A Composited Regret-Theory-Based Spherical Fuzzy Prioritization Approach for Moving High-Tech Manufacturing in Southeast Asia
Abstract
:1. Introduction
2. Related Works
No. | Author | Year | Method | Fuzzy Sets |
---|---|---|---|---|
1 | S. Yao [10] | 2021 | AHP and VIKOR | Triangular fuzzy |
2 | Bakir and Atalik [11] | 2021 | AHP and MARCOS | Triangular fuzzy |
3 | Ilyas et al. [7] | 2021 | BWM and TOPSIS | - |
4 | G. Taddese et al. [8] | 2021 | AHP and VIKOR | - |
5 | Liu et al. [12] | 2021 | TODIM and ELECTRE II | Hesitant fuzzy |
6 | Wanget al. [31] | 2021 | AHP and TOPSIS | Triangular fuzzy |
7 | Valmohammadi et al. [32] | 2021 | AHP and TOPSIS | Triangular fuzzy |
8 | Seker and Aydin [33] | 2022 | SWARA and WASPAS | Intuitionistic fuzzy |
9 | Le et al. [34] | 2022 | DEA, AHP and CoCoSo | Spherical fuzzy |
10 | Salimian et al. [35] | 2022 | VIKOR and MARCOS | Intuitionistic fuzzy |
11 | Rezvani et al. [36] | 2022 | GIS and OWA | - |
This study | Wang et al. | 2022 | SfRDMA and DEA | Spherical fuzzy |
3. Methodology
3.1. Preliminaries
3.1.1. Spherical Fuzzy Sets
3.1.2. Regret Theory
3.2. Composited Group Decision-Making Approach
3.2.1. Super-Efficiency Slack-Based Model (Super-SBM)
3.2.2. Spherical Fuzzy Regret-Theory-Based Decision-Making Approach (SfRDMA)
3.2.3. Composite-Scoring Function
4. Numerical Results
4.1. Efficiency Determination by Super-SBM
4.2. Effectiveness Determination by SfRDMA
4.3. Final Prioritization by Composite Scoring Function
4.4. Sensitivity Analysis
4.4.1. Criteria Weights
4.4.2. Psychological Behavior Coefficients
4.5. Methodology Comparison
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Country | Inputs | Outputs | |||
---|---|---|---|---|---|
Inflation (%) | Cost to Export (US$) | High-Technology Exports (US$) | GDP (US$) | Ease of Doing Business Score (0 = Lowest Performance to 100 = Best Performance) | |
Brunei Darussalam | 15 | 340 | 15,965 | 14,007 | 70 |
Viet Nam | 3 | 290 | 101,534,393 | 362,638 | 70 |
Lao PDR | 4 | 140 | 235,751 | 18,827 | 51 |
Malaysia | 6 | 213 | 108,683,180 | 372,701 | 81 |
India | 10 | 212 | 27,446,654 | 3,173,398 | 71 |
Indonesia | 6 | 211 | 7,492,073 | 1,186,093 | 70 |
Philippines | 2 | 456 | 38,194,373 | 394,086 | 63 |
Thailand | 2 | 223 | 45,837,990 | 505,982 | 80 |
Myanmar | 5 | 432 | 296,936 | 65,068 | 47 |
Singapore | 4 | 335 | 159,927,958 | 396,987 | 86 |
Cambodia | 1 | 375 | 308,424 | 26,961 | 54 |
Bangladesh | 4 | 408 | 93,608 | 416,265 | 45 |
Sri Lanka | 8 | 366 | 94,326 | 84,519 | 62 |
Country | Efficiency Score | Country | Efficiency Score |
---|---|---|---|
Brunei Darussalam | 0.00019 | Philippines | 0.59500 |
Viet Nam | 0.84773 | Thailand | 1.28901 |
Lao PDR | 0.00914 | Myanmar | 0.00432 |
Malaysia | 1.14383 | Singapore | 1.08808 |
India | 1.29069 | Cambodia | 1.09459 |
Indonesia | 0.24190 | Bangladesh | 0.00162 |
Sri Lanka | 0.00125 |
Expert | Qualification | Year of Experience | Expertise Linguistic Evaluation | Spherical Fuzzy Value |
---|---|---|---|---|
Expert 1 | Master of Science | 8 | High | (0.6, 0.2, 0.35) |
Expert 2 | Doctor of Philosophy | 6 | High | (0.6, 0.2, 0.35) |
Expert 3 | Master of Science | 5 | Moderate | (0.35, 0.25, 0.25) |
Expert 4 | Doctor of Philosophy | 5 | High | (0.6, 0.2, 0.35) |
Expert 5 | Master of Engineering | 8 | High | (0.6, 0.2, 0.35) |
Expert 6 | Doctor of Philosophy | 7 | Very high | (0.85, 0.15, 0.45) |
Expert 7 | Master of Science | 8 | High | (0.6, 0.2, 0.35) |
Expert 8 | Doctor of Philosophy | 6 | High | (0.6, 0.2, 0.35) |
Expert 9 | Master of Science | 10 | Very high | (0.85, 0.15, 0.45) |
Expert 10 | Doctor of Philosophy | 7 | Very high | (0.85, 0.15, 0.45) |
Criteria | EFC-1 | EFC-2 | EFC-3 | EFC-4 | EFC-5 |
---|---|---|---|---|---|
EFC-1 | (0, 0.3, 0.2) | (0.49, 0.24, 0.39) | (0.52, 0.23, 0.38) | (0.4, 0.25, 0.28) | (0.5, 0.24, 0.39) |
EFC-2 | (0.57, 0.22, 0.44) | (0, 0.3, 0.2) | (0.59, 0.22, 0.44) | (0.62, 0.22, 0.47) | (0.68, 0.2, 0.49) |
