Recent Advances in Yttrium Iron Garnet Films: Methodologies, Characterization, Properties, Applications, and Bibliometric Analysis for Future Research Directions
Abstract
:1. Introduction
2. Data Source and Surveying Methodology
2.1. Selection Method
- Evaluation Selection method
- During the initial search (first step) of the Scopus database, a total of 5429 papers on yttrium iron garnet were discovered. Due to the large number of papers, the sample size was too large for an exhaustive search and analysis. As a consequence, the articles were chosen and filtered based on a variety of criteria to define the data search.
- In Step 2, 1428 papers were identified using the keywords “thin film” and “magnetic properties”.
- In Step 3, 896 papers were discovered between the years 2012 and 2022 in the specified subject areas of physics, astronomy, and materials science.
- In Step 4, 799 papers were chosen based on the journal source type, article document type, and English proficiency, considering that English is the international language spoken at the United Nations and at majority of international conferences.
- In Step 5, 100 papers were identified for final analysis based on their title, abstract, content relevancy, and contribution to practical topics. All shortlisted publications were the research published in international journals between 2012 and 2022. The papers were sorted from highest to lowest by citation count. The data obtained from the 100 scholarly papers on YIG constitute a sufficient evaluation of the literature on the topic.
- 2.
- Review discussions and findings
- Data sources and surveying methodology include selection method and yearly trends in scientific publications.
- State-of-the-art YIG based on the top 10 articles were discussed, including the methodologies, scope, findings, and research gaps.
- The analytical discussion concentrated on publication performance and trends, subject categories and evaluation, methodological journal evaluation, keyword assessment, document type evaluation, and evaluation of the most prominent authors.
- Future directions and conclusions emphasize the applications, challenges, and solutions underlying YIG. General recommendations for promoting YIG research were provided.
2.2. Annual Trends in Scientific Publication
3. State-of-the-Art of YIG
4. Analytical Discussion
4.1. Publications Trends and Country Performance
4.2. The Top 10 Most Cited Papers
4.3. Papers with Various Subfields
- Among all magnetic materials, yttrium iron garnet (YIG) has contributed the most significant role to understanding the dynamics of high-frequency magnetization. Bulk YIG crystal was the prototypical material for ferromagnetic resonance (FMR) experiments in the middle of the twentieth century due to its unique characteristics [15]. Attractive characteristics of YIG include a high Curie temperature, ultra-low damping (the lowest among all materials at room temperature), electrical insulation, strong chemical stability, and simple synthesis in the single crystalline form [18,22,81]. YIG’s low magnetic damping makes it perfect for hybrid spintronic devices with graphene [22,81]. Nowadays, ferromagnetic insulators (FMI) are extensively utilized. FMI enables the clear separation of spin-current and charges current effects. YIG is one of the prototype models of an FMI substance [16,17,18,22]. By altering the ferrimagnetic insulator thickness and interface quality, the paper [17] reported the detection of a spin-Seebeck effect (SSE) characteristic: the SSE signal increases with the increase in YIG film thickness.
- In fundamental device application research, a film with low damping is required. The nanometer-thick YIG film can generate minimal damping phenomena. For the deposition of submicron-thick films, pulsed laser deposition (PLD) and sputtering are the preferred methods [8]. Numerous top cited papers have described various YIG film preparation procedures to achieve high-quality film [25], including pulsed laser deposition (PLD) [8,11,13,14,15,17,75,76,77], laser molecular beam epitaxy (MBE) [18,19], liquid phase epitaxy (LPE) [17,20,22,24,25,84], sputtering [89,92,97,103] and sol-gel methods [33,34]. Gadolinium gallium garnet (Gd3Ga5O12, GGG), silicon, yttrium aluminum garnet (YAG), and quartz are some of the substrates that have been utilized to deposit films.
- Magnonics is a technology for low-power signal transmission and data processing based on the propagation of spin-waves (magnons) in magnetic materials [72,78,79,106]. They have spin angular momentum and are bosonic [106]. Due to the rapid development of nanotechnology, magnonics is currently undergoing an explosion [72]. Yttrium iron garnet (YIG) is particularly intriguing for this application due to its lengthy magnon propagation length [78] and relatively low damping (α < 104) [106]. YIG also exhibits excellent magnetic and elastic properties [23]. In [72], the authors describe the inductive creation and detection of plane wave spin-waves in the low-power linear regime. In [106], both anisotropy and exchange-mediated magnon–phonon interactions are considered. Hence, YIG is used to study magnonic phenomena. YIG’s centimeter-long magnon propagation length and graphene’s excellent carrier mobility could lead to novel spintronic devices [22].
- The rise of this industry creates a demand for YIG films with nanometer-scale thickness and minimal damping, similar to YIG bulk materials and thick films. Nanofilms with such low damping properties are essential for both fundamental research, such as the study of spin pumping, and device applications, such as spin-torque oscillators [5,8]. YIG functional layers for practical magnonics should be nanometer-thin with ultrasmooth surfaces to maximize data processing efficiency and to reduce the energy consumption of sophisticated spin-wave devices [25]. According to Dubs et al. [25], developing YIG films with thicknesses below 100 nm using LPE remains a challenge for conventional thick film LPE process. The prior top cited paper, Chang et al. [5], successfully developed YIG film using sputtering with nanoscale (nm) thickness and achieved the lowest damping (α = (8.58 ± 0.21) × 105 for spintronic development.
4.4. Methodology Journal Evaluation
- Pulsed laser deposition (PLD) is the most common technique preparation employed by highly cited articles as indicated in Table 1. For oxide film epitaxy, PLD is the most versatile method [7]. The works [2,7,8,11,12,13,14,15,16,17,19,61,75,76,77,81,82,83,86,87,91,94,95,107,108,109,111,114,117,119,124,126,130,132] performed were used to prepare YIG films with the PLD method. Prior research demonstrated PLD processing of relatively low-damping YIG thin films [5]. Utilizing sputtering and PLD to prepare YIG enables precise control over layer thickness, stoichiometry, surface roughness, and magnetic properties [2]. Additionally, Haidar et al. [107] reported the growing of thin YIG films with bulk-like properties that had been obtained using the PLD technique.
- Sputtering is the most prevalent industrial technique [5]. The articles [5,6,26,27,28,30,70,72,80,89,92,97,103,121,127,131] discuss the sputtering growth of YIG films. This report [6] also indicates the viability of producing high-quality YIG nanofilms by the sputtering method. The papers have employed radio frequency (RF) magnetron sputtering, which is a well-established and reasonably inexpensive process for fabricating YIG film that would be excellent for usage in any potential industrial applications [26].
- Experiments to date have also utilized liquid phase epitaxy (LPE) to fabricate YIG films [17,20,21,22,23,24,25,84,93,99,105,118,129]. The LPE approach produces an excellent minority carrier lifetime, low damping value, and thick epitaxial layers. LPE produces thick, low-damping magnetic garnet films and high-quality magneto-optical material. In contrast to the PLD method, the LPE technique has low-cost equipment and operations [134].
- Additionally, it is shown that other various methodology processes including molecular beam epitaxy (MBE), wet chemical, sputtering, solid-state reaction, sol-gel, and metal–organic decomposition (MOD) techniques have been utilized in the production of garnet films.
- YIG growth on GGG was recent and demonstrated by the majority of papers. GGG substrate was chosen among the most cited publications for growing YIG films because it matches the same crystal structure and lattice constant as YIG (12.383 Ǻ /12.376 Ǻ: GGG/YIG) and has similar thermal expansion coefficients [26,81]. Moreover, GGG substrates had the lowest lattice misfit (0.057%) for YIG/Ce-YIG thin film development [125]. Tang et al. [7] indicate that YIG film growth on GGG substrate prepared by PLD shows no negligible lattice misfit. Due to pseudomorphic development on substrates made of gadolinium gallium garnet (Gd3Ga5O12, GGG), which has excellent lattice matching, the reported YIG films [94] have an incredibly high crystalline purity.
- In papers, the focus on YIG growth on YAG substrates has been presented in [16,18,37,95,111,126,127]. Researchers may favor YAG substrate due to its greater lattice mismatch compared with YIG on GGG, cheaper cost, and higher accessibility compared with GGG substrates. According to Sposito et al., [126] YIG/YAG samples have a narrower FMR linewidth than YIG films deposited on GGG under the same conditions, suggesting that lattice mismatch has a positive effect on the magnetic properties of the YIG films.
- To integrate this material into silicon photonic and spintronic devices, it is necessary to deposit phase-pure YIG films on Si substrates [131]. The attention on YIG growth on Si substrates is discussed in [11,12,92,115,124]. The lattice parameter of YIG (12.376 Ǻ) is significantly greater than that of Si (5.431 Ǻ) [12]. Due to a lattice mismatch between the silicon substrate and YIG, the synthesis of YIG on silicon or SOI substrates has been a challenge [136]. Growth of YIG on semiconductor substrates has been demonstrated using the PLD [11,12,124] and sputtering [92,115] techniques. By minimizing the impacts of heat processing on YIG layers, waveguides without cracks or delamination were demonstrated. The significant thermal mismatching coefficient necessitates a low growth temperature to avoid garnet film from cracking [12].
- Structural properties of the film were measured by X-ray diffraction (XRD), X-ray reflectometry (XRR), X-ray photoelectron spectroscopy (XPS), electron energy loss spectroscopy (EELS), and Raman spectroscopy analyses. Compared with other measurements, XRD reveals the greatest frequency (n = 30) of use in the 100 most cited papers. XRD is used to determine the crystalline structure, phase purity, and lattice parameters of YIG films [2]. In XRD analysis, lattice parameters and distribution strains were investigated based on symmetrical and asymmetrical reciprocal space mappings in peak diffractions [137].
- Using atomic force microscopy (AFM), transmission electron microscopy (TEM), scanning electron microscopy (SEM), field emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), and focused ion beam (FIB), the morphological properties of the films were measured. The AFM method has the highest frequency at 21 compared with the other morphology-related measurements. AFM is a potent measuring device for quantitative surface measurements. AFM is utilized to measure the surface roughness of films with nanoscale precision.
- Magnetic properties were determined by a vibrating sample magnetometer (VSM), vector network analyzer (VNA), superconducting quantum interference device (SQUID), X-ray magnetic circular dichroism (XMCD), and anomalous Hall effect (AHE). VSM demonstrates the highest frequency of 16 compared with other magnetic measurements. A VSM was used to measure the magnetic properties of the films by exerting magnetic fields in the film plane [137].
- Magneto-optical Kerr effect (MOKE) and Faraday rotation were employed to measure magneto-optical properties. Using the Hall effect and X-ray absorption spectroscopy (XAS), electrical characteristics were determined. Employing ultraviolet-visible spectroscopy (UV-Vis), optical characteristics were characterized.
4.5. Keywords Assessment
- Cluster 1: Recent spintronic phenomena such as the spin-Seebeck effect (SSE) and the spin-pumping effect have drawn substantial interest in magnetic garnets [16,18,35,84]. The most frequent approach to detect SSE spin currents is to measure the charge current caused by the inverse spin-Hall effect (ISHE) in a nonmagnetic metallic (NM) layer in interface with the magnetic material [84]. Furthermore, a study topic has emerged that employs YIG/platinum structures for spintronics [14,20]. Spintronics uses spin-polarized charge carriers for production, manipulation, and identification [20].
