Global Resources Management: A Systematic Review and Framework Proposal for Collaborative Management of CPPS
Abstract
:1. Introduction
2. Global Resources Management in the Industry 4.0
3. Research Methodology
- -
- What does GRM bring that is new, and what doors does it open in the I4.0 era?
- -
- Does I4.0 promote or improve GRM, along with collaborative processes and practices?
4. Literature Search Results Analysis
5. Collaborative Management Framework and Results Discussion
5.1. Proposed Collaborative Framework
5.2. Results Analysis and Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Putnik, G.D.; Putnik, Z.; Shah, V.; Varela, L.; Ferreira, L.; Castro, H.; Catia, A.; Pinheiro, P. Collaborative Engineering definition: Distinguishing it from Concurrent Engineering through the complexity and semiotics lenses. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2021; Volume 1174, No. 1, p. 012027. [Google Scholar]
- Putnik, G.D.; Putnik, Z.; Shah, V.; Varela, L.; Ferreira, L.; Castro, H.; Catia, A.; Pinheiro, P. Collaborative Engineering: A Review of Organisational Forms for Implementation and Operation. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2021; Volume 1174, No. 1, p. 012028. [Google Scholar]
- Varela, L.; Ávila, P.; Castro, H.; Putnik, G.D.; Fonseca, L.M.C.; Ferreira, L. Manufacturing and Management Paradigms, Methods and Tools for Sustainable Industry 4.0-Oriented Manufacturing Systems. Sustainability 2022, 14, 1574. [Google Scholar] [CrossRef]
- Varela, M.L.R.; Putnik, G.D.; Romero, F. The Concept of Collaborative Engineering: A Systematic Literature Review. Prod. Manuf. Res. 2022, 10, 784–839. [Google Scholar] [CrossRef]
- Varela, M.L.R.; Alves, C.F.V.; Santos, A.S.; Vieira, G.G.; Lopes, N.; Putnik, G.D. Analysis of a Collaborative Scheduling Model Applied in a Job Shop Manufacturing Environment. Machines 2022, 10, 1138. [Google Scholar] [CrossRef]
- Lou, P.; Ong, S.K.; Nee, A.Y.C. Agent-based distributed scheduling for virtual job shops. Int. J. Prod. Res. 2010, 48, 3889–3910. [Google Scholar] [CrossRef]
- Vieira, G.; Varela, M.L.R.; Putnik, G.D. Technologies integration for distributed manufacturing scheduling in a virtual enterprise. In Proceedings of the International Conference on Virtual and Networked Organizations, Emergent Technologies, and Tools, Ofir, Portugal, 6–8 July 2012; Springer: Berlin/Heidelberg, Germany, 2012; pp. 337–347. [Google Scholar]
- Putnik, G.D.; Cruz-Cunha, M.M. Virtual Enterprise Integration: Technological and Organizational Perspectives: Technological and Organizational Perspectives; IGI Global: Hershey, PA, USA, 2005. [Google Scholar]
- Eijnatten, F.M.; Putnik, G.D. Chaos, complexity, learning, and the learning organization: Towards a chaordic enterprise. Learn. Organ. 2004, 11, 418–429. [Google Scholar] [CrossRef]
- Putnik, G.D.; Ferreira, L.G.M. Industry 4.0: Models, tools and cyber-physical systems for manufacturing. FME Trans. 2019, 47, 659–662. [Google Scholar] [CrossRef] [Green Version]
- Low, C.; Li, R.K.; Chang, C.M. Integrated scheduling of production and delivery with time windows. Int. J. Prod. Res. 2013, 51, 897–909. [Google Scholar] [CrossRef]
- Guo, Z.; Ngai, E.; Yang, C.; Liang, X. An RFID-based intelligent decision support system architecture for production monitoring and scheduling in a distributed manufacturing environment. Int. J. Prod. Econ. 2015, 159, 16–28. [Google Scholar] [CrossRef]
- Canadas, N.; Machado, J.; Soares, F.; Barros, C.; Varela, L. Simulation of cyber physical systems behaviour using timed plant models. Mechatronics 2018, 54, 175–185. [Google Scholar] [CrossRef]
- Alves, C.; Putnik, G.D.; Varela, M.L.R. How environment dynamics affects production scheduling: Requirements for development of CPPS models. FME Trans. 2021, 49, 827–834. [Google Scholar] [CrossRef]
- Varela, M.L.R.; Ribeiro, R.A. Distributed Manufacturing Scheduling Based on a Dynamic Multi-criteria Decision Model. In Recent Developments and New Directions in Soft Computing. Studies in Fuzziness and Soft Computing; Zadeh, L., Abbasov, A., Yager, R., Shahbazova, S., Reformat, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; Volume 317. [Google Scholar] [CrossRef]
- Putnik, G.D.; Cruz-Cunha, M.M. Knowledge and Technology Management in Virtual Organizations: Issues, Trends, Opportunities and Solutions: Issues, Trends, Opportunities and Solutions; IGI Global: Hershey, PA, USA, 2006. [Google Scholar]
- Putnik, G.D.; Pabba, S.K.; Manupati, V.K.; Varela, M.L.R.; Ferreira, F. Semi-Double-loop machine learning based CPS approach for predictive maintenance in manufacturing system based on machine status indications. CIRP Ann.-Manuf. Technol. 2021, 70, 365–368. [Google Scholar] [CrossRef]
- Azevedo, B.F.; Varela, M.L.R.; Pereira, A.I. Production Scheduling Using Multi-objective Optimization and Cluster Approaches. In Proceedings of the International Conference on Innovations in Bio-Inspired Computing and Applications, Online, 16–18 December 2021; pp. 120–129. [Google Scholar]
- Azevedo, B.F.; Montaño-Vega, R.; Varela, M.L.R.; Pereira, A.I. Bio-Inspired Multi-Objective Algorithms Applied on Production Scheduling Problems. Int. J. Ind. Eng. Comput. 2022, 6, 145–156. [Google Scholar] [CrossRef]
- Lopes, N.; Costa, B.; Alves, C.F.; Putnik, G.D.; Varela, M.L.R.; Cruz-Cunha, M.M.; Ferreira, L. The Impact of Technological Implementation Decisions on Job-Shop Scheduling Simulator Performance using Secondary Storage and Parallel Processing. In Lecture Notes in Networks and Systems, Proceedings of the 1st International Symposium on Industrial Engineering and Automation (ISIEA 2022), Managing and Implementing the Digital Transformation, Bozen-Bolzano, Italy, 21–22 June 2022; Springer: Berlin/Heidelberg, Germany, 2022; pp. 227–236. [Google Scholar]
- Alves, F.; Varela, M.L.R.; Rocha, A.M.A.; Pereira, A.I.; Leitão, P. A human centered hybrid MAS and meta-heuristics based system for simultaneously supporting scheduling and plant layout adjustment. FME Trans. 2019, 47, 699–710. [Google Scholar] [CrossRef] [Green Version]
- Deloitte, 2012. Retail Globalization. Deloitte Touche Tohmatsu Limited. Available online: https://www.deloitte.com/global/en.html (accessed on 17 October 2022).
- Deloitte. Global Powers of Retailing 2014. Retail beyond Begins. 2014. Available online: http://www.deloitte.com/ (accessed on 12 September 2022).
- Hankel, M.; Rexroth, B. The reference architectural model industrie 4.0 (rami 4.0). ZVEI 2015, 2, 4–9. [Google Scholar]
- Prades, L.; Romero, F.; Estruch