EFC-3 | (0.47, 0.24, 0.38) | (0.68, 0.2, 0.48) | (0, 0.3, 0.2) | (0.69, 0.2, 0.49) | (0.67, 0.2, 0.47) |
EFC-4 | (0.5, 0.24, 0.38) | (0.7, 0.19, 0.48) | (0.44, 0.26, 0.37) | (0, 0.3, 0.2) | (0.6, 0.21, 0.44) |
EFC-5 | (0.63, 0.22, 0.47) | (0.73, 0.19, 0.49) | (0.64, 0.21, 0.47) | (0.62, 0.21, 0.44) | (0, 0.3, 0.2) |
EFC-6 | (0.56, 0.23, 0.45) | (0.68, 0.2, 0.49) | (0.49, 0.24, 0.39) | (0.58, 0.23, 0.44) | (0.49, 0.24, 0.38) |
EFC-7 | (0.52, 0.24, 0.39) | (0.69, 0.2, 0.48) | (0.57, 0.23, 0.44) | (0.62, 0.22, 0.47) | (0.77, 0.18, 0.48) |
EFC-8 | (0.64, 0.21, 0.47) | (0.59, 0.21, 0.4) | (0.66, 0.21, 0.47) | (0.63, 0.21, 0.47) | (0.58, 0.22, 0.44) |
EFC-9 | (0.51, 0.23, 0.32) | (0.56, 0.23, 0.44) | (0.5, 0.23, 0.32) | (0.51, 0.23, 0.39) | (0.56, 0.23, 0.44) |
EFC-10 | (0.54, 0.24, 0.44) | (0.51, 0.24, 0.39) | (0.51, 0.23, 0.39) | (0.58, 0.22, 0.4) | (0.53, 0.23, 0.39) |
Criteria | EFC-6 | EFC-7 | EFC-8 | EFC-9 | EFC-10 |
EFC-1 | (0.57, 0.22, 0.39) | (0.57, 0.22, 0.44) | (0.61, 0.22, 0.47) | (0.57, 0.23, 0.44) | (0.58, 0.22, 0.44) |
EFC-2 | (0.64, 0.21, 0.47) | (0.65, 0.21, 0.47) | (0.76, 0.18, 0.49) | (0.65, 0.21, 0.47) | (0.73, 0.19, 0.49) |
EFC-3 | (0.67, 0.2, 0.46) | (0.61, 0.22, 0.45) | (0.61, 0.22, 0.47) | (0.59, 0.21, 0.4) | (0.62, 0.22, 0.48) |
EFC-4 | (0.62, 0.21, 0.44) | (0.57, 0.23, 0.44) | (0.39, 0.26, 0.28) | (0.38, 0.25, 0.27) | (0.66, 0.2, 0.47) |
EFC-5 | (0.59, 0.22, 0.44) | (0.47, 0.24, 0.31) | (0.52, 0.23, 0.39) | (0.46, 0.23, 0.3) | (0.69, 0.2, 0.49) |
EFC-6 | (0, 0.3, 0.2) | (0.48, 0.24, 0.38) | (0.53, 0.24, 0.44) | (0.47, 0.25, 0.39) | (0.63, 0.22, 0.48) |
EFC-7 | (0.65, 0.21, 0.47) | (0, 0.3, 0.2) | (0.59, 0.22, 0.44) | (0.59, 0.22, 0.44) | (0.65, 0.21, 0.47) |
EFC-8 | (0.65, 0.21, 0.47) | (0.66, 0.21, 0.49) | (0, 0.3, 0.2) | (0.5, 0.24, 0.38) | (0.72, 0.2, 0.49) |
EFC-9 | (0.63, 0.22, 0.48) | (0.71, 0.19, 0.48) | (0.57, 0.22, 0.4) | (0, 0.3, 0.2) | (0.74, 0.19, 0.5) |
EFC-10 | (0.61, 0.23, 0.48) | (0.5, 0.23, 0.38) | (0.65, 0.2, 0.47) | (0.7, 0.2, 0.5) | (0, 0.3, 0.2) |
Criteria | EFC-1 | EFC-2 | EFC-3 | EFC-4 | EFC-5 |
---|---|---|---|---|---|
EFC-1 | (0.57, 0.41, 0.44) | (0.72, 0.37, 0.5) | (0.65, 0.39, 0.46) | (0.66, 0.38, 0.46) | (0.69, 0.38, 0.49) |
EFC-2 | (0.77, 0.36, 0.54) | (0.77, 0.37, 0.52) | (0.77, 0.36, 0.53) | (0.82, 0.35, 0.56) | (0.84, 0.34, 0.57) |
EFC-3 | (0.73, 0.37, 0.52) | (0.84, 0.34, 0.56) | (0.65, 0.39, 0.47) | (0.79, 0.35, 0.55) | (0.8, 0.34, 0.55) |
EFC-4 | (0.65, 0.39, 0.47) | (0.75, 0.35, 0.51) | (0.64, 0.39, 0.46) | (0.61, 0.4, 0.44) | (0.71, 0.37, 0.49) |
EFC-5 | (0.72, 0.36, 0.51) | (0.81, 0.34, 0.54) | (0.72, 0.36, 0.5) | (0.76, 0.35, 0.51) | (0.68, 0.38, 0.47) |
EFC-6 | (0.66, 0.39, 0.5) | (0.75, 0.36, 0.54) | (0.65, 0.4, 0.48) | (0.7, 0.38, 0.51) | (0.7, 0.38, 0.51) |
EFC-7 | (0.74, 0.37, 0.52) | (0.84, 0.34, 0.57) | (0.74, 0.36, 0.52) | (0.79, 0.35, 0.54) | (0.82, 0.33, 0.55) |
EFC-8 | (0.75, 0.36, 0.53) | (0.82, 0.34, 0.55) | (0.75, 0.36, 0.52) | (0.79, 0.35, 0.54) | (0.79, 0.35, 0.54) |
EFC-9 | (0.7, 0.37, 0.47) | (0.78, 0.35, 0.52) | (0.69, 0.37, 0.47) | (0.73, 0.36, 0.5) | (0.75, 0.36, 0.51) |
EFC-10 | (0.69, 0.38, 0.5) | (0.75, 0.36, 0.52) | (0.68, 0.38, 0.49) | (0.72, 0.36, 0.5) | (0.73, 0.37, 0.51) |
Criteria | EFC-6 | EFC-7 | EFC-8 | EFC-9 | EFC-10 |
EFC-1 | (0.73, 0.36, 0.51) | (0.68, 0.37, 0.49) | (0.69, 0.38, 0.5) | (0.65, 0.38, 0.47) | (0.77, 0.35, 0.53) |
EFC-2 | (0.86, 0.33, 0.58) | (0.81, 0.34, 0.56) | (0.83, 0.33, 0.56) | (0.78, 0.35, 0.53) | (0.93, 0.32, 0.61) |
EFC-3 | (0.83, 0.34, 0.57) | (0.78, 0.35, 0.54) | (0.78, 0.35, 0.54) | (0.74, 0.36, 0.5) | (0.88, 0.34, 0.59) |
EFC-4 | (0.74, 0.36, 0.51) | (0.69, 0.37, 0.49) | (0.67, 0.38, 0.46) | (0.63, 0.39, 0.43) | (0.79, 0.34, 0.53) |
EFC-5 | (0.8, 0.35, 0.53) | (0.73, 0.36, 0.48) | (0.74, 0.36, 0.5) | (0.7, 0.37, 0.46) | (0.86, 0.33, 0.56) |
EFC-6 | (0.65, 0.4, 0.49) | (0.68, 0.39, 0.5) | (0.69, 0.39, 0.51) | (0.65, 0.4, 0.48) | (0.78, 0.36, 0.56) |
EFC-7 | (0.84, 0.34, 0.57) | (0.69, 0.38, 0.49) | (0.78, 0.35, 0.54) | (0.74, 0.36, 0.51) | (0.88, 0.33, 0.59) |