- Cluster 2: Magneto-optical devices require thin films with superior magnetic and structural properties [2]. The pulsed laser deposition (PLD) technique has been reported to provide superior control of layer thickness, surface roughness, stoichiometry, and magnetic characteristics for YIG thin film [2,124]. YIG is very transparent at near-infrared wavelength regions [86], but its magneto-optical performance is quite weak. For magneto-optical devices, the Y in YIG thin film is partially replaced with rare earth garnet elements such as bismuth, cerium, or other rare earth, which can boost the Faraday rotation by an order of magnitude [11,86,124].
- Cluster 3: Sol-gel technology was preferred to synthesize YIG film due to its inexpensive cost, simple preparation, and easy material composition control. Sol-gel provides exceptional uniformity microstructure, high purity, and nanocrystalline material [140,141]. In terms of optical properties, terbium- and aluminum-doped YIG films prepared by the sol-gel method were found to be between 76% and 92% transparent in the visible and infrared ranges [140]. According to the results reported by Ibrahim and Arsad [141], cerium-doped YIG films have exceptional qualities such as homogeneous structure, small nano grain size, high optical transparency (over 80%), and excellent magnetic properties. Having their best attributes, the films are more promising for use in magneto-optical devices.
- Cluster 4: The discovery of yttrium iron garnet (YIG) led to amazing advancements in microwave technology more than 50 years ago. YIG is suitable for microwave applications such as filters or sensors due to its band gap of 2.66 eV, low magnetic damping, and soft magnetization characteristics, which makes it a good insulator [86]. Yu et al. [72] developed configurable microwave-to-magnon transducers. Their solutions enabled integrating microwave electronics utilizing exchange-dominated spin-waves and improving magnonics-based technology.
- Cluster 5: YIG is a well-studied ferrimagnetic insulator with a Curie temperature that is above room temperature (Tc = 550 K). It has been explored as a prototype magnetic insulator for spinning waves and magnonic physics, involving spin-Hall and spin-Seebeck effects [19].
- Cluster 6: Onbasli et al. discovered that nanometer-thin films with thicknesses around 17 to 200 nm which are relatively close to the YIG bulk saturation moments at room temperature (135 emu cm) had low coercivity (<2 Oe) and low magnetic damping value as low as 2.2 × 10−4 [2]. These thin films are valuable for investigating the development of magnetization dynamics and innovative magnetic phenomena.
- In a garnet structure, three yttrium ions occupy the dodecahedra (c) site, two iron ions occupy the octahedral (a) site, and three iron ions occupy the tetrahedral (d) site. Trivalent Y3+ and Fe3+ ions make YIG ideal for magnetic research. The most important interaction in this structure is the superexchange interaction of YIG, given by the Fe ion in the tetrahedral site. This interaction is caused by the antiferromagnetic superexchange interaction between the iron ions in the tetrahedral and octahedral sites through the intervening oxygen ion [32]. Two iron ions from the d-site have their magnetic moments canceled by two from the a-site. Thus, the garnet’s magnetic moment is due to the d-excess site’s iron ion. Composition and homogeneity control is essential in garnet synthesis, as stoichiometry and microstructure determine the magnetic characteristics [144].
- Yttrium iron garnet Y3Fe5O12 (YIG) has the most significant role in understanding high-frequency magnetization dynamics. YIG has a high Curie temperature, low damping (lowest among all materials at ambient temperature), electrical insulation, good chemical stability, and facile single-crystal production [15].
- For YIG film, it is vital to minimize the YIG’s thickness with preserving its magnetic characteristics [15]. Reduce the YIG film thickness below the exchange length (10 nm) to better understand spin momentum transfer at the YIG/metal contact. Submicrometer-thick YIG films have generally been generated via LPE; however, the final thickness is 200 nm. Other growth strategies can diminish thickness. PLD is the most versatile oxide film epitaxy technique [15]. PLD-grown YIG has been developed by several researchers in these most cited articles [8,11,13,14,15,17,75,76,77]. In thin films, the temperature dependence of the longitudinal spin-Seebeck effect (LSSE) concerning YIG thickness has been studied [73].
- Other keywords that arise in the top-ranking papers, such as ferromagnetic, magnetism, spin-waves, pulse laser deposition, damping, spin-Hall effect, ferrimagnetic, magneto-optical, gadolinium gallium garnet, and microwave, are also significant as they play a remarkable role in assisting the researcher in tracking down and extracting data relevant to the YIG research. Upon this foundation of a summary of keyword analysis, researchers can obtain an overview of present research trends and potential future study directions in YIG research.
4.6. Document Type Evaluation
5. Issues and Recommendations
5.1. Lattice Mismatch between Substrate and YIG
5.2. Annealing Temperature Factor
5.3. The Complexity of the Y-Fe-O Phase
5.4. Addition of Substituents
6. Conclusions and Future Directions
- “Thin film” and “magnetic properties” are the main category for which YIG is studied. YIG research has led to a rapid increase in research output from 2012 to 2022 (10 years). The number of papers for the last ten years has risen most since last year (1961 to 2011). Reviewing the top 100 cited papers reveals that 2015 had the most publications compared to other years.
- The bibliometric analysis revealed that 19 countries contributed to the YIG field, with the USA contributing the largest papers contributions in YIG research. The USA was the first nation to publish YIG studies (in 1957) related to the formation of the crystalline structure of YIG [60]. The USA exhibited a consistent publication of high-quality papers from 2012 to 2020. The top-ranked study came from the USA, and its author was Wang et al. [13]. It is evident that this technology has reached a high level of global maturity, but further study is still required in the YIG field.
- The subject subfields of magnetization characterization attained the highest frequency proportion of citations (91%). Preparation/fabrication of YIG is in the second position, followed by magnon, with a frequency weight of 56% and 54%, respectively.
- Pulsed laser deposition (PLD) was the most popular methodology preparation utilized by highly cited papers. YIG films were also fabricated via sputtering and liquid phase epitaxy (LPE) techniques. It was revealed that PLD can make films of good quality for magneto-optical devices. GGG, YAG, silicon, and quartz are substrates for YIG. Most cited papers used GGG substrate for growing YIG films. Researchers have measured numerous characterizations of films, including magnetic, morphological, magneto-optical, structural, electrical, and optical properties.
- The keyword findings show that “iron” attracted the most interest compared to the other keywords. Nevertheless, additional keywords including “yttrium iron garnet”, “garnets”, “film”, and “temperature” had the most importance and attention in YIG research.
- Physical Review B, having published 28% of the articles, was the journal with the greatest influence on YIG research. Having published 14% of the articles each, Physical Review Letters and Applied Physics Letters were the second-most-cited journals. It is noteworthy that Nature Publishing Group also published YIG publications. Nature Publishing Group publishes one of the world’s most widely-read, prominent, high-impact, and high-quality academic journals.
- Through a survey of the literature, the following opportunities and challenges have been summarized: lattice mismatch between substrate and YIG, annealing temperature factor, Y-Fe-O phase complexity, and addition of substituents. Recommendations based on identified technological challenges would aid in the achievement of YIG research worldwide and provide a scientific foundation for technology development.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Serga, A.A.; Chumak, A.V.; Hillebrands, B. YIG magnonics. J. Phys. D Appl. Phys. 2010, 43, 264002. [Google Scholar] [CrossRef] [Green Version]
- Onbasli, M.C.; Kehlberger, A.; Kim, D.H.; Jakob, G.; Kläui, M.; Chumak, A.V.; Hillebrands, B.; Ross, C.A. Pulsed laser deposition of epitaxial yttrium iron garnet films with low Gilbert damping and bulk-like magnetization. APL Mater. 2014, 2, 106102. [Google Scholar] [CrossRef] [Green Version]
- Ishak, W.S. Magnetostatic Wave Technology: A Review. Proc. IEEE 1988, 76, 171–187. [Google Scholar] [CrossRef]
