characteristics and Effects. Front. Microbiol. 2022, 12, 816312. [Google Scholar]
- Huang, H.; Zhao, Y.; Fan, L.; Jin, Q.; Yang, G.; Xu, Z. Improvement of manganese phytoremediation by Broussonetia papyrifera with two plant growth promoting (PGP) Bacillus species. Chemosphere 2020, 260, 127614. [Google Scholar] [CrossRef]
- Xu, S.; Jiang, D.; Shi, D.; Zhang, R.; Huang, Z.; Yang, G. Screening and identification of lead and cadmium resistant microorganisms from combined heavy metal pollution soil. Chin. J. Appl. Environ. Biol. 2019, 25, 532–538. [Google Scholar]
- Kumar, V.; Dwivedi, S.K. Hexavalent chromium reduction ability and bioremediation potential of Aspergillus flavus CR500 isolated from electroplating wastewater. Chemosphere 2019, 237, 124567. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Yao, D.; Li, B.; Li, M.; Zhan, F.; Zu, Y.; Li, Y. Effect of microbial community in the process of remediation of heavy metal pollution in soil. Jiangsu J. Agr. Sci. 2020, 36, 1322–1331. [Google Scholar]
- Singh, M.; Srivastava, P.K.; Verma, P.C.; Kharwar, R.N.; Singh, N.; Tripathi, R.D. Soil fungi for mycoremediation of arsenic pollution in agriculture soils. J. Appl. Microbiol. 2015, 119, 1278–1290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacob, J.M.; Karthik, C.; Saratale, R.G.; Kumar, S.S.; Prabakar, D.; Kadirvelu, K.; Pugazhendhi, A. Biological approaches to tackle heavy metal pollution: A survey of literature. J. Environ. Manag. 2018, 217, 56–70. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Chen, C. Biosorbents for heavy metals removal and their future. Biotechnol. Adv. 2009, 27, 195–226. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Xia, L.; Zhu, W.; Zhang, Z.; Huang, Q.; Chen, W. Role of Penicillium chrysogenum XJ-1 in the Detoxification and Bioremediation of Cadmium. Front. Microbiol. 2015, 6, 1422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, D.; Jiang, Z.; Jiang, L.; Su, M.; Feng, Z.; Zhang, L.; Wang, S.; Li, Z.; Hu, S. A new insight into lead (II) tolerance of environmental fungi based on a study of Aspergillus niger and Penicillium oxalicum. Environ. Microbiol. 2019, 21, 471–479. [Google Scholar] [CrossRef] [Green Version]
- Deng, X.; Chai, L.; Yang, Z.; Tang, C.; Tong, H.; Yuan, P. Bioleaching of heavy metals from a contaminated soil using indigenous Penicillium chrysogenum strain F1. J. Hazard. Mater. 2012, 233–234, 25–32. [Google Scholar] [CrossRef]
- Fourest, E.; Canal, C.; Roux, J.-C. Improvement of heavy metal biosorption by mycelial dead biomasses (Rhizopus arrhizus, Mucor miehei and Penicillium chrysogenum): pH control and cationic activation. FEMS Microbiol. Rev. 1994, 14, 325–332. [Google Scholar] [CrossRef]
- Arwidsson, Z.; Allard, B. Remediation of Metal-Contaminated Soil by Organic Metabolites from Fungi II—Metal Redistribution. Water Air Soil Pollut. 2010, 207, 5–18. [Google Scholar] [CrossRef]
- Amini, M.; Younesi, H.; Bahramifar, N.; Lorestani, A.A.Z.; Ghorbani, F.; Daneshi, A.; Sharifzadeh, M. Application of response surface methodology for optimization of lead biosorption in an aqueous solution by Aspergillus niger. J. Hazard. Mater. 2008, 154, 694–702. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-W.; Barrington, S.; Sheppard, J.; Lee, B. Nutrient optimization for the production of citric acid by Aspergillus niger NRRL 567 grown on peat moss enriched with glucose. Process Biochem. 2006, 41, 1253–1260. [Google Scholar] [CrossRef]
- Tian, D.; Wang, W.; Su, M.; Zheng, J.; Wu, Y.; Wang, S.; Li, Z.; Hu, S. Remediation of lead-contaminated water by geological fluorapatite and fungus Penicillium oxalicum. Environ. Sci. Pollut. Res. 2018, 25, 21118–21126. [Google Scholar] [CrossRef] [PubMed]