EFC-8 | (0.83, 0.34, 0.57) | (0.78, 0.35, 0.54) | (0.69, 0.38, 0.49) | (0.73, 0.37, 0.5) | (0.89, 0.33, 0.59) |
EFC-9 | (0.79, 0.35, 0.54) | (0.76, 0.35, 0.51) | (0.74, 0.36, 0.5) | (0.62, 0.4, 0.43) | (0.85, 0.33, 0.56) |
EFC-10 | (0.77, 0.36, 0.54) | (0.71, 0.37, 0.5) | (0.73, 0.36, 0.52) | (0.7, 0.37, 0.5) | (0.72, 0.38, 0.51) |
Country | EFC-1 | EFC-2 | EFC-3 | EFC-4 | EFC-5 |
---|---|---|---|---|---|
Brunei Darussalam | (0.59, 0.44, 0.37) | (0.65, 0.38, 0.28) | (0.78, 0.23, 0.26) | (0.69, 0.33, 0.33) | (0.68, 0.33, 0.32) |
Viet Nam | (0.65, 0.37, 0.37) | (0.67, 0.34, 0.35) | (0.68, 0.34, 0.29) | (0.71, 0.3, 0.33) | (0.67, 0.36, 0.3) |
Lao PDR | (0.69, 0.32, 0.31) | (0.59, 0.42, 0.35) | (0.74, 0.29, 0.24) | (0.64, 0.39, 0.29) | (0.63, 0.39, 0.3) |
Malaysia | (0.7, 0.31, 0.28) | (0.59, 0.44, 0.29) | (0.65, 0.36, 0.33) | (0.55, 0.46, 0.39) | (0.77, 0.24, 0.24) |
India | (0.58, 0.44, 0.36) | (0.71, 0.32, 0.26) | (0.56, 0.46, 0.37) | (0.81, 0.2, 0.2) | (0.63, 0.39, 0.3) |
Indonesia | (0.72, 0.3, 0.3) | (0.69, 0.33, 0.28) | (0.71, 0.31, 0.27) | (0.68, 0.34, 0.3) | (0.74, 0.27, 0.27) |
Philippines | (0.69, 0.33, 0.34) | (0.63, 0.39, 0.32) | (0.64, 0.38, 0.32) | (0.67, 0.35, 0.35) | (0.76, 0.26, 0.26) |
Thailand | (0.71, 0.29, 0.3) | (0.68, 0.36, 0.28) | (0.57, 0.46, 0.37) | (0.71, 0.31, 0.3) | (0.75, 0.27, 0.27) |
Myanmar | (0.59, 0.42, 0.34) | (0.63, 0.39, 0.33) | (0.72, 0.29, 0.3) | (0.66, 0.36, 0.32) | (0.57, 0.44, 0.38) |
Singapore | (0.68, 0.34, 0.33) | (0.63, 0.39, 0.36) | (0.68, 0.33, 0.34) | (0.76, 0.25, 0.28) | (0.52, 0.51, 0.33) |
Cambodia | (0.7, 0.32, 0.3) | (0.67, 0.35, 0.3) | (0.58, 0.44, 0.37) | (0.66, 0.35, 0.32) | (0.75, 0.26, 0.25) |
Bangladesh | (0.59, 0.43, 0.33) | (0.66, 0.36, 0.35) | (0.65, 0.37, 0.35) | (0.7, 0.31, 0.29) | (0.76, 0.25, 0.23) |
Sri Lanka | (0.68, 0.33, 0.31) | (0.69, 0.34, 0.29) | (0.76, 0.24, 0.26) | (0.69, 0.34, 0.27) | (0.58, 0.43, 0.38) |
Country | EFC-6 | EFC-7 | EFC-8 | EFC-9 | EFC-10 |
Brunei Darussalam | (0.72, 0.29, 0.31) | (0.67, 0.35, 0.35) | (0.65, 0.36, 0.33) | (0.68, 0.33, 0.31) | (0.74, 0.27, 0.27) |
Viet Nam | (0.79, 0.21, 0.23) | (0.71, 0.31, 0.3) | (0.72, 0.3, 0.28) | (0.75, 0.27, 0.28) | (0.62, 0.4, 0.34) |
Lao PDR | (0.62, 0.41, 0.31) | (0.69, 0.33, 0.3) | (0.68, 0.34, 0.29) | (0.61, 0.41, 0.32) | (0.74, 0.28, 0.3) |
Malaysia | (0.67, 0.35, 0.32) | (0.74, 0.28, 0.26) | (0.73, 0.29, 0.28) | (0.65, 0.37, 0.32) | (0.61, 0.41, 0.36) |
India | (0.83, 0.17, 0.17) | (0.66, 0.36, 0.34) | (0.63, 0.39, 0.34) | (0.68, 0.34, 0.3) | (0.66, 0.35, 0.3) |
Indonesia | (0.69, 0.33, 0.29) | (0.66, 0.36, 0.3) | (0.53, 0.47, 0.42) | (0.74, 0.28, 0.22) | (0.73, 0.29, 0.27) |
Philippines | (0.67, 0.34, 0.33) | (0.65, 0.38, 0.27) | (0.64, 0.38, 0.32) | (0.64, 0.38, 0.34) | (0.68, 0.33, 0.36) |
Thailand | (0.59, 0.44, 0.33) | (0.67, 0.35, 0.3) | (0.74, 0.28, 0.3) | (0.72, 0.3, 0.3) | (0.73, 0.29, 0.26) |
Myanmar | (0.76, 0.25, 0.28) | (0.65, 0.37, 0.31) | (0.74, 0.27, 0.27) | (0.74, 0.28, 0.29) | (0.62, 0.39, 0.38) |
Singapore | (0.69, 0.33, 0.29) | (0.57, 0.45, 0.35) | (0.71, 0.31, 0.27) | (0.73, 0.28, 0.27) | (0.64, 0.38, 0.33) |
Cambodia | (0.66, 0.36, 0.28) | (0.52, 0.49, 0.41) | (0.63, 0.4, 0.31) | (0.73, 0.28, 0.28) | (0.68, 0.34, 0.3) |
Bangladesh | (0.65, 0.36, 0.35) | (0.71, 0.31, 0.27) | (0.61, 0.41, 0.36) | (0.68, 0.32, 0.33) | (0.76, 0.25, 0.26) |
Sri Lanka | (0.68, 0.35, 0.3) | (0.79, 0.22, 0.23) | (0.69, 0.33, 0.32) | (0.67, 0.35, 0.3) | (0.65, 0.37, 0.34) |
Country | EFC-1 | EFC-2 | EFC-3 | EFC-4 | EFC-5 | EFC-6 | EFC-7 | EFC-8 | EFC-9 | EFC-10 |
---|---|---|---|---|---|---|---|---|---|---|
Brunei Darussalam | 0.052 | 0.151 | 0.269 | 0.131 | 0.134 | 0.170 | 0.103 | 0.106 | 0.143 | 0.222 |
Viet Nam | 0.079 | 0.100 | 0.149 | 0.146 | 0.139 | 0.321 | 0.162 | 0.188 | 0.221 | 0.079 |
Lao PDR | 0.147 | 0.066 | 0.246 | 0.131 | 0.117 | 0.108 | 0.148 | 0.154 | 0.093 | 0.199 |
Malaysia | 0.178 | 0.112 | 0.101 | 0.031 | 0.283 | 0.122 | 0.230 | 0.200 | 0.115 | 0.064 |