- Nakayama, H.; Altahmmer, M.; Chen, Y.-T.; Uchida, K.; Kajiwara, Y.; Kikuchi, D.; Otahni, T.; Geprags, S.; Opel, M.; Takahashi, S.; et al. Spin Hall Magnetoresistance Induced by a Non-Equilibrium Proximity Effect. Phys. Rev. Lett. 2013, 110, 206601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, H.; Li, P.; Zhang, W.; Liu, T.; Hoffmann, A.; Deng, L.; Wu, M. Nanometer-Thick Yttrium Iron Garnet Films with Extremely Low Damping. IEEE Magn. Lett. 2014, 5, 8–11. [Google Scholar] [CrossRef]
- Liu, T.; Chang, H.; Vlaminck, V.; Sun, Y.; Kabatek, M.; Hoffmann, A.; Deng, L.; Wu, M. Ferromagnetic resonance of sputtered yttrium iron garnet nanometer films. J. Appl. Phys. 2014, 115, 87–90. [Google Scholar] [CrossRef]
- Tang, C.; Aldosary, M.; Jiang, Z.; Chang, H.; Madon, B.; Chan, K.; Wu, M.; Garay, J.E.; Shi, J. Exquisite growth control and magnetic properties of yttrium iron garnet thin films. Appl. Phys. Lett. 2016, 108, 102403. [Google Scholar] [CrossRef]
- Sun, Y.; Song, Y.Y.; Chang, H.; Kabatek, M.; Jantz, M.; Schneider, W.; Wu, M.; Schultheiss, H.; Hoffmann, A. Growth and ferromagnetic resonance properties of nanometer-thick yttrium iron garnet films. Appl. Phys. Lett. 2012, 101, 152405. [Google Scholar] [CrossRef]
- Sun, Y.; Wu, M. Yttrium Iron Garnet Nano Films. Epitaxial Growth, Spin-Pumping Efficiency, and Pt-Capping-Caused Damping, 1st ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2013; Volume 64, ISBN 9780124081307. [Google Scholar]
- Wesenberg, D.; Liu, T.; Balzar, D.; Wu, M.; Zink, B.L. Long-distance spin transport in a disordered magnetic insulator. Nat. Phys. 2017, 13, 987–993. [Google Scholar] [CrossRef] [Green Version]
- Goto, T.; Onbaşlò, M.C.; Ross, C.A. Magneto-optical properties of cerium substituted yttrium iron garnet films with reduced thermal budget for monolithic photonic integrated circuits. Opt. Express 2012, 20, 28507. [Google Scholar] [CrossRef]
- Sun, X.Y.; Du, Q.; Goto, T.; Onbasli, M.C.; Kim, D.H.; Aimon, N.M.; Hu, J.; Ross, C.A. Single-Step Deposition of Cerium-Substituted Yttrium Iron Garnet for Monolithic On-Chip Optical Isolation. ACS Photonics 2015, 2, 856–863. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Tang, C.; Sachs, R.; Barlas, Y.; Shi, J. Proximity-induced ferromagnetism in graphene revealed by anomalous Hall effect. Phys. Rev. Lett. 2015, 114, 016603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, Y.; Chang, H.; Kabatek, M.; Song, Y.Y.; Wang, Z.; Jantz, M.; Schneider, W.; Wu, M.; Montoya, E.; Kardasz, B.; et al. Damping in yttrium iron garnet nanoscale films capped by platinum. Phys. Rev. Lett. 2013, 111, 106601. [Google Scholar] [CrossRef]
- d’Allivy Kelly, O.; Anane, A.; Bernard, R.; Youssef, J.B.; Hahn, C.; Molpeceres, A.; Carrétéro, C.; Jacquet, E.; Deranlot, C.; Bortolotti, P.; et al. Inverse Spin Hall Effect in nanometer-thick YIG/Pt system. Appl. Phys. Lett. 2013, 103, 1–12. [Google Scholar]
- Schreier, M.; Kamra, A.; Weiler, M.; Xiao, J.; Bauer, G.E.W.; Gross, R.; Goennenwein, S.T.B. Magnon, phonon and electron temperature profiles and the spin Seebeck effect in magnetic insulator/normal metal hybrid structures. Phys. Rev. B 2013, 11, 94410. [Google Scholar] [CrossRef] [Green Version]
- Kehlberger, A.; Ritzmann, U.; Hinzke, D.; Guo, E.; Cramer, J.; Jakob, G.; Onbasli, M.C.; Kim, D.H.; Ross, C.A.; Jungfleisch, M.B.; et al. Length Scale of the Spin Seebeck Effect. Phys. Rev. Lett. 2015, 115, 096602. [Google Scholar] [CrossRef] [Green Version]
- Althammer, M.; Meyer, S.; Nakayama, H.; Schreier, M.; Opel, M.; Gross, R.; Weiler, M.; Huebl, H.; Gepr, S.; Meier, D.; et al. Quantitative study of the spin Hall magnetoresistance in ferromagnetic insulator/normal metal hybrids. Phys. Rev. B 2013, 87, 224401. [Google Scholar] [CrossRef] [Green Version]
- Lang, M.; Montazeri, M.; Onbasli, M.C.; Kou, X.; Fan, Y.; Upadhyaya, P.; Yao, K.; Liu, F.; Jiang, Y.; Jiang, W.; et al. Proximity Induced High-Temperature Magnetic Order in Topological Insulator—Ferrimagnetic Insulator Heterostructure. Nano Lett. 2014, 14, 3459–3465. [Google Scholar] [CrossRef]
- Lu, Y.M.; Choi, Y.; Ortega, C.M.; Cheng, X.M.; Cai, J.W.; Huang, S.Y.; Sun, L.; Chien, C.L. Pt magnetic polarization on Y3Fe5O12 and magnetotransport characteristics. Phys. Rev. Lett. 2013, 110, 147207. [Google Scholar] [CrossRef] [Green Version]
- Goennenwein, S.T.B.; Schlitz, R.; Pernpeintner, M.; Ganzhorn, K.; Althammer, M.; Gross, R.; Huebl, H. Non-local magnetoresistance in YIG/Pt nanostructures. Appl. Phys. Lett. 2015, 107, 172405. [Google Scholar] [CrossRef] [Green Version]
- Mendes, J.B.S.; Santos, O.A.; Meireles, L.M.; Lacerda, R.G.; Machado, F.L.A.; Azevedo, A.; Rezende, S.M. Spin-Current to Charge-Current Conversion and Magnetoresistance in a Hybrid Structure of Graphene and Yttrium Iron Garnet. Phys. Rev. Lett. 2015, 115, 226601. [Google Scholar] [CrossRef]
- Holanda, J.; Maior, D.S.; Azevedo, A.; Rezende, S.M. Detecting the phonon spin in magnon–phonon conversion experiments. Nat. Phys. 2018, 14, 500–506. [Google Scholar] [CrossRef]
- Seifert, T.S.; Jaiswal, S.; Barker, J.; Weber, S.T.; Razdolski, I.; Cramer, J.; Gueckstock, O.; Maehrlein, S.F.; Nadvornik, L.; Watanabe, S.; et al. Femtosecond formation dynamics of the spin Seebeck effect revealed by terahertz spectroscopy. Nat. Commun. 2018, 9, 2899. [Google Scholar] [CrossRef] [Green Version]
- Dubs, C.; Surzhenko, O.; Linke, R.; Danilewsky, A.; Brückner, U.; Dellith, J. Sub-micrometer yttrium iron garnet LPE films with low ferromagnetic resonance losses. J. Phys. D Appl. Phys. 2017, 50, 204005. [Google Scholar] [CrossRef] [Green Version]
- Marmion, S.R.; Ali, M.; McLaren, M.; Williams, D.A.; Hickey, B.J. Temperature dependence of spin Hall magnetoresistance in thin YIG/Pt films. Phys. Rev. B Condens. Matter Mater. Phys. 2014, 89, 3–7. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Cao, W.; Amin, V.P.; Zhang, Z.; Gibbons, J.; Sklenar, J.; Pearson, J.; Haney, P.M.; Stiles, M.D.; Bailey, W.E.; et al. Coherent Spin Pumping in a Strongly Coupled Magnon-Magnon Hybrid System. Phys. Rev. Lett. 2020, 124, 117202. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Zhang, W.; Ding, J.; Pearson, J.E.; Novosad, V.; Hoffmann, A. Epitaxial patterning of nanometer-thick Y3Fe5O12 films with low magnetic damping. Nanoscale 2016, 8, 388–394. [Google Scholar] [CrossRef] [Green Version]
- Stognij, A.I.; Lutsev, L.V.; Bursian, V.E.; Novitskii, N.N. Growth and spin-wave properties of thin Y3Fe5O12 films on Si substrates. J. Appl. Phys. 2015, 118, 023905. [Google Scholar] [CrossRef]
- Sadovnikov, A.V.; Beginin, E.N.; Sheshukova, S.E.; Sharaevskii, Y.P.; Stognij, A.I.; Novitski, N.N.; Sakharov, V.K.; Khivintsev, Y.V.; Nikitov, S.A. Route toward semiconductor magnonics: Light-induced spin-wave nonreciprocity in a YIG/GaAs structure. Phys. Rev. B 2019, 99, 054424. [Google Scholar] [CrossRef]
- Dushenko, S.; Ago, H.; Kawahara, K.; Tsuda, T.; Kuwabata, S.; Takenobu, T.; Shinjo, T.; Ando, Y.; Shiraishi, M. Gate-Tunable Spin-Charge Conversion and the Role of Spin-Orbit Interaction in Graphene. Phys. Rev. Lett. 2016, 116, 166102. [Google Scholar] [CrossRef] [Green Version]
- Arsad, A.Z.; Ibrahim, N.B. Temperature-dependent magnetic properties of YIG thin films with grain size less 12 nm prepared by a sol-gel method. J. Magn. Magn. Mater. 2018, 462, 70–77. [Google Scholar] [CrossRef]
- Ibrahim, N.B.; Arsad, A.Z. Investigation of nanostructural, optical and magnetic properties of cerium-substituted yttrium iron garnet films prepared by a sol gel method. J. Magn. Magn. Mater. 2016, 401, 572–578. [Google Scholar] [CrossRef]
- Aldbea, F.W.; Ibrahim, N.B.; Yahya, M. Effect of adding aluminum ion on the structural, optical, electrical and magnetic properties of terbium doped yttrium iron garnet nanoparticles films prepared by sol-gel method. Appl. Surf. Sci. 2014, 321, 150–157. [Google Scholar] [CrossRef]
- Jesenska, E.; Yoshida, T.; Shinozaki, K.; Ishibashi, T.; Beran, L.; Zahradnik, M.; Antos, R.; Kučera, M.; Veis, M. Optical and magneto-optical properties of Bi substituted yttrium iron garnets prepared by metal organic decomposition. Opt. Mater. Express 2016, 6, 1986. [Google Scholar] [CrossRef]
- Huebl, H.; Zollitsch, C.W.; Lotze, J.; Hocke, F.; Greifenstein, M.; Marx, A.; Gross, R.; Goennenwein, S.T.B. High cooperativity in coupled microwave resonator ferrimagnetic insulator hybrids. Phys. Rev. Lett. 2013, 111, 127003. [Google Scholar] [CrossRef] [Green Version]
- Meyer, S.; Althammer, M.; Geprägs, S.; Opel, M.; Gross, R.; Goennenwein, S.T.B. Temperature dependent spin transport properties of platinum inferred from spin Hall magnetoresistance measurements. Appl. Phys. Lett. 2014, 104, 242411. [Google Scholar] [CrossRef] [Green Version]
- Tang, S.-H.; Kuo, C.-I.; Trinh, H.-D.; Yi Chang, E.; Nguyen, H.-Q.; Nguyen, C.-L.; Luo, G.-L. Ge epitaxial films on GaAs (100), (110), and (111) substrates for applications of CMOS heterostructural integrations. J. Vac. Sci. Technol. B Nanotechnol. Microelectron. Mater. Process Meas. Phenom. 2013, 31, 021203. [Google Scholar] [CrossRef]