- Tong, F.; Xu, Y.; Long, Y.; Yi, J.; Song, Q.; Yi, A.; Shi, W.; Li, G.; Dong, X. Appraisal for Environmental Quality of Forestry Soil Polluted by Heavy Metals in Antimony Mine of Leng-Shuijiang City. Chinese Agr. Sci. Bull. 2008, 24, 179–183. [Google Scholar]
- Wilson, N.J.; Craw, D.; Hunter, K. Antimony distribution and environmental mobility at an historic antimony smelter site, New Zealand. Environ. Pollut. 2004, 129, 257–266. [Google Scholar] [CrossRef]
- Jones, R.D. Survey of antimony workers: Mortality 1961-1992. Occup. Environ. Med. 1994, 51, 772–776. [Google Scholar] [CrossRef]
- Wang, Y.; Luo, Y.; Zeng, G.; Wu, X.; Wu, B.; Li, X.; Xu, H. Characteristics and in situ remediation effects of heavy metal immobilizing bacteria on cadmium and nickel co-contaminated soil. Ecotoxicol. Environ. Saf. 2020, 192, 110294. [Google Scholar] [CrossRef]
- Benbrahim-Tallaa, L.; Liu, J.; Webber, M.M.; Waalkes, M.P. Estrogen signaling and disruption of androgen metabolism in acquired androgen-independence during cadmium carcinogenesis in human prostate epithelial cells. Prostate 2007, 67, 135–145. [Google Scholar] [CrossRef]
- Pan, J.; Plant, J.A.; Voulvoulis, N.; Oates, C.J.; Ihlenfeld, C. Cadmium levels in Europe: Implications for human health. Environ. Geochem. Health 2010, 32, 1–12. [Google Scholar] [CrossRef]
- Chien, C.-C.; Lin, B.-C.; Wu, C.-H. Biofilm formation and heavy metal resistance by an environmental Pseudomonas sp. Biochem. Eng. J. 2013, 78, 132–137. [Google Scholar] [CrossRef]
- Li, F.; Wang, W.; Li, C.; Zhu, R.; Ge, F.; Zheng, Y.; Tang, Y. Self-mediated pH changes in culture medium affecting biosorption and biomineralization of Cd(2+) by Bacillus cereus Cd01. J. Hazard. Mater. 2018, 358, 178–186. [Google Scholar] [CrossRef] [PubMed]
- Choińska-Pulit, A.; Sobolczyk-Bednarek, J.; Łaba, W. Optimization of copper, lead and cadmium biosorption onto newly isolated bacterium using a Box-Behnken design. Ecotoxicol. Environ. Saf. 2018, 149, 275–283. [Google Scholar] [CrossRef]
- Huang, H.; Zhao, Y.; Xu, Z.; Ding, Y.; Zhang, W.; Wu, L. Biosorption characteristics of a highly Mn(II)-resistant Ralstonia pickettii strain isolated from Mn ore. PLoS ONE 2018, 13, e0203285. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.-H.; Franses, E.I. Adsorption dynamics of surfactants at the air/water interface: A critical review of mathematical models, data, and mechanisms. Colloids Surf. A Physicochem. Eng. Asp. 1995, 100, 1–45. [Google Scholar] [CrossRef]
- Wang, Y.; Yi, B.; Sun, X.; Yu, L.; Wu, L.; Liu, W.; Wang, D.; Li, Y.; Jia, R.; Yu, H.; et al. Removal and tolerance mechanism of Pb by a filamentous fungus: A case study. Chemosphere 2019, 225, 200–208. [Google Scholar] [CrossRef] [PubMed]
- Xia, L.; Xu, X.; Zhu, W.; Huang, Q.; Chen, W. A Comparative Study on the Biosorption of Cd2+ onto Paecilomyces lilacinus XLA and Mucoromycote sp. XLC. Int. J. Mol. Sci. 2015, 16, 15670–15687. [Google Scholar] [CrossRef]
- Xu, X.; Xia, L.; Huang, Q.; Gu, J.-D.; Chen, W. Biosorption of cadmium by a metal-resistant filamentous fungus isolated from chicken manure compost. Environ. Technol. 2012, 33, 1661–1670. [Google Scholar] [CrossRef]
- Martins, L.R.; Lyra, F.H.; Rugani, M.M.H.; Takahashi, J.A. Bioremediation of Metallic Ions by Eight Penicillium Species. J. Environ. Eng. 2016, 142. [Google Scholar] [CrossRef]
- Li, J.; Yu, H.; Wu, X.; Shen, L.; Liu, Y.; Qiu, G.; Zeng, W.; Yu, R. Novel Hyper Antimony-Oxidizing Bacteria Isolated from Contaminated Mine Soils in China. Geomicrobiol. J. 2018, 35, 713–720. [Google Scholar] [CrossRef]