India | 0.056 | 0.204 | 0.047 | 0.376 | 0.115 | 0.436 | 0.103 | 0.090 | 0.149 | 0.128 |
Indonesia | 0.171 | 0.170 | 0.193 | 0.141 | 0.222 | 0.163 | 0.129 | 0.014 | 0.272 | 0.214 |
Philippines | 0.122 | 0.098 | 0.101 | 0.100 | 0.247 | 0.116 | 0.158 | 0.110 | 0.091 | 0.103 |
Thailand | 0.171 | 0.160 | 0.045 | 0.168 | 0.228 | 0.083 | 0.145 | 0.188 | 0.177 | 0.221 |
Myanmar | 0.073 | 0.094 | 0.180 | 0.117 | 0.043 | 0.237 | 0.120 | 0.225 | 0.195 | 0.059 |
Singapore | 0.117 | 0.072 | 0.116 | 0.233 | 0.071 | 0.163 | 0.063 | 0.193 | 0.217 | 0.103 |
Cambodia | 0.155 | 0.143 | 0.050 | 0.119 | 0.244 | 0.149 | 0.019 | 0.110 | 0.203 | 0.148 |
Bangladesh | 0.079 | 0.097 | 0.090 | 0.168 | 0.281 | 0.092 | 0.198 | 0.066 | 0.126 | 0.257 |
Sri Lanka | 0.132 | 0.156 | 0.248 | 0.178 | 0.045 | 0.147 | 0.307 | 0.137 | 0.139 | 0.095 |
Country | Effectiveness Score | Country | Effectiveness Score |
---|---|---|---|
Brunei Darussalam | 0.416 | Philippines | 0.179 |
Viet Nam | 0.527 | Thailand | 0.560 |
Lao PDR | 0.346 | Myanmar | 0.228 |
Malaysia | 0.310 | Singapore | 0.292 |
India | 0.572 | Cambodia | 0.248 |
Indonesia | 0.647 | Bangladesh | 0.387 |
Sri Lanka | 0.549 |
References
- Ren, W.; Ji, J. How do environmental regulation and technological innovation affect the sustainable development of marine economy: New evidence from China’s coastal provinces and cities. Mar. Policy 2021, 128, 104468. [Google Scholar] [CrossRef]
- Küçükkale, Y.; Adalı, Z. Analysis of Determinants of the High Technology Export in Turkey: Policy Recommendation for High-Tech Companies. In Management Strategies to Survive in a Competitive Environment; Springer: Berlin/Heidelberg, Germany, 2021; pp. 91–105. [Google Scholar]
- Van den Berg, H.; Lewer, J.J. International Trade and Economic Growth; Routledge: Oxford, UK, 2015. [Google Scholar]
- Easterly, W.; Levine, R. What have we learned from a decade of empirical research on growth? It’s not Factor Accumulation: Stylized Facts and Growth Models. World Bank Econ. Rev. 2001, 15, 177–219. [Google Scholar] [CrossRef]
- Tzeng, G.H.; Shen, K.Y. New Concepts and Trends of Hybrid Multiple Criteria Decision Making; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Shao, M.; Han, Z.; Sun, J.; Xiao, C.; Zhang, S.; Zhao, Y. A review of multi-criteria decision making applications for renewable energy site selection. Renew. Energy 2020, 157, 377–403. [Google Scholar] [CrossRef]
- Ilyas, M.; Carpitella, S.; Zoubir, E. Designing supplier selection strategies under COVID-19 constraints for industrial environments. In The 31st CIRP Design Conference 2021; Elsevier: Amsterdam, The Netherlands, 2021; pp. 589–594. [Google Scholar]
- Taddese, G.; Durieux, S.; Duc, E. Sustainability Performance Evaluation of Faceshield Bracket Manufacturing by Using the Analytic Hierarchy Process. Sustainability 2021, 13, 13883. [Google Scholar] [CrossRef]
- Zadeh, L.A. Fuzzy Sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef] [Green Version]
- Yao, S. Fuzzy-based multi-criteria decision analysis of environmental regulation and green economic efficiency in a post-COVID-19 scenario: The case of China. Environ. Sci. Pollut. Res. Int. 2021, 28, 30675–30701. [Google Scholar] [CrossRef]
- Bakır, M.; Atalık, Ö. Application of Fuzzy AHP and Fuzzy MARCOS Approach for the Evaluation of E-Service Quality in the Airline Industry. Decis. Mak. Appl. Manag. Eng. 2021, 4, 127–152. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, D.; Wang, X.; Zhao, X.; Liu, P. A generalized TODIM-ELECTRE II based integrated decision-making framework for technology selection of energy conservation and emission reduction with unknown weight information. Eng. Appl. Artif. Intell. 2021, 101, 104224. [Google Scholar] [CrossRef]
- Le, M.-T.; Nhieu, N.-L. An Offshore Wind–Wave Energy Station Location Analysis by a Novel Behavioral Dual-Side Spherical Fuzzy Approach: The Case Study of Vietnam. Appl. Sci. 2022, 12, 5201. [Google Scholar] [CrossRef]