- Oke, J.A.; Olotu, O.O.; Jen, T.-C. Atomic layer deposition of chalcogenide thin-films: Film properties, applications, and bibliometric prospect. J. Neurol. Sci. 2022, 20, 991–1019. [Google Scholar] [CrossRef]
- Bortoluzzi, M.; Correia de Souza, C.; Furlan, M. Bibliometric analysis of renewable energy types using key performance indicators and multicriteria decision models. Renew. Sustain. Energy Rev. 2021, 143, 110958. [Google Scholar] [CrossRef]
- Akintunde, T.Y.; Musa, T.H.; Musa, H.H.; Musa, I.H.; Chen, S.; Ibrahim, E.; Tassang, A.E.; Helmy, M.S.E.D.M. Bibliometric analysis of global scientific literature on effects of COVID-19 pandemic on mental health. Asian J. Psychiatr. 2021, 63, 102753. [Google Scholar] [CrossRef]
- Arsad, A.Z.; Sebastian, G.; Hannan, M.A.; Ker, P.J.; Rahman, M.S.A.; Mansor, M.; Lipu, M.S.H. Solid state switching control methods: A bibliometric analysis for future directions. Electronics 2021, 10, 1944. [Google Scholar] [CrossRef]
- Arsad, A.Z.; Hannan, M.A.; Al-Shetwi, A.Q.; Mansur, M.; Muttaqi, K.M.; Dong, Z.Y.; Blaabjerg, F. Hydrogen energy storage integrated hybrid renewable energy systems: A review analysis for future research directions. Int. J. Hydrog. Energy 2022, 47, 17285–17312. [Google Scholar] [CrossRef]
- Song, Y.; Chen, X.; Hao, T.; Liu, Z.; Lan, Z. Exploring two decades of research on classroom dialogue by using bibliometric analysis. Comput. Educ. 2019, 137, 12–31. [Google Scholar] [CrossRef]
- Liu, H.; Yu, Z.; Chen, C.; Hong, R.; Jin, K.; Yang, C. Visualization and Bibliometric Analysis of Research Trends on Human Fatigue Assessment. J. Med. Syst. 2018, 42, 179. [Google Scholar] [CrossRef]
- Roslan, M.F.; Hannan, M.A.; Ker, P.J.; Mannan, M.; Muttaqi, K.M.; Mahlia, T.I. Microgrid control methods toward achieving sustainable energy management: A bibliometric analysis for future directions. J. Clean. Prod. 2022, 348, 131340. [Google Scholar] [CrossRef]
- Yilmaz, M.; Grilli, M.L.; Turgut, G. A bibliometric analysis of the publications on in doped zno to be a guide for future studies. Metals 2020, 10, 598. [Google Scholar] [CrossRef]
- Zhu, S.; Meng, H.; Gu, Z.; Zhao, Y. Research trend of nanoscience and nanotechnology—A bibliometric analysis of Nano Today. Nano Today 2021, 39, 101233. [Google Scholar] [CrossRef]
- Reza, M.S.; Rahman, N.; Wali, S.B.; Hannan, M.A.; Ker, P.J.; Rahman, S.A.; Muttaqi, K.M. Optimal Algorithms for Energy Storage Systems in Microgrid Applications: An Analytical Evaluation Towards Future Directions. IEEE Access 2022, 10, 10105–10123. [Google Scholar] [CrossRef]
- Wali, S.B.; Hannan, M.A.; Ker, P.J.; Rahman, M.A.; Mansor, M.; Muttaqi, K.M.; Mahlia, T.M.I.; Begum, R.A. Grid-connected lithium-ion battery energy storage system: A bibliometric analysis for emerging future directions. J. Clean. Prod. 2022, 334, 130272. [Google Scholar] [CrossRef]
- Cabeza, L.F.; Frazzica, A.; Chàfer, M.; Vérez, D.; Palomba, V. Research trends and perspectives of thermal management of electric batteries: Bibliometric analysis. J. Energy Storage 2020, 32, 101976. [Google Scholar] [CrossRef]
- Grundy, Q.H.; Wang, Z.; Bero, L.A. Challenges in Assessing Mobile Health App Quality: A Systematic Review of Prevalent and Innovative Methods. Am. J. Prev. Med. 2016, 51, 1051–1059. [Google Scholar] [CrossRef] [PubMed]
- Mikhail, S.; Anand, A.; Kannan, S.; Raghavan, V. Bibliometric evaluation of research in hydrochar and bio-oil. J. Scientometr. Res. 2020, 9, 40–53. [Google Scholar] [CrossRef]
- Hu, H.; Liu, A.; Wan, Y.; Jing, Y. Energy storage ceramics: A bibliometric review of literature. Materials 2021, 14, 3605. [Google Scholar] [CrossRef] [PubMed]
- Alryalat, S.A.S.; Malkawi, L.W.; Momani, S.M. Comparing bibliometric analysis using pubmed, scopus, and web of science databases. J. Vis. Exp. 2019, 152, e58494. [Google Scholar] [CrossRef]
- Banks, E.; Riederman, N.; Schleuning, H.; Silber, L. Preparation and Properties of Thin Ferrite Films. J. Appl. Phys. A 1961, 32, S44–S45. [Google Scholar] [CrossRef]
- Pardavi-Horvath, M. Microwave applications of soft ferrites. J. Magn. Magn. Mater. 2000, 215, 171–183. [Google Scholar] [CrossRef]
- DIng, J.; Liu, T.; Chang, H.; Wu, M. Sputtering Growth of Low-Damping Yttrium-Iron-Garnet Thin Films. IEEE Magn. Lett. 2020, 11, 1–5. [Google Scholar] [CrossRef]
- Cheng, C.; Fan, R.; Fan, G.; Liu, H.; Zhang, J.; Shen, J.; Ma, Q.; Wei, R.; Guo, Z. Tunable negative permittivity and magnetic performance of yttrium iron garnet/polypyrrole metacomposites at the RF frequency. J. Mater. Chem. C 2019, 7, 3160–3167. [Google Scholar] [CrossRef]
- GellerM, S.; Gilleo, M.A. The crystal structure and ferrimagnetism of yttrium-iron garnet, Y3Fe2(FeO4)3. J. Phys. Chem. Solids 1957, 3, 30–36. [Google Scholar] [CrossRef]
- Sokolov, N.S.; Fedorov, V.V.; Korovin, A.M.; Suturin, S.M.; Baranov, D.A.; Gastev, S.V.; Krichevtsov, B.B.; Maksimova, K.Y.; Grunin, A.I.; Bursian, V.E.; et al. Thin yttrium iron garnet films grown by pulsed laser deposition: Crystal structure, static, and dynamic magnetic properties. J. Appl. Phys. 2016, 119, 023903. [Google Scholar] [CrossRef]
- Gholipur, R.; Bahari, A. Random nanocomposites as metamaterials: Preparation and investigations at microwave region. Opt. Mater. 2015, 50, 175–183. [Google Scholar] [CrossRef]
- Gholipur, R.; Bahari, A. Effect of electric field on the dielectric and magnetic properties of random nanocomposites. Mater. Des. 2016, 94, 139–147. [Google Scholar] [CrossRef]
- Gholipur, R.; Khorshidi, Z.; Bahari, A. Enhanced Absorption Performance of Carbon Nanostructure Based Metamaterials and Tuning Impedance Matching Behavior by an External AC Electric Field. ACS Appl. Mater. Interfaces 2017, 9, 12528–12539. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.C.; Fan, R.H.; Wang, X.A.; Zhang, Z.D.; Qian, L.; Yin, L.W.; Bai, Y.J. Radio-frequency permeability and permittivity spectra of copper/yttrium iron garnet cermet prepared at low temperatures. J. Eur. Ceram. Soc. 2015, 35, 1219–1225. [Google Scholar] [CrossRef]
- Shi, Z.C.; Fan, R.H.; Zhang, Z.D.; Yan, K.L.; Zhang, X.H.; Sun, K.; Liu, X.F.; Wang, C.G. Experimental realization of simultaneous negative permittivity and permeability in Ag/Y3Fe5O12 random composites. J. Mater. Chem. C 2013, 1, 1633–1637. [Google Scholar] [CrossRef]
- Zhang, H.W.; Li, J.; Su, H.; Zhou, T.C.; Long, Y.; Zheng, Z.L. Development and application of ferrite materials for low temperature co-fired ceramic technology. Chin. Phys. B 2013, 22, 117504. [Google Scholar] [CrossRef]
- Rezende, S.M.; Rodríguez-Suárez, R.L.; Cunha, R.O.; Rodrigues, A.R.; Machado, F.L.A.; Fonseca Guerra, G.A.; Lopez Ortiz, J.C.; Azevedo, A. Magnon spin-current theory for the longitudinal spin-Seebeck effect. Phys. Rev. B Condens. Matter Mater. Phys. 2014, 89, 014416. [Google Scholar] [CrossRef]
- Cornelissen, L.J.; Peters, K.J.H.; Bauer, G.E.W.; Duine, R.A.; Van Wees, B.J. Magnon spin transport driven by the magnon chemical potential in a magnetic insulator. Phys. Rev. B 2016, 94, 014412. [Google Scholar] [CrossRef] [Green Version]
- Mendes, J.B.S.; Cunha, R.O.; Alves Santos, O.; Ribeiro, P.R.T.; Machado, F.L.A.; Rodríguez-Suárez, R.L.; Azevedo, A.; Rezende, S.M. Large inverse spin Hall effect in the antiferromagnetic metal Ir20 Mn80. Phys. Rev. B Condens. Matter Mater. Phys. 2014, 89, 140406. [Google Scholar] [CrossRef]
- Boona, S.R.; Heremans, J.P. Magnon thermal mean free path in yttrium iron garnet. Phys. Rev. B Condens. Matter Mater. Phys. 2014, 90, 064421. [Google Scholar] [CrossRef]
- Yu, H.; Kelly, O.d.A.; Cros, V.; Bernard, R.; Bortolotti, P.; Anane, A.; Brandl, F.; Heimbach, F.; Grundler, D. Approaching soft X-ray wavelengths in nanomagnet-based microwave technology. Nat. Commun. 2016, 7, 11255. [Google Scholar] [CrossRef] [PubMed]
- Jin, H.; Boona, S.R.; Yang, Z.; Myers, R.C.; Heremans, J.P. Effect of the magnon dispersion on the longitudinal spin Seebeck effect in yttrium iron garnets. Phys. Rev. B Condens. Matter Mater. Phys. 2015, 92, 54436. [Google Scholar] [CrossRef] [Green Version]
- Giles, B.L.; Yang, Z.; Jamison, J.S.; Myers, R.C. Long-range pure magnon spin diffusion observed in a nonlocal spin-Seebeck geometry. Phys. Rev. B Condens. Matter Mater. Phys. 2015, 92, 224415. [Google Scholar] [CrossRef] [Green Version]
- Jungfleisch, M.B.; Chumak, A.V.; Kehlberger, A.; Lauer, V.; Kim, D.H.; Onbasli, M.C.; Ross, C.A.; Kläui, M.; Hillebrands, B. Thickness and power dependence of the spin-pumping effect in Y3Fe5 O12/Pt heterostructures measured by the inverse spin Hall effect. Phys. Rev. B Condens. Matter Mater. Phys. 2015, 91, 134407. [Google Scholar] [CrossRef] [Green Version]
- Meyer, S.; Chen, Y.T.; Wimmer, S.; Althammer, M.; Wimmer, T.; Schlitz, R.; Geprags, S.; Huebl, H.; Kodderitzsch, D.; Ebert, H.; et al. Observation of the spin Nernst effect. Nat. Mater. 2017, 16, 97–981. [Google Scholar] [CrossRef]