- Liu, C.; Liang, H.; Luo, M. Screening and Characterization of Antimony-tolerant Microorganisms. Hydrometall. China 2012, 31, 213–215. [Google Scholar]
- Xu, H.; Hao, R.; Yang, S.; Xu, X.; Lu, A.; Li, Y. Removal of lead ions in an aqueous solution by living and modified Aspergillus niger. Water Environ. Res. 2020, 93, 844–853. [Google Scholar] [CrossRef] [PubMed]
- Kapoora, A.; Viraraghavana, T.; Cullimoreb, D.R. Removal of heavy metals using the fungus Aspergillus niger. Bioresour. Technol. 1999, 70, 95–104. [Google Scholar] [CrossRef]
- Kiran, I.; Akar, T.; Ozcan, A.S.; Ozcan, A.; Tunali, S. Biosorption kinetics and isotherm studies of Acid Red 57 by dried Cephalosporium aphidicola cells from aqueous solutions. Biochem. Eng. J. 2006, 31, 197–203. [Google Scholar] [CrossRef]
- Mwandira, W.; Nakashima, K.; Kawasaki, S.; Arabelo, A.; Banda, K.; Nyambe, I.; Chirwa, M.; Ito, M.; Sato, T.; Igarashi, T.; et al. Biosorption of Pb (II) and Zn (II) from aqueous solution by Oceanobacillus profundus isolated from an abandoned mine. Sci. Rep. 2020, 10, 21189. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Gao, C.; Li, J.; Lu, J.; Jin, D.; Gao, Y. Study on the Adsorption Characteristics and Mechanism of a Lead Resistant Aboriginal Microorganism. J. Shanxi Agr. Sci. 2018, 46, 1321–1328. [Google Scholar]
- Hassan, S.H.A.; Koutb, M.; Nafady, N.A.; Hassan, E.A. Potentiality of Neopestalotiopsis clavispora ASU1 in biosorption of cadmium and zinc. Chemosphere 2018, 202, 750–756. [Google Scholar] [CrossRef]
- Cai, Y.; Li, X.; Liu, D.; Xu, C.; Ai, Y.; Sun, X.; Zhang, M.; Gao, Y.; Zhang, Y.; Yang, T.; et al. A Novel Pb-Resistant Bacillus subtilis Bacterium Isolate for Co-Biosorption of Hazardous Sb(III) and Pb(II): Thermodynamics and Application Strategy. Int. J. Env. Res. Public Health 2018, 15, 702. [Google Scholar] [CrossRef]
The Name of the Strain | Cd(II) Single Adsorption (XK10) | Sb(III) Single Adsorption (XK10) |
---|---|---|
Langmuir model KL | 0.2153 | 0.0325 |
qmax | 0.28 | 4.81 |
R2 | 0.3307 | 0.5081 |
Freundlich model KF | 0.0674 | 0.6593 |
n | 2.1329 | 2.7155 |
R2 | 0.4265 | 0.6387 |
Minimum Growth Inhibition Concentration | Adsorbent Material | MIC (Solid Culture) (mM) | MIC (Liquid Culture) (mM) | Reference Literature |
---|---|---|---|---|
Cd | XK10 | >5 | 2 | |
Uncultured Westerdykella | >1.3 | [10] | ||
Pseudomonas sp. | 4 | [30] | ||
Pseudomonas azotoformans | 0.9 | [32] | ||
Penicillium spp. | 1.3 | [38] | ||
Sb | XK10 | >7 | >20 | |
Cupriavidus sp. | 6 | [39] | ||
Bacillus sp. | 5.5 | [39] | ||
Penicillium sp. | 4.9 | [40] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, Y.; Li, C.; Sun, Z.; Zhang, W.; He, J.; Zhao, Y.; Xu, Z.; Zhao, W. Penicillium spp. XK10, Fungi with Potential to Repair Cadmium and Antimony Pollution. Appl. Sci. 2023, 13, 1228. https://doi.org/10.3390/app13031228
He Y, Li C, Sun Z, Zhang W, He J, Zhao Y, Xu Z, Zhao W. Penicillium spp. XK10, Fungi with Potential to Repair Cadmium and Antimony Pollution. Applied Sciences. 2023; 13(3):1228. https://doi.org/10.3390/app13031228
Chicago/Turabian StyleHe, Yiying, Chaoyang Li, Zhongyu Sun, Wan Zhang, Jianing He, Yunlin Zhao, Zhenggang Xu, and Weiping Zhao. 2023. "Penicillium spp. XK10, Fungi with Potential to Repair Cadmium and Antimony Pollution" Applied Sciences 13, no. 3: 1228. https://doi.org/10.3390/app13031228
APA StyleHe, Y., Li, C., Sun, Z., Zhang, W., He, J., Zhao, Y., Xu, Z., & Zhao, W. (2023). Penicillium spp. XK10, Fungi with Potential to Repair Cadmium and Antimony Pollution. Applied Sciences, 13(3), 1228. https://doi.org/10.3390/app13031228