- Wu, C.K.; Wang, C.-N.; Le, T.K.T.; Nhieu, N.-L. Sustainable Agritourism Location Investigation in Vietnam by a Spherical Fuzzy Extension of Integrated Decision-Making Approach. Sustainability 2022, 14, 10555. [Google Scholar] [CrossRef]
- Le, M.-T.; Nhieu, N.-L. A Behavior-Simulated Spherical Fuzzy Extension of the Integrated Multi-Criteria Decision-Making Approach. Symmetry 2022, 14, 1136. [Google Scholar] [CrossRef]
- Ghorabaee, M.K.; Zavadskas, E.K.; Amiri, M.; Turskis, Z. Extended EDAS Method for Fuzzy Multi-criteria Decision-making: An Application to Supplier Selection. Int. J. Comput. Commun. Control 2016, 11, 358–371. [Google Scholar] [CrossRef] [Green Version]
- Karaşan, A.; Kahraman, C. A novel interval-valued neutrosophic EDAS method: Prioritization of the United Nations national sustainable development goals. Soft Comput. 2018, 22, 4891–4906. [Google Scholar] [CrossRef]
- Ilieva, G.; Yankova, T.; Klisarova-Belcheva, S. Decision analysis with classic and fuzzy EDAS modifications. Comput. Appl. Math. 2018, 37, 5650–5680. [Google Scholar] [CrossRef]
- Fontela, E.; Gabus, A. Events and economic forecasting models. Futures 1974, 6, 329–333. [Google Scholar] [CrossRef]
- Pribićević, I.; Doljanica, S.; Momčilović, O.; Das, D.K.; Pamučar, D.; Stević, Ž. Novel extension of DEMATEL method by trapezoidal fuzzy numbers and D numbers for management of decision-making processes. Mathematics 2020, 8, 812. [Google Scholar] [CrossRef]
- Si, S.-L.; You, X.-Y.; Liu, H.-C.; Zhang, P. DEMATEL Technique: A Systematic Review of the State-of-the-Art Literature on Methodologies and Applications. Math. Probl. Eng. 2018, 2018, 1–33. [Google Scholar] [CrossRef] [Green Version]
- Gül, S. Spherical fuzzy extension of DEMATEL (SF-DEMATEL). Int. J. Intell. Syst. 2020, 35, 1329–1353. [Google Scholar] [CrossRef]
- Kutlu Gündoğdu, F.; Kahraman, C. Spherical fuzzy sets and spherical fuzzy TOPSIS method. J. Intell. Fuzzy Syst. 2019, 36, 337–352. [Google Scholar] [CrossRef]
- Donyatalab, Y.; Kutlu Gündoğdu, F.; Farid, F.; Seyfi-Shishavan, S.A.; Farrokhizadeh, E.; Kahraman, C. Novel spherical fuzzy distance and similarity measures and their applications to medical diagnosis. Expert Syst. Appl. 2022, 191, 116330. [Google Scholar] [CrossRef]
- Liang, H.; Xiong, W.; Dong, Y. A prospect theory-based method for fusing the individual preference-approval structures in group decision making. Comput. Ind. Eng. 2018, 117, 237–248. [Google Scholar] [CrossRef]
- Ramos, G.M.; Daamen, W.; Hoogendoorn, S. A state-of-the-art review: Developments in utility theory, prospect theory and regret theory to investigate travellers’ behaviour in situations involving travel time uncertainty. Transp. Rev. 2014, 34, 46–67. [Google Scholar] [CrossRef]
- Wang, C.-N.; Nhieu, N.-L.; Dao, T.-H.; Huang, C.-C. Simulation-Based Optimized Weighting TODIM Decision-Making Approach for National Oil Company Global Benchmarking. IEEE Trans. Eng. Manag. 2022, 1–15. [Google Scholar] [CrossRef]
- Wang, C.-N.; Nhieu, N.-L.; Nguyen, H.-P.; Wang, J.-W. Simulation-Based Optimization Integrated Multiple Criteria Decision-Making Framework for Wave Energy Site Selection: A Case Study of Australia. IEEE Access 2021, 9, 167458–167476. [Google Scholar] [CrossRef]
- Bouyssou, D. Using DEA as a tool for MCDM: Some remarks. J. Oper. Res. Soc. 2017, 50, 974–978. [Google Scholar] [CrossRef]
- Tavana, M.; Shaabani, A.; Di Caprio, D.; Bonyani, A. An integrated group fuzzy best-worst method and combined compromise solution with Bonferroni functions for supplier selection in reverse supply chains. Clean. Logist. Supply Chain. 2021, 2, 100009. [Google Scholar] [CrossRef]
- Wang, C.-N.; Pham, T.-D.T.; Nhieu, N.-L. Multi-Layer Fuzzy Sustainable Decision Approach for Outsourcing Manufacturer Selection in Apparel and Textile Supply Chain. Axioms 2021, 10, 262. [Google Scholar] [CrossRef]
- Valmohammadi, C.; Razi, F.F.; Einy, F. Six Sigma Project Selection Using the Hybrid Approach FAHP-FTOPSIS and Grey Relational Analysis Model. IEEE Eng. Manag. Rev. 2021, 49, 134–146. [Google Scholar] [CrossRef]