- Jiang, Z.; Chang, C.Z.; Tang, C.; Wei, P.; Moodera, J.S.; Shi, J. Independent Tuning of Electronic Properties and Induced Ferromagnetism in Topological Insulators with Heterostructure Approach. Nano Lett. 2015, 15, 5835–5840. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klingler, S.; Amin, V.; Geprägs, S.; Ganzhorn, K.; Maier-Flaig, H.; Althammer, M.; Huebl, H.; Gross, R.; McMichael, R.D.; Stiles, M.D.; et al. Spin-Torque Excitation of Perpendicular Standing Spin Waves in Coupled YIG/Co Heterostructures. Phys. Rev. Lett. 2018, 120, 127201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rückriegel, A.; Kopietz, P.; Bozhko, D.A.; Serga, A.A.; Hillebrands, B. Magnetoelastic modes and lifetime of magnons in thin yttrium iron garnet films. Phys. Rev. B Condens. Matter Mater. Phys. 2014, 89, 184413. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Liu, C.; Liu, T.; Xiao, Y.; Xia, K.; Bauer, G.E.W.; Wu, M.; Yu, H. Strong Interlayer Magnon-Magnon Coupling in Magnetic Metal-Insulator Hybrid Nanostructures. Phys. Rev. Lett. 2018, 120, 217202. [Google Scholar] [CrossRef] [Green Version]
- Quindeau, A.; Avci, C.O.; Liu, W.; Sun, C.; Mann, M.; Tang, A.S.; Onbasli, M.C.; Bono, D.; Voyles, P.M.; Xu, Y.; et al. Tm3Fe5O12/Pt Heterostructures with Perpendicular Magnetic Anisotropy for Spintronic Applications. Adv. Electron. Mater. 2017, 3, 1600376. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Z.; Chang, C.Z.; Masir, M.R.; Tang, C.; Xu, Y.; Moodera, J.S.; Macdonald, A.H.; Shi, J. Enhanced spin Seebeck effect signal due to spin-momentum locked topological surface states. Nat. Commun. 2016, 7, 11458. [Google Scholar] [CrossRef]
- Collet, M.; Gladii, O.; Evelt, M.; Bessonov, V.; Soumah, L.; Bortolotti, P.; Demokritov, S.O.; Henry, Y.; Cros, V.; Bailleul, M.; et al. Spin-wave propagation in ultra-thin YIG based waveguides. Appl. Phys. Lett. 2017, 110, 092408. [Google Scholar] [CrossRef] [Green Version]
- Rezende, S.M.; Rodríguez-Suárez, R.L.; Cunha, R.O.; López Ortiz, J.C.; Azevedo, A. Bulk magnon spin current theory for the longitudinal spin Seebeck effect. J. Magn. Magn. Mater. 2016, 400, 171–177. [Google Scholar] [CrossRef]
- Flebus, B.; Shen, K.; Kikkawa, T.; Uchida, K.I.; Qiu, Z.; Saitoh, E.; Duine, R.A.; Bauer, G.E.W. Magnon-polaron transport in magnetic insulators. Phys. Rev. B 2017, 95, 144420. [Google Scholar] [CrossRef] [Green Version]
- Kehlberger, A.; Richter, K.; Onbasli, M.C.; Jakob, G.; Kim, D.H.; Goto, T.; Ross, C.A.; Götz, G.; Reiss, G.; Kuschel, T.; et al. Enhanced magneto-optic Kerr effect and magnetic properties of CeY2Fe5O12 epitaxial thin films. Phys. Rev. Appl. 2015, 4, 014008. [Google Scholar] [CrossRef] [Green Version]
- Evelt, M.; Demidov, V.E.; Bessonov, V.; Demokritov, S.O.; Prieto, J.L.; Muñoz, M.; Ben Youssef, J.; Naletov, V.V.; De Loubens, G.; Klein, O.; et al. High-efficiency control of spin-wave propagation in ultra-thin yttrium iron garnet by the spin-orbit torque. Appl. Phys. Lett. 2016, 108, 172406. [Google Scholar] [CrossRef] [Green Version]
- Bhoi, B.; Kim, B.; Jang, S.H.; Kim, J.; Yang, J.; Cho, Y.J.; Kim, S.K. Abnormal anticrossing effect in photon-magnon coupling. Phys. Rev. B 2019, 99, 134426. [Google Scholar] [CrossRef] [Green Version]
- Du, C.; Wang, H.; Yang, F.; Hammel, P.C. Enhancement of Pure Spin Currents in Spin Pumping Y3Fe5 O12/Cu/Metal Trilayers through Spin Conductance Matching. Phys. Rev. Appl. 2014, 1, 044004. [Google Scholar] [CrossRef] [Green Version]
- Christofi, A.; Kawaguchi, Y.; Alù, A.; Khanikaev, A.B. Giant enhancement of Faraday rotation due to electromagnetically induced transparency in all-dielectric magneto-optical metasurfaces. Opt. Lett. 2018, 43, 1838. [Google Scholar] [CrossRef]
- Kimling, J.; Choi, G.M.; Brangham, J.T.; Matalla-Wagner, T.; Huebner, T.; Kuschel, T.; Yang, F.; Cahill, D.G. Picosecond Spin Seebeck Effect. Phys. Rev. Lett. 2017, 118, 057201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, D.; Li, Y.; Qu, D.; Jin, X.; Chien, C.L. Separation of spin Seebeck effect and anomalous Nernst effect in Co/Cu/YIG. Appl. Phys. Lett. 2015, 106, 212407. [Google Scholar] [CrossRef]
- Maier-Flaig, H.; Harder, M.; Gross, R.; Huebl, H.; Goennenwein, S.T.B. Spin pumping in strongly coupled magnon-photon systems. Phys. Rev. B 2016, 94, 054433. [Google Scholar] [CrossRef] [Green Version]
- Howe, B.M.; Emori, S.; Jeon, H.M.; Oxholm, T.M.; Jones, J.G.; Mahalingam, K.; Zhuang, Y.; Sun, N.X.; Brown, G.J. Pseudomorphic Yttrium Iron Garnet Thin Films with Low Damping and Inhomogeneous Linewidth Broadening. IEEE Magn. Lett. 2015, 6, 2013–2016. [Google Scholar] [CrossRef]
- Meyer, S.; Schlitz, R.; Gepr, S.; Opel, M.; Gross, R.; Goennenwein, S.T.B.; Wissenschaften, B.A. Der Anomalous Hall effect in YIG | Pt bilayers. Appl. Phys. Lett. 2015, 106, 132402. [Google Scholar] [CrossRef] [Green Version]
- Haigh, J.A.; Lambert, N.J.; Doherty, A.C.; Ferguson, A.J. Dispersive readout of ferromagnetic resonance for strongly coupled magnons and microwave photons. Phys. Rev. B Condens. Matter Mater. Phys. 2015, 91, 104410. [Google Scholar] [CrossRef] [Green Version]
- Jermain, C.L.; Aradhya, S.V.; Reynolds, N.D.; Buhrman, R.A.; Brangham, J.T.; Page, M.R.; Hammel, P.C.; Yang, F.Y.; Ralph, D.C. Increased low-temperature damping in yttrium iron garnet thin films. Phys. Rev. B 2017, 95, 174411. [Google Scholar] [CrossRef] [Green Version]
- Zare Rameshti, B.; Cao, Y.; Bauer, G.E.W. Magnetic spheres in microwave cavities. Phys. Rev. B Condens. Matter Mater. Phys. 2015, 91, 214430. [Google Scholar] [CrossRef] [Green Version]
- Cornelissen, L.J.; Oyanagi, K.; Kikkawa, T.; Qiu, Z.; Kuschel, T.; Bauer, G.E.W.; Van Wees, B.J.; Saitoh, E. Nonlocal magnon-polaron transport in yttrium iron garnet. Phys. Rev. B 2017, 96, 104441. [Google Scholar] [CrossRef] [Green Version]
- Mruczkiewicz, M.; Pavlov, E.S.; Vysotsky, S.L.; Krawczyk, M.; Filimonov, Y.A.; Nikitov, S.A. Observation of magnonic band gaps in magnonic crystals with nonreciprocal dispersion relation. Phys. Rev. B Condens. Matter Mater. Phys. 2014, 90, 174416. [Google Scholar] [CrossRef] [Green Version]
- Bozhko, D.A.; Clausen, P.; Melkov, G.A.; L’Vov, V.S.; Pomyalov, A.; Vasyuchka, V.I.; Chumak, A.V.; Hillebrands, B.; Serga, A.A. Bottleneck Accumulation of Hybrid Magnetoelastic Bosons. Phys. Rev. Lett. 2017, 118, 237201. [Google Scholar] [CrossRef] [Green Version]
- Maier-Flaig, H.; Klingler, S.; Dubs, C.; Surzhenko, O.; Gross, R.; Weiler, M.; Huebl, H.; Goennenwein, S.T.B. Temperature-dependent magnetic damping of yttrium iron garnet spheres. Phys. Rev. B 2017, 95, 214423. [Google Scholar] [CrossRef]
- Fanchiang, Y.T.; Chen, K.H.M.; Tseng, C.C.; Chen, C.C.; Cheng, C.K.; Yang, S.R.; Wu, C.N.; Lee, S.F.; Hong, M.; Kwo, J. Strongly exchange-coupled and surface-state-modulated magnetization dynamics in Bi2Se3/yttrium iron garnet heterostructures. Nat. Commun. 2018, 9, 223. [Google Scholar] [CrossRef]
- Sharma, V.; Kuanr, B.K. Magnetic and crystallographic properties of rare-earth substituted yttrium-iron garnet. J. Alloy. Compd. 2018, 748, 591–600. [Google Scholar] [CrossRef]
- An, K.; Litvinenko, A.N.; Kohno, R.; Fuad, A.A.; Naletov, V.V.; Vila, L.; Ebels, U.; De Loubens, G.; Hurdequint, H.; Beaulieu, N.; et al. Coherent long-range transfer of angular momentum between magnon Kittel modes by phonons. Phys. Rev. B 2020, 101, 060407. [Google Scholar] [CrossRef] [Green Version]
- Streib, S.; Vidal-Silva, N.; Shen, K.; Bauer, G.E.W. Magnon-phonon interactions in magnetic insulators. Phys. Rev. B 2019, 99, 184442. [Google Scholar] [CrossRef] [Green Version]
- Haidar, M.; Ranjbar, M.; Balinsky, M.; Dumas, R.K.; Khartsev, S.; Åkerman, J. Thickness- and temperature-dependent magnetodynamic properties of yttrium iron garnet thin films. J. Appl. Phys. 2015, 117, 115–119. [Google Scholar] [CrossRef] [Green Version]
- Onbasli, M.C.; Goto, T.; Sun, X.; Huynh, N.; Ross, C.A. Integration of bulk-quality thin film magneto-optical cerium-doped yttrium iron garnet on silicon nitride photonic substrates. Opt. Express 2014, 22, 25183. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Chang, C.Z.; Tang, C.; Zheng, J.G.; Moodera, J.S.; Shi, J. Structural and proximity-induced ferromagnetic properties of topological insulator-magnetic insulator heterostructures. AIP Adv. 2016, 6, 055809. [Google Scholar] [CrossRef] [Green Version]
- Rezende, S.M.; Rodríguez-Suárez, R.L.; Lopez Ortiz, J.C.; Azevedo, A. Thermal properties of magnons and the spin Seebeck effect in yttrium iron garnet/normal metal hybrid structures. Phys. Rev. B Condens. Matter Mater. Phys. 2014, 89, 134406. [Google Scholar] [CrossRef]
- Stenning, G.B.G.; Bowden, G.J.; Maple, L.C.; Gregory, S.A.; Sposito, A.; Eason, R.W.E.; Zheludev, N.I.; Groot, P.A.J. Magnetic control of a meta-molecule. Opt. Express 2013, 21, 1456–1464. [Google Scholar] [CrossRef] [Green Version]
- Aakansha; Deka, B.; Ravi, S.; Pamu, D. Impedance spectroscopy and ac conductivity mechanism in Sm doped Yttrium Iron Garnet. Ceram. Int. 2017, 43, 10468–10477. [Google Scholar] [CrossRef]