- Seker, S.; Aydin, N. Assessment of hydrogen production methods via integrated MCDM approach under uncertainty. Int. J. Hydrog. Energy 2022, 47, 3171–3184. [Google Scholar] [CrossRef]
- Le, M.-T.; Nhieu, N.-L.; Pham, T.-D.T. Direct-Use Geothermal Energy Location Multi-Criteria Planning for On-Site Energy Security in Emergencies: A Case Study of Malaysia. Sustainability 2022, 14, 15132. [Google Scholar] [CrossRef]
- Salimian, S.; Mousavi, S.M.; Antucheviciene, J. An Interval-Valued Intuitionistic Fuzzy Model Based on Extended VIKOR and MARCOS for Sustainable Supplier Selection in Organ Transplantation Networks for Healthcare Devices. Sustainability 2022, 14, 3795. [Google Scholar] [CrossRef]
- Rezvani, M.; Nickravesh, F.; Astaneh, A.D.; Kazemi, N. A risk-based decision-making approach for identifying natural-based tourism potential areas. J. Outdoor Recreat. Tour. 2022, 37, 100485. [Google Scholar] [CrossRef]
- Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the efficiency of decision making units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Curtin, J.; McInerney, C.; Gallachóir, B.Ó.; Hickey, C.; Deane, P.; Deeney, P. Quantifying stranding risk for fossil fuel assets and implications for renewable energy investment: A review of the literature. Renew. Sustain. Energy Rev. 2019, 116, 109402. [Google Scholar] [CrossRef]
- Banker, R.D.; Charnes, A.; Cooper, W.W. Some Model for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis. Manag. Sci. 1984, 30, 1078–1092. [Google Scholar] [CrossRef] [Green Version]
- Tone, K. A slacks-based measure of efficiency in data envelopment analysis. Eur. J. Oper. Res. 2001, 130, 498–509. [Google Scholar] [CrossRef] [Green Version]
- Tone, K. A slacks-based measure of super-efficiency in data envelopment analysis. Eur. J. Oper. Res. 2002, 143, 32–41. [Google Scholar] [CrossRef] [Green Version]
- Le, M.-T.; Nhieu, N.-L. A Novel Multi-Criteria Assessment Approach for Post-COVID-19 Production Strategies in Vietnam Manufacturing Industry: OPA–Fuzzy EDAS Model. Sustainability 2022, 14, 4732. [Google Scholar] [CrossRef]
- Liang, Y. An EDAS Method for Multiple Attribute Group Decision-Making under Intuitionistic Fuzzy Environment and Its Application for Evaluating Green Building Energy-Saving Design Projects. Symmetry 2020, 12, 484. [Google Scholar] [CrossRef] [Green Version]
- Deveci, M.; Pamucar, D.; Cali, U.; Kantar, E.; Kolle, K.; Tande, J.O. A hybrid q-rung orthopair fuzzy sets based CoCoSo model for floating offshore wind farm site selection in Norway. CSEE J. Power Energy Syst. 2022, 8, 1261–1280. [Google Scholar] [CrossRef]
- Liu, F.; Aiwu, G.; Lukovac, V.; Vukic, M. A multicriteria model for the selection of the transport service provider: A single valued neutrosophic DEMATEL multicriteria model. Decis. Mak. Appl. Manag. Eng. 2018, 1, 121–130. [Google Scholar] [CrossRef]
- Available online: https://data.worldbank.org/indicator (accessed on 25 October 2022).
- Nong, T.N.-M. A hybrid model for distribution center location selection. Asian J. Shipp. Logist. 2022, 38, 40–49. [Google Scholar] [CrossRef]
- Bait, S.; Lauria, S.M.; Schiraldi, M.M. A risk-based hybrid multi-criteria approach to support managers in the industrial location selection in developing countries: A case study of textile sector in Africa. J. Clean. Prod. 2022, 335, 130325. [Google Scholar] [CrossRef]
- Ulutaş, A.; Karakuş, C.B.; Topal, A. Location selection for logistics center with fuzzy SWARA and CoCoSo methods. J. Intell. Fuzzy Syst. 2020, 38, 4693–4709. [Google Scholar] [CrossRef]
- Ak, M.F.; Derya, A. Selection of humanitarian supply chain warehouse location: A case study based on the MCDM methodology. Avrupa Bilim Ve Teknol. Derg. 2021, 22, 400–409. [Google Scholar]
- Tversky, A.; Kahneman, D. Advances in prospect theory: Cumulative representation of uncertainty. J. Risk Uncertain. 1992, 5, 297–323. [Google Scholar] [CrossRef]
- Berry, M. Strategic planning in small high tech companies. Long Range Plan. 1998, 31, 455–466. [Google Scholar] [CrossRef]
Linguistic Term | Spherical Fuzzy Number |
---|---|
Very high | (0.85, 0.15, 0.45) |
High | (0.60, 0.20, 0.35) |
Moderate | (0.35, 0.25, 0.25) |
Linguistic Term | Spherical Fuzzy Number |
---|---|
No influence | (0.00, 0.30, 0.15) |
Weak influence | (0.35, 0.25, 0.25) |
Moderate influence | (0.60, 0.20, 0.35) |
Strong influence | (0.85, 0.15, 0.45) |
Linguistic Term | Spherical Fuzzy Number | Linguistic Term | Spherical Fuzzy Number |
---|---|---|---|
Absolutely Low | (0.1, 0.9, 0.1) | Slightly High | (0.6, 0.4, 0.4) |
Very Low | (0.2, 0.8, 0.2) | High | (0.7, 0.3, 0.3) |
Low | (0.3, 0.7, 0.3) | Very High | (0.8, 0.2, 0.2) |
Slightly Low | (0.4, 0.6, 0.4) | Absolutely High | (0.9, 0.1, 0.1) |
Neutral | (0.5, 0.5, 0.5) |
Criteria | EFC-1 | EFC-2 | EFC-3 | EFC-4 | EFC-5 | EFC-6 | EFC-7 | EFC-8 | EFC-9 | EFC-10 |
---|---|---|---|---|---|---|---|---|---|---|
EFC-1 | 0.018 | 0.030 | 0.027 | 0.036 | 0.028 | 0.028 | 0.024 | 0.023 | 0.026 | 0.024 |
EFC-2 | 0.020 | 0.035 | 0.025 | 0.023 | 0.021 | 0.016 | 0.022 | 0.023 | 0.028 | 0.019 |
EFC-3 | 0.024 | 0.024 | 0.025 | 0.023 | 0.023 | 0.019 | 0.024 | 0.022 | 0.034 | 0.018 |
EFC-4 | 0.028 | 0.030 | 0.028 | 0.026 | 0.030 | 0.028 | 0.028 | 0.038 | 0.037 | 0.028 |
EFC-5 | 0.027 | 0.037 | 0.032 | 0.038 | 0.035 | 0.034 | 0.047 | 0.039 | 0.048 | 0.034 |
EFC-6 | 0.013 | 0.014 | 0.019 | 0.017 | 0.020 | 0.017 | 0.019 | 0.016 | 0.022 | 0.009 |
EFC-7 | 0.025 | 0.023 | 0.024 | 0.022 | 0.023 | 0.017 | 0.028 | 0.024 | 0.029 | 0.020 |
EFC-8 | 0.018 | 0.032 | 0.022 | 0.023 | 0.024 | 0.016 | 0.019 | 0.028 | 0.033 | 0.017 |
EFC-9 | 0.040 | 0.038 | 0.043 | 0.039 | 0.035 | 0.030 | 0.034 | 0.040 | 0.032 | 0.034 |
EFC-10 | 0.019 | 0.030 | 0.026 | 0.029 | 0.028 | 0.016 | 0.027 | 0.022 | 0.025 | 0.028 |
Country | EFC-1 | EFC-2 | EFC-3 | EFC-4 | EFC-5 | EFC-6 | EFC-7 | EFC-8 | EFC-9 | EFC-10 |
---|---|---|---|---|---|---|---|---|---|---|
Brunei Darussalam | 0.074 | 0.190 | 0.315 | 0.167 | 0.171 | 0.211 | 0.135 | 0.139 | 0.180 | 0.266 |
Viet Nam | 0.108 | 0.132 | 0.188 | 0.183 | 0.176 | 0.368 | 0.202 | 0.230 | 0.265 | 0.107 |
Lao PDR | 0.185 | 0.092 | 0.291 | 0.168 | 0.151 | 0.141 | 0.187 | 0.193 | 0.123 | 0.241 |
Malaysia | 0.219 | 0.146 | 0.133 | 0.046 | 0.329 | 0.157 | 0.275 | 0.243 | 0.149 | 0.089 |
India | 0.079 | 0.247 | 0.068 | 0.423 | 0.149 | 0.482 | 0.135 | 0.120 | 0.187 | 0.164 |
Indonesia | 0.211 | 0.210 | 0.235 | 0.178 | 0.266 | 0.203 | 0.165 | 0.023 | 0.318 | 0.258 |
Philippines | 0.157 | 0.129 | 0.132 | 0.132 | 0.292 | 0.150 | 0.197 | 0.144 | 0.121 | 0.136 |
Thailand | 0.211 | 0.199 | 0.065 | 0.208 | 0.272 | 0.111 | 0.182 | 0.230 | 0.218 | 0.265 |
Myanmar | 0.100 | 0.125 | 0.221 | 0.152 | 0.062 | 0.281 | 0.154 | 0.269 | 0.238 | 0.083 |
Singapore | 0.152 | 0.099 | 0.150 | 0.277 | 0.098 | 0.203 | 0.088 | 0.235 | 0.261 | 0.136 |
Cambodia | 0.194 | 0.181 | 0.072 | 0.154 | 0.289 | 0.187 | 0.030 | 0.143 | 0.246 | 0.186 |
Bangladesh | 0.107 | 0.128 | 0.120 | 0.208 | 0.328 | 0.123 | 0.240 | 0.092 | 0.161 | 0.303 |
Sri Lanka | 0.168 | 0.195 | 0.293 | 0.219 | 0.065 | 0.185 | 0.353 | 0.174 | 0.176 | 0.126 |
Country | EFC-1 | EFC-2 | EFC-3 | EFC-4 | EFC-5 | EFC-6 | EFC-7 | EFC-8 | EFC-9 | EFC-10 |
---|---|---|---|---|---|---|---|---|---|---|
Brunei Darussalam | −0.045 | −0.017 | 0.000 | −0.080 | −0.049 | −0.085 | −0.068 | −0.040 | −0.042 | −0.011 |
Viet Nam | −0.034 | −0.035 | −0.039 | −0.075 | −0.047 | −0.035 | −0.046 | −0.012 | −0.016 | −0.061 |
Lao PDR | −0.010 | −0.048 | −0.007 | −0.080 | −0.055 | −0.108 | −0.051 | −0.023 | −0.060 | −0.019 |
Malaysia | 0.000 | −0.031 | −0.056 | −0.120 | 0.000 | −0.102 | −0.024 | −0.008 | −0.052 | −0.066 |
India | −0.043 | 0.000 | −0.077 | 0.000 | −0.055 | 0.000 | −0.068 | −0.046 | −0.040 | −0.043 |
Indonesia | −0.003 | −0.011 | −0.024 | −0.076 | −0.019 | −0.087 | −0.058 | −0.077 | 0.000 | −0.014 |
Philippines | −0.019 | −0.036 | −0.056 | −0.091 | −0.011 | −0.104 | −0.048 | −0.038 | −0.061 | −0.051 |