- Matatagui, D.; Kolokoltsev, O.V.; Qureshi, N.; Mejía-Uriarte, E.V.; Saniger, J.M. A magnonic gas sensor based on magnetic nanoparticles. Nanoscale 2015, 7, 9607–9613. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.; Tang, C.; Shi, J. Induced magneto-transport properties at palladium/yttrium iron garnet interface. Appl. Phys. Lett. 2013, 103, 132407. [Google Scholar] [CrossRef] [Green Version]
- Dulal, P.; Block, A.D.; Gage, T.E.; Haldren, H.A.; Sung, S.Y.; Hutchings, D.C.; Stadler, B.J.H. Optimized Magneto-optical Isolator Designs Inspired by Seedlayer-Free Terbium Iron Garnets with Opposite Chirality. ACS Photonics 2016, 3, 1818–1825. [Google Scholar] [CrossRef] [Green Version]
- Rückriegel, A.; Kopietz, P. Rayleigh-Jeans Condensation of Pumped Magnons in Thin-Film Ferromagnets. Phys. Rev. Lett. 2015, 115, 157203. [Google Scholar] [CrossRef] [Green Version]
- Qin, H.; Both, G.J.; Hämäläinen, S.J.; Yao, L.; van Dijken, S. Low-loss YIG-based magnonic crystals with large tunable bandgaps. Nat. Commun. 2018, 9, 5445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cramer, J.; Seifert, T.; Kronenberg, A.; Fuhrmann, F.; Jakob, G.; Jourdan, M.; Kampfrath, T.; Kläui, M. Complex Terahertz and Direct Current Inverse Spin Hall Effect in YIG/Cu1-xIrx Bilayers Across a Wide Concentration Range. Nano Lett. 2018, 18, 1064–1069. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Z.; Katmis, F.; Tang, C.; Wei, P.; Moodera, J.S.; Shi, J. A comparative transport study of Bi2Se3 and Bi2Se3/yttrium iron garnet. Appl. Phys. Lett. 2014, 104, 222409. [Google Scholar] [CrossRef]
- Davies, C.S.; Sadovnikov, A.V.; Grishin, S.V.; Sharaevskii, Y.P.; Nikitov, S.A.; Kruglyak, V.V. Generation of propagating spin waves from regions of increased dynamic demagnetising field near magnetic antidots. Appl. Phys. Lett. 2015, 107, 162401. [Google Scholar] [CrossRef] [Green Version]
- Saiga, Y.; Mizunuma, K.; Kono, Y.; Ryu, J.C.; Ono, H.; Kohda, M.; Okuno, E. Platinum thickness dependence and annealing effect of the spin-Seebeck voltage in platinum/yttrium iron garnet structures. Appl. Phys. Express 2014, 7, 093001. [Google Scholar] [CrossRef]
- Gruszecki, P.; Dadoenkova, Y.S.; Dadoenkova, N.N.; Lyubchanskii, I.L.; Romero-Vivas, J.; Guslienko, K.Y.; Krawczyk, M. Influence of magnetic surface anisotropy on spin wave reflection from the edge of ferromagnetic film. Phys. Rev. B Condens. Matter Mater. Phys. 2015, 92, 054427. [Google Scholar] [CrossRef]
- Wimmer, T.; Althammer, M.; Liensberger, L.; Vlietstra, N.; Geprägs, S.; Weiler, M.; Gross, R.; Huebl, H. Spin Transport in a Magnetic Insulator with Zero Effective Damping. Phys. Rev. Lett. 2019, 123, 257201. [Google Scholar] [CrossRef] [Green Version]
- Fakhrul, T.; Tazlaru, S.; Beran, L.; Zhang, Y.; Veis, M.; Ross, C.A. Magneto-Optical Bi:YIG Films with High Figure of Merit for Nonreciprocal Photonics. Adv. Opt. Mater. 2019, 7, 1900056. [Google Scholar] [CrossRef]
- Vasili, H.B.; Casals, B.; Cichelero, R.; Macià, F.; Geshev, J.; Gargiani, P.; Valvidares, M.; Herrero-Martin, J.; Pellegrin, E.; Fontcuberta, J.; et al. Direct observation of multivalent states and 4f→3d charge transfer in Ce-doped yttrium iron garnet thin films. Phys. Rev. B 2017, 96, 014433. [Google Scholar] [CrossRef] [Green Version]
- Sposito, A.; May-Smith, T.C.; Stenning, G.B.G.; de Groot, P.A.J.; Eason, R.W. Pulsed laser deposition of high-quality μm-thick YIG films on YAG. Opt. Mater. Express 2013, 3, 624. [Google Scholar] [CrossRef]
- Cooper, J.F.K.; Kinane, C.J.; Langridge, S.; Ali, M.; Hickey, B.J.; Niizeki, T.; Uchida, K.; Saitoh, E.; Ambaye, H.; Glavic, A. Unexpected structural and magnetic depth dependence of YIG thin films. Phys. Rev. B 2017, 96, 104404. [Google Scholar] [CrossRef] [Green Version]
- Gallagher, J.C.; Yang, A.S.; Brangham, J.T.; Esser, B.D.; White, S.P.; Page, M.R.; Meng, K.Y.; Yu, S.; Adur, R.; Ruane, W.; et al. Exceptionally high magnetization of stoichiometric Y3Fe5O12 epitaxial films grown on Gd3Ga5O12. Appl. Phys. Lett. 2016, 109, 1–6. [Google Scholar] [CrossRef]
- Thiery, N.; Draveny, A.; Naletov, V.V.; Vila, L.; Attané, J.P.; Beigné, C.; De Loubens, G.; Viret, M.; Beaulieu, N.; Ben Youssef, J.; et al. Nonlinear spin conductance of yttrium iron garnet thin films driven by large spin-orbit torque. Phys. Rev. B 2018, 97, 060409. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, G.; Hauser, C.; Trempler, P.; Paleschke, M.; Papaioannou, E.T. Ultra Thin Films of Yttrium Iron Garnet with Very Low Damping: A Review. Phys. Status Solidi Basic Res. 2020, 257, 1900604. [Google Scholar] [CrossRef]
- Zhu, N.; Chang, H.; Franson, A.; Liu, T.; Zhang, X.; Johnston-Halperin, E.; Wu, M.; Tang, H.X. Patterned growth of crystalline Y3Fe5O12 nanostructures with engineered magnetic shape anisotropy. Appl. Phys. Lett. 2017, 110, 252401. [Google Scholar] [CrossRef] [Green Version]
- Gomez-Perez, J.M.; Vélez, S.; McKenzie-Sell, L.; Amado, M.; Herrero-Martín, J.; López-López, J.; Blanco-Canosa, S.; Hueso, L.E.; Chuvilin, A.; Robinson, J.W.A.; et al. Synthetic Antiferromagnetic Coupling between Ultrathin Insulating Garnets. Phys. Rev. Appl. 2018, 10, 044046. [Google Scholar] [CrossRef]
- Bhatt, Y.; Ghuman, K.; Dhir, A. Sustainable manufacturing. Bibliometrics and content analysis. J. Clean. Prod. 2020, 260, 120988. [Google Scholar] [CrossRef]
- Rao, Y.H.; Zhang, H.W.; Yang, Q.H.; Zhang, D.N.; Jin, L.C.; Ma, B.; Wu, Y.J. Liquid phase epitaxy magnetic garnet films and their applications. Chin. Phys. B 2018, 27, 086701. [Google Scholar] [CrossRef]
- Kang, Y.M.; Wee, S.H.; Baik, S.I.; Min, S.G.; Yu, S.C.; Moon, S.H.; Kim, Y.W.; Yoo, S.I. Magnetic properties of YIG(Y 3Fe 5O 12) thin films prepared by the post annealing of amorphous films deposited by rf-magnetron sputtering. J. Appl. Phys. 2005, 97, 10–13. [Google Scholar] [CrossRef]
- Block, A.D.; Dulal, P.; Stadler, B.J.H.; Seaton, N.C.A. Growth Parameters of Fully Crystallized YIG, Bi:YIG, and Ce:YIG Films With High Faraday Rotations. IEEE Photonics J. 2014, 6, 0600308. [Google Scholar] [CrossRef]
- Bhoi, B.; Kim, B.; Kim, Y.; Kim, M.K.; Lee, J.H.; Kim, S.K. Stress-induced magnetic properties of PLD-grown high-quality ultrathin YIG films. J. Appl. Phys. 2018, 123, 203902. [Google Scholar] [CrossRef]
- Mallmann, E.J.J.; Sombra, A.S.B.; Goes, J.C.; Fechine, P.B.A. Yttrium iron garnet: Properties and applications review. Solid State Phenom. 2013, 202, 65–96. [Google Scholar] [CrossRef]
- van Eck, N.J.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef] [Green Version]
- Aldbea, F.W.; Ahmad, N.I.; Ibrahim, N.B.; Yahya, M. Effect of increasing pH value on the structural, optical and magnetic properties of yttrium iron garnet films prepared by a sol-gel method. J. Sol-Gel Sci. Technol. 2014, 71, 31–37. [Google Scholar] [CrossRef]
- Arsad, A.Z.; Ibrahim, N.B. Effect of CeO2 presence on the structural and magnetic properties of Y3-xCexFe5O12 (x = 0, 0.2, 0.6, 1.6) thin films prepared by sol-gel method. AIP Conf. Proc. 2015, 1678, 040010. [Google Scholar] [CrossRef]
- Walsh, I.; Renaud, A. Reviewing the Literature in the IS Field: Two Bibliometric Techniques to Guide Readings and Help the Interpretation of the Literature. Syst. D’information Manag. 2017, 22, 75–115. [Google Scholar] [CrossRef]
- Shi, J.; Miao, W.; Si, H. Visualization and analysis of mapping knowledge domain of urban vitality research. Sustainability 2019, 11, 988. [Google Scholar] [CrossRef] [Green Version]
- Musa, M.A.; Azis, R.S.; Osman, N.H.; Hassan, J.; Zangina, T. Structural and magnetic properties of yttrium iron garnet (YIG) and yttrium aluminum iron garnet (YAlG) nanoferrite via sol-gel synthesis. Results Phys. 2017, 7, 1135–1142. [Google Scholar] [CrossRef]
- Zhang, Y.; Xie, J.; Deng, L.; Bi, L. Growth of Phase Pure Yttrium Iron Garnet Thin Films on Silicon: The Effect of Substrate and Postdeposition Annealing Temperatures. IEEE Trans. Magn. 2015, 51, 2503604. [Google Scholar] [CrossRef]
- Roumie, M.; Samad, B.A.; Tabbal, M.; Abi-Akl, M.; Blanc-Mignon, M.F.; Nsouli, B. Effect of deposition temperature on the properties of sputtered YIG films grown on quartz. Mater. Chem. Phys. 2010, 124, 188–191. [Google Scholar] [CrossRef]
- Ma, H.; Jen, A.K.; Dalton, L. Polymer-Based Optical Waveguides: Materials, Processing, and Devices. Adv. Mater. 2002, 14, 1339–1365. [Google Scholar] [CrossRef]
Ref | Rank | Authors | Years | NC | No. of Authors | Journal | Publisher | IF | Country | Methodology |
---|---|---|---|---|---|---|---|---|---|---|
[13] | 1 | Wang et al. | 2015 | 383 | 5 | Physical Review Letters | APS | 9.185 | USA | PLD |
[36] | 2 | Huebl et al. | 2013 | 377 | 8 | Physical Review Letters | APS | 9.185 | Germany | - |
[18] | 3 | Althammer et al. | 2013 | 349 | 21 | Physical Review B | APS | 3.908 | Germany | MBE |
[68] | 4 | Rezende et al. | 2014 | 227 | 8 | Physical Review B | APS | 3.908 | Brazil | - |
[8] | 5 | Sun et al. | 2012 | 202 | 9 | Applied Physics Letters | AIP | 3.971 | USA | PLD |
[14] | 6 | Sun et al. | 2013 | 201 | 14 | Physical Review Letters | Aps | 9.185 | USA | PLD |
[69] | 7 | Cornelissen et al. | 2016 | 193 | 5 | Physical Review B | APS | 3.908 | UK | - |
[20] | 8 | Lu et al. | 2013 | 185 | 8 | Physical Review Letters | APS | 9.185 | China | LPE |
[15] | 9 | D’Allivy et al. | 2013 | 179 | 16 | Applied Physics Letters | AIP | 3.971 | France | PLD |
[5] | 10 | Chang et al. | 2014 | 171 | 7 | IEEE Magnetics Letters | IEEE | 1.549 | USA | Sputtering deposition |
[16] | 11 | Schreier et al. | 2013 | 169 | 7 | Physical Review B | APS | 3.908 | Germany | PLD |
[19] | 12 | Lang et al. | 2014 | 153 | 19 | Nano letters | ACS | 11.19 | USA | PLD |
[2] | 13 | Onbasli et al. | 2014 | 147 | 8 | APL Materials | AIP | 6.635 | USA | PLD |
[17] | 14 | Kehlberger et al. | 2015 | 143 | 12 | Physical Review Letters | APS | 9.185 | Germany | PLD and LPE |
[70] | 15 | Mendes et al. | 2014 | 143 | 8 | Physical Review B | APS | 3.908 | Brazil | Magnetron sputtering |
[6] | 16 | Liu et al. | 2014 | 123 | 8 | Journal of Applied Physics | AIP | 2.877 | USA | RF sputtering |
[71] | 17 | Boona and Heremans | 2014 | 114 | 2 | Physical Review B | APS | 3.908 | USA | - |
[21] | 18 | Goennenwein et al. | 2015 | 113 | 7 | Applied Physics Letters | AIP | 3.971 | Germany | LPE |
[72] | 19 | Yu et al. | 2016 | 110 | 9 | Nature Communications | Nature Research | 17.69 | Germany | Magnetron sputtering |
[22] | 20 | Mendes et al. | 2015 | 104 | 9 | Physical Review Letters | APS | 9.185 | Brazil | LPE |
[23] | 21 | Holanda et al. | 2108 | 96 | 4 | Nature Physics | Nature Publishing Group | 19.68 | Brazil | LPE |
[73] | 22 | Jin et al. | 2015 | 93 | 5 | Physical Review B | APS | 3.908 | USA | - |
[74] | 23 | Giles et al. | 2015 | 91 | 4 | Physical Review B | APS | 3.908 | USA | - |
[75] | 24 | Jungfleisch et al. | 2015 | 91 | 9 | Physical Review B | APS | 3.908 | Germany | PLD |
[76] | 25 | Meyer et al. | 2017 | 90 | 12 | Nature Materials | Nature Publishing Group | 47.66 | Germany | PLD |
[26] | 26 | Marmion et al. | 2014 | 90 | 5 | Physical Review B | APS | 3.908 | UK | RF magnetron sputtering |
[11] | 27 | Goto et al. | 2012 | 89 | 3 | Optic Express | Optica | 3.833 | USA | PLD |
[24] | 28 | Seifert et al. | 2018 | 88 | 12 | Nature Communications | Nature Research | 17.69 | Germany | LPE |
[77] | 29 | Jiang et al. | 2015 | 88 | 6 | Nano letters | ACS | 11.19 | USA | PLD |
[25] | 30 | Dubs et al. | 2017 | 81 | 6 | Journal of Physics D: Applied Physics | IOP | 3.207 | Germany | LPE |
[78] | 31 | Klingler et al. | 2018 | 80 | 12 | Physical Review Letters | APS | 9.185 | Germany | - |
[79] | 32 | Rückriegel et al. | 2014 | 79 | 5 | Physical Review B | APS | 3.908 | Germany | - |
[66] | 33 | Shi et al. | 2013 | 79 | 8 | Journal of Materials Chemistry C | RCS | 8.067 | China | Solid state reaction method |
[80] | 34 | Chen et al. | 2018 | 77 | 8 | Physical Review Letters | APS | 9.185 | China | Magnetron sputtering |
[81] | 35 | Quindeau et al. | 2017 | 76 | 12 | Advanced Electronic Materials | Wiley-VCH Verlag | 7.633 | USA | PLD |
[82] | 36 | Jiang et al. | 2016 | 76 | 8 | Nature Communications | Nature Research | 17.69 | USA | PLD |
[12] | 37 | Sun et al. | 2015 | 74 | 8 | ACS Photonics | ACS | 7.15 | USA | PLD |
[59] | 38 | Cheng et al. | 2019 | 72 | 9 | Journal of Materials Chemistry C | RCS | 8.067 | China | - |
[83] | 39 | Collet et al. | 2017 | 72 | 12 | Applied Physics Letters | AIP | 3.971 | France | PLD |
[37] | 40 | Meyer et al. | 2014 | 70 | 5 | Applied Physics Letters | AIP | 3.971 | Germany | not mention |
[30] | 41 | Sadovnikov et al. | 2019 | 68 | 9 | Physical Review B | APS | 3.908 | Russia | Sputtering deposition |
[84] | 42 | Rezende et al. | 2016 | 68 | 5 | Journal of Magnetism and Magnetic Materials | Elsevier | 2.993 | Brazil | LPE |
[85] | 43 | Flebus et al. | 2017 | 65 | 8 | Physical Review B | APS | 3.908 | Netherlands | - |
[86] | 44 | Kehlberger et al. | 2015 | 65 | 11 | Physical Review Applied | APS | 4.931 | Germany | PLD |
[87] | 45 | Evelt et al. | 2016 | 63 | 12 | Applied Physics Letters | AIP | 3.971 | Germany | PLD |
[88] | 46 | Bhoi et al. | 2019 | 58 | 7 | Physical Review B | APS | 3.908 | South Korea | Not mention |
[89] | 47 | Du et al. | 2014 | 58 | 4 | Physical Review Applied | APS | 4.931 | USA | Sputtering deposition |
[90] | 48 | Christofi et al. | 2018 | 57 | 4 | Optics Letters | Optica | 3.56 | USA | - |
[91] | 49 | Kimling et al. | 2017 | 57 | 8 | Physical Review Letters | APS | 9.185 | USA | PLD |
[92] | 50 | Wesenberg et al. | 2017 | 56 | 5 | Nature Physics | Nature Publishing Group | 19.68 | USA | Sputtering |
[93] | 51 | Maier et al. | 2016 | 56 | 5 | Physical Review B | APS | 3.908 | Germany | LPE |
[31] | 52 | Dushenko et al. | 2016 | 55 | 9 | Physical Review Letters | APS | 9.185 | Japan | CVD |
[94] | 53 | Howe et al. | 2015 | 55 | 9 | IEEE Magnetics Letters | IEEE | 1.549 | USA | PLD |
[95] | 54 | Meyer et al. | 2014 | 52 | 7 | Applied Physics Letters | AIP | 3.971 | Germany | PLD |
[96] | 55 | Haigh et al. | 2015 | 52 | 4 | Physical Review B | APS | 3.908 | UK | - |
[97] | 56 | Jermain et al. | 2017 | 50 | 9 | Physical Review B | APS | 3.908 | USA | Sputtering |
[98] | 57 | Zare et al. | 2015 | 50 | 3 | Physical Review B | APS | 3.908 | Iran | - |
[99] | 58 | Cornelissen et al. | 2017 | 48 | 8 | Physical Review B | APS | 3.908 | UK | LPE |
[100] | 59 | Mruczkiewicz et al. | 2014 | 48 | 6 | Physical Review B | APS | 3.908 | UK | Chemical etching |
[101] | 60 | Bozhko et al. | 2017 | 47 | 9 | Physical Review Letters | APS | 9.185 | Germany | - |
[65] | 61 | Shi et al. | 2015 | 47 | 7 | Journal of the European Ceramic Society | Elsevier | 5.302 | China | Wet chemical technique |
[102] | 62 | Maier et al. | 2017 | 46 | 8 | Physical Review B | APS | 3.908 | Germany | - |
[7] | 63 | Tang et al. | 2016 | 46 | 9 | Applied Physics Letters | AIP | 3.971 | USA | PLD |
[27] | 64 | Li et al. | 2020 | 45 | 12 | Physical Review Letters | APS | 9.185 | USA | Magnetron sputtering |
[103] | 65 | Fanchiang et al. | 2018 | 44 | 10 | Nature Communications | Nature Research | 17.69 | Taiwan | Sputtering |
[104] | 66 | Sharma and Kuanr | 2018 | 44 | 2 | Journal of Alloys and Compounds | Elsevier | 5.316 | India | Solid state reaction method |
[105] | 67 | An et al. | 2020 | 43 | 12 | Physical Review B | APS | 3.908 | France | LPE |
[61] | 68 | Sokolov et al. | 2016 | 43 | 12 | Journal of Applied Physics | AIP | 2.877 | Russia | PLD |
[106] | 69 | Streib et al. | 2019 | 40 | 4 | Physical Review B | APS | 3.908 | UK | - |
[92] | 70 | Tian et al. | 2015 | 39 | 5 | Applied Physics Letters | AIP | 3.971 | USA | RF magnetron sputtering |
[107] | 71 | Haidar et al. | 2015 | 39 | 6 | Journal of Applied Physics | AIP | 2.877 | Sweeden | PLD |
[108] | 72 | Onbasli et al. | 2014 | 39 | 5 | Optics Express | Optica | USA | PLD | |
[109] | 73 | Jiang et al. | 2016 | 38 | 6 | AIP Advances | AIP | 1.697 | USA | PLD |
[110] | 74 | Rezende et al. | 2014 | 38 | 4 | Physical Review B | APS | 3.908 | Brazil | - |
[111] | 75 | Stenning et al. | 2013 | 38 | 8 | Optics Express | Optica | UK | PLD | |
[112] | 76 | Aakansha et al. | 2017 | 37 | 4 | Ceramics International | Elsevier | 4.527 | India | Solid-state reaction method |
[113] | 77 | Matatagui et al. | 2015 | 37 | 5 | Nanoscale | RCS | 8.307 | Mexico | - |
[114] | 78 | Lin et al. | 2013 | 37 | 3 | Applied Physics Letters | AIP | 3.971 | USA | PLD |
[115] | 79 | Dulal et al. | 2016 | 36 | 7 | ACS Photonics | ACS | 7.15 | USA | Sputter epitaxy |
[116] | 80 | Rückriegel and Kopietz | 2015 | 36 | 2 | Physical Review Letters | APS | 9.185 | Germany | Equation-based experiment |
[117] | 81 | Qin et al. | 2018 | 35 | 6 | Nature Communications | Nature Research | 17.69 | Finland | PLD |
[118] | 82 | Cramer et al. | 2018 | 35 | 8 | Nano Letters | ACS | 11.19 | Germany | LPE |
[119] | 83 | Jiang et al. | 2014 | 35 | 6 | Applied Physics Letters | AIP | 3.971 | USA | PLD |
[120] | 84 | Davies et al. | 2015 | 34 | 6 | Applied Physics Letters | AIP | 3.971 | UK | - |
[121] | 85 | Saiga et al. | 2014 | 34 | 7 | Applied Physics Express | IOP | 2.895 | Japan | Sputtering |
[122] | 86 | Gruszecki et al. | 2015 | 33 | 7 | Physical Review B | APS | 3.908 | Poland | - |
[34] | 87 | Aldbea et al. | 2014 | 33 | 3 | Applied Surface Science | Elsevier | 6.707 | Malaysia | Sol-gel |
[123] | 88 | Wimmer et al. | 2019 | 32 | 8 | Physical Review Letters | APS | 9.185 | Germany | - |
[28] | 89 | Li et al. | 2016 | 30 | 6 | Nanoscale | RSC | 8.307 | USA | Magnetron sputtering |
[124] | 90 | Fakhrul et al. | 2019 | 28 | 6 | Advanced Optical Materials | Wiley-VCH | 10.05 | USA | PLD |
[125] | 91 | Vasili et al. | 2017 | 28 | 11 | Physical Review B | APS | 3.908 | Spain | - |
[126] | 92 | Sposito et. al. | 2013 | 28 | 5 | Optical Materials Express | Optica | 3.074 | UK | PLD |
[127] | 93 | Cooper et al. | 2017 | 27 | 10 | Physical Review B | APS | 3.908 | UK | Magnetron sputtering |