Thailand | −0.002 | −0.014 | −0.078 | −0.067 | −0.017 | −0.118 | −0.053 | −0.012 | −0.031 | −0.011 |
Myanmar | −0.037 | −0.037 | −0.029 | −0.085 | −0.083 | −0.062 | −0.061 | 0.000 | −0.025 | −0.068 |
Singapore | −0.021 | −0.045 | −0.051 | −0.045 | −0.072 | −0.087 | −0.083 | −0.010 | −0.017 | −0.051 |
Cambodia | −0.008 | −0.020 | −0.076 | −0.084 | −0.012 | −0.093 | −0.102 | −0.039 | −0.022 | −0.036 |
Bangladesh | −0.034 | −0.036 | −0.060 | −0.067 | −0.001 | −0.114 | −0.034 | −0.055 | −0.048 | 0.000 |
Sri Lanka | −0.016 | −0.016 | −0.007 | −0.063 | −0.082 | −0.093 | 0.000 | −0.029 | −0.044 | −0.055 |
Country | EFC-1 | EFC-2 | EFC-3 | EFC-4 | EFC-5 | EFC-6 | EFC-7 | EFC-8 | EFC-9 | EFC-10 |
---|---|---|---|---|---|---|---|---|---|---|
Brunei Darussalam | 0.029 | 0.172 | 0.315 | 0.087 | 0.122 | 0.126 | 0.067 | 0.099 | 0.138 | 0.255 |
Viet Nam | 0.074 | 0.097 | 0.149 | 0.109 | 0.129 | 0.334 | 0.155 | 0.218 | 0.248 | 0.047 |
Lao PDR | 0.175 | 0.044 | 0.283 | 0.088 | 0.097 | 0.033 | 0.135 | 0.170 | 0.063 | 0.222 |
Malaysia | 0.219 | 0.115 | 0.077 | −0.073 | 0.329 | 0.055 | 0.251 | 0.235 | 0.097 | 0.023 |
India | 0.036 | 0.247 | −0.009 | 0.423 | 0.094 | 0.482 | 0.068 | 0.074 | 0.147 | 0.121 |
Indonesia | 0.208 | 0.199 | 0.211 | 0.102 | 0.247 | 0.116 | 0.107 | −0.053 | 0.318 | 0.244 |
Philippines | 0.138 | 0.093 | 0.076 | 0.040 | 0.281 | 0.046 | 0.149 | 0.105 | 0.060 | 0.084 |
Thailand | 0.209 | 0.185 | −0.012 | 0.141 | 0.255 | −0.006 | 0.130 | 0.218 | 0.188 | 0.254 |
Myanmar | 0.063 | 0.088 | 0.192 | 0.067 | −0.021 | 0.219 | 0.093 | 0.269 | 0.213 | 0.015 |
Singapore | 0.131 | 0.053 | 0.100 | 0.232 | 0.026 | 0.115 | 0.005 | 0.225 | 0.244 | 0.084 |
Cambodia | 0.186 | 0.161 | −0.003 | 0.070 | 0.277 | 0.094 | −0.072 | 0.104 | 0.224 | 0.151 |
Bangladesh | 0.072 | 0.092 | 0.059 | 0.141 | 0.327 | 0.009 | 0.206 | 0.037 | 0.113 | 0.303 |
Sri Lanka | 0.153 | 0.180 | 0.287 | 0.156 | −0.017 | 0.091 | 0.353 | 0.145 | 0.133 | 0.071 |
Average solution | 0.130 | 0.133 | 0.133 | 0.122 | 0.165 | 0.132 | 0.127 | 0.142 | 0.168 | 0.144 |
Criteria | Group | Scenarios | ||||
---|---|---|---|---|---|---|
Base | 1 | 2 | 3 | 4 | ||
Construction, installation cost | Cost-related | 0.094 | 0.1 | +30% | −10% | −20% |
Diversity of transportation services | Production-condition-related | 0.099 | 0.1 | −20% | −10% | +30% |
Labor cost | Cost-related | 0.096 | 0.1 | +30% | −10% | −20% |
Human resources availability | Production-condition-related | 0.109 | 0.1 | −20% | −10% | +30% |
Political stability | Policy-related | 0.120 | 0.1 | −15% | +30% | −15% |
Environmental management system | Production-condition-related | 0.073 | 0.1 | −20% | −10% | +30% |
Logistics cost | Cost-related | 0.095 | 0.1 | +30% | −10% | −20% |
Land cost | Cost-related | 0.095 | 0.1 | +30% | −10% | −20% |
Government policy | Policy-related | 0.128 | 0.1 | −15% | +30% | −15% |
Climate | Production-condition-related | 0.090 | 0.1 | −20% | −10% | +30% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.-N.; Pham, T.-D.T.; Nhieu, N.-L. A Composited Regret-Theory-Based Spherical Fuzzy Prioritization Approach for Moving High-Tech Manufacturing in Southeast Asia. Appl. Sci. 2023, 13, 688. https://doi.org/10.3390/app13020688
Wang C-N, Pham T-DT, Nhieu N-L. A Composited Regret-Theory-Based Spherical Fuzzy Prioritization Approach for Moving High-Tech Manufacturing in Southeast Asia. Applied Sciences. 2023; 13(2):688. https://doi.org/10.3390/app13020688
Chicago/Turabian StyleWang, Chia-Nan, Thuy-Duong Thi Pham, and Nhat-Luong Nhieu. 2023. "A Composited Regret-Theory-Based Spherical Fuzzy Prioritization Approach for Moving High-Tech Manufacturing in Southeast Asia" Applied Sciences 13, no. 2: 688. https://doi.org/10.3390/app13020688
APA StyleWang, C. -N., Pham, T. -D. T., & Nhieu, N. -L. (2023). A Composited Regret-Theory-Based Spherical Fuzzy Prioritization Approach for Moving High-Tech Manufacturing in Southeast Asia. Applied Sciences, 13(2), 688. https://doi.org/10.3390/app13020688