[128] | 94 | Gallagher et al. | 2016 | 27 | 14 | Applied Physics Letters | APS | 3.971 | USA | - |
[129] | 95 | Thiery et al. | 2018 | 27 | 18 | Physical Review B | APS | 3.908 | France | LPE |
[35] | 96 | Jesenska et al. | 2016 | 27 | 9 | Optical Materials Express | Optica | 3.074 | Japan | MOD |
[33] | 97 | Ibrahim and Arsad | 2016 | 26 | 2 | Journal of Magnetism and Magnetic Materials | Elsevier | 2.993 | Malaysia | Sol-gel |
[130] | 98 | Schmidt et al. | 2020 | 26 | 5 | Physica Status Solidi (B) | Wiley-VCH | 3.277 | Germany | PLD |
[131] | 99 | Zhu et al. | 2017 | 26 | 8 | Applied Physics Letters | AIP | 3.971 | USA | RF magnetron sputtering |
[132] | 100 | Gomez-Perez et al. | 2018 | 26 | 11 | Physical Review Applied | APS | 4.931 | Spain | PLD |
Rank | Ref | NC | No. of Authors | Methodology | Characterization of Sample | Scope/Outcome/Advantages | Application |
---|---|---|---|---|---|---|---|
1 | [13] | 383 | 5 | PLD | AHE, AFM | Proximity-induced YIG ferromagnetic in graphene can lead to novel transport phenomena. | Spintronic |
2 | [36] | 377 | 8 | - | FMR | Exchange-coupled gallium-doped YIG film is excellent for cavity QED investigations. | Microwave |
3 | [18] | 349 | 21 | MBE | SMR | This allows SMR to measure spin diffusion length and spin Hall angle in NMs. SMR is a novel, simple magnetoresistance effect that enables new spin current investigations. | Spintronic |
4 | [68] | 227 | 8 | - | ISHE voltage measurement | Provides a different mechanism for the LSSE that arises from the flow of magnons through the thickness of the ferromagnetic insulator (FMI) film. | Spintronic |
5 | [8] | 202 | 9 | PLD | XRD, XPS, AFM, FMR | PLD growth of low FMR linewidth YIG nanofilms and their linewidth in FMR characteristics. Linewidth correlates with surface roughness and surface Fe deficiency, indicating that surface defect-associated two-magnon scattering contributes significantly. | Spintronic |
6 | [14] | 201 | 14 | PLD | FMR | Damping phenomena may be caused by ferromagnetic ordering in Pt atomic layers near the YIG=Pt interface | Microwave |
7 | [69] | 193 | 5 | - | SMR | YIG’s magnon chemical potential is vital for energy and spin transport in magnetic insulators. | Spintronic |
8 | [20] | 185 | 8 | LPE | SQUID | Strong proximity effects in Pt on magnetic insulators and their contribution to spin-related studies. | Spintronic |
9 | [15] | 179 | 16 | PLD | FMR, XRD, SQUID, | Identify spin waves using Pt’s inverse spin-Hall effect (ISHE) | Spintronic |
10 | [5] | 171 | 7 | Sputtering deposition | AFM, XRD, X-ray reflectivity, AFM, SQUID, FMR | Presented sputters nm-thick YIG films with low damping. | Microwave |
Subject Categories | Rank | References | Range Years | Citation Range | Frequency Percentage (%) |
---|---|---|---|---|---|
Magnetic characterization | 1, 3–9, 11–59, 62–65, 67–78, 80–100 | [2,6,7,8,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,30,31,33,34,35,37,59,61,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,91,92,93,94,95,96,97,98,99,100,102,103,105,106,107,108,109,110,111,112,114,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132] | 2012–2020 | 26–383 | 91 |
Preparation/Fabrication of YIG | 1–2, 5–6, 8–12, 14, 16, 18, 21, 26–30, 32, 34–38, 41, 44, 53, 58, 61–63, 65–66, 68, 70–73, 75–76, 78–79, 81–82, 85, 87, 89, 90, 92–94, 96–100 | [5,6,7,8,11,12,13,14,15,16,17,19,20,21,23,24,25,26,28,30,33,34,35,36,59,61,65,77,79,80,81,82,86,92,94,99,102,103,104,107,108,109,111,112,114,115,117,118,121,124,126,127,128,130,131,132] | 2012–2020 | 26–383 | 56 |
Magnon | 4–7, 9, 11–18, 21–24, 28, 30–34, 36, 39, 41–43, 45–46, 49–51, 55–60, 62, 64, 67–69, 71, 74, 80–81, 84, 88–89, 95, 98–100 | [2,6,8,14,15,16,17,19,21,23,24,25,27,28,30,61,68,69,70,71,73,74,75,78,79,80,82,83,84,85,87,88,91,92,93,96,97,98,99,100,101,102,105,106,107,110,116,117,120,123,129,130,131,132] | 2012–2020 | 26–227 | 54 |
Nanomaterials | 5, 7, 9–14, 16, 18, 21, 26–30, 32, 34–38, 41, 44, 53, 58, 61–63, 65–66, 68, 70–73, 78–79, 81, 85, 87–91, 93–100 | [2,5,6,8,11,12,15,16,17,19,21,22,25,26,27,28,30,31,33,34,35,61,65,69,72,76,77,78,81,82,84,90,92,94,95,99,104,107,108,109,114,115,117,121,123,124,125,127,128,129,130,131,132] | 2012–2020 | 26–202 | 53 |
Ferromagnetic/Ferrimagnetic resonance (FMR) | 2, 5–6, 9–10, 13, 15–16, 19, 20, 24, 30–31, 34, 41, 44, 46–47, 51–53, 55–57, 63, 65–68, 71, 75, 81, 84, 89, 91–92, 94, 98–99 | [2,5,6,7,8,14,15,22,25,28,30,31,36,61,70,72,75,78,80,86,88,89,93,94,96,97,98,103,104,105,107,111,117,120,125,126,128,130,131] | 2012–2020 | 36–377 | 39 |
Magnetic anisotropy | 1–3, 5, 7–9, 12–15, 18, 21, 24, 26–27, 29–30, 34–35, 37, 44, 53, 56, 62, 65–69, 72–73, 86, 88, 91, 94, 98–100 | [2,8,11,12,13,15,17,18,19,20,21,23,25,26,36,61,69,70,75,77,80,81,86,94,97,102,103,104,105,106,108,109,122,123,125,128,130,131,132] | 2012–2020 | 26–383 | 39 |
Spintronic | 1, 4–5, 7–8, 10, 12, 15–16, 20–21, 23, 25–26, 28–30, 35–36, 42, 44, 50, 65, 71, 73–74, 82, 89, 94, 99–100 | [5,6,8,13,19,20,22,23,24,25,26,28,68,69,70,74,76,77,81,82,84,86,92,103,107,109,110,118,128,130,131,132] | 2012–2020 | 26–383 | 32 |
Spin-wave | 4, 7, 9, 11–12, 15, 17, 21, 23, 31–32, 34, 39, 41–45, 51, 57, 59, 64, 68–69, 77, 80–81, 84, 88, 98, 99 | [15,16,19,23,27,30,61,68,69,70,71,74,78,79,80,83,84,85,86,87,93,98,100,106,113,116,117,120,123,130,131] | 2013–2020 | 26–227 | 31 |
Spin Hall effect (SHE) | 1, 3, 9, 11, 15, 18, 20, 23, 24–25, 28–29, 35, 42–43, 45, 50–52, 54–55, 65, 70, 73, 78, 82–83, 93, 100 | [13,15,16,18,21,22,24,31,70,74,75,76,77,81,84,85,87,92,93,95,96,103,109,114,118,119,127,132] | 2013–2018 | 26–383 | 29 |
Microwave | 2, 6, 11, 13, 15, 19, 21, 31, 34, 51, 53, 55, 57, 59–62, 65–68, 75, 77, 81, 84 | [2,14,16,23,36,61,65,70,72,78,80,93,94,96,98,100,101,102,103,104,105,111,113,117,120] | 2013–2020 | 34–377 | 25 |
Spin-Seebeck effect (SSE) | 3–4, 7, 9, 11, 14–15, 17, 22, 25, 28, 35–36, 42–43, 49, 58, 69–70, 74, 82, 85, 93 | [15,16,17,18,24,68,69,70,71,73,76,81,82,84,85,91,92,99,106,110,118,121,127] | 2013–2019 | 27–349 | 23 |
Dopant YIG | 2, 27, 30, 37, 44, 48, 61, 65, 72, 76, 78, 83, 87, 90, 91, 96–97 | [11,12,25,33,34,35,36,65,86,90,103,108,112,114,124,125] | 2012–2019 | 26–377 | 16 |
Magneto-optical activity/device | 27–28, 35, 37, 44, 48, 68, 72, 79, 90–91, 96 | [11,12,24,35,61,81,86,90,108,115,119,124,125] | 2012–2019 | 27–89 | 13 |
Magneto-optical (MO) materials | 27, 37, 44, 48, 66, 72, 79, 87, 90–91, 96–97 | [11,12,33,34,35,86,90,104,108,115,124,125] | 2012–2019 | 26–89 | 12 |
Topological insulator | 12, 29, 35–36, 65, 73, 83 | [19,77,81,82,103,109,119] | 2014–2018 | 35–153 | 7 |
Characterization | Measurement | References | Frequency Percentage (%) |
---|---|---|---|
Structural properties | XRD | [5,6,8,11,15,19,28,33,34,59,61,65,66,75,77,80,82,86,89,92,94,95,104,108,109,112,117,124,126,128] | 30 |
XRR | [2,5,6,8,26,86,91] | 7 | |
XPS | [8,25,104,130] | 4 | |
ELS | [128] | 1 | |
Raman spectroscopy | [22] | 1 | |
Morphological properties | AFM | [2,5,6,7,8,11,12,13,19,25,33,34,61,75,82,89,107,108,109,119,124] | 21 |
TEM | [12,26,35,94,103,108,117,120,121] | 9 | |
SEM | [6,28,59,104,113,124,126,131] | 8 | |
FESEM | [11,33,34,65,66] | 5 | |
HRTEM | [26,104,124,132] | 4 | |
FIB | [124] | 1 | |
Magnetic properties | VSM | [7,12,19,25,26,33,34,81,86,92,94,104,109,119,128,131] | 16 |
VNA | [2,7,25,28,75,78,86,102,117] | 9 | |
SQUID | [5,15,20,78,92] | 5 | |
XMCD | [20,81,125,132] | 4 | |
AHE | [13] | 1 | |
Magneto-optical properties | MOKE | [19,35,81,86] | 4 |
Faraday rotation | [90,115,124] | 3 | |
Electrical properties | Hall effect | [18,68,82,101,114,119,127] | 7 |
XAS | [125] | 1 | |
Optical properties | UV-Vis | [33] | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arsad, A.Z.; Zuhdi, A.W.M.; Ibrahim, N.B.; Hannan, M.A. Recent Advances in Yttrium Iron Garnet Films: Methodologies, Characterization, Properties, Applications, and Bibliometric Analysis for Future Research Directions. Appl. Sci. 2023, 13, 1218. https://doi.org/10.3390/app13021218
Arsad AZ, Zuhdi AWM, Ibrahim NB, Hannan MA. Recent Advances in Yttrium Iron Garnet Films: Methodologies, Characterization, Properties, Applications, and Bibliometric Analysis for Future Research Directions. Applied Sciences. 2023; 13(2):1218. https://doi.org/10.3390/app13021218
Chicago/Turabian StyleArsad, Akmal Z., Ahmad Wafi Mahmood Zuhdi, Noor Baa’yah Ibrahim, and Mahammad A. Hannan. 2023. "Recent Advances in Yttrium Iron Garnet Films: Methodologies, Characterization, Properties, Applications, and Bibliometric Analysis for Future Research Directions" Applied Sciences 13, no. 2: 1218. https://doi.org/10.3390/app13021218
APA StyleArsad, A. Z., Zuhdi, A. W. M., Ibrahim, N. B., & Hannan, M. A. (2023). Recent Advances in Yttrium Iron Garnet Films: Methodologies, Characterization, Properties, Applications, and Bibliometric Analysis for Future Research Directions. Applied Sciences, 13(2), 1218. https://doi.org/10.3390/app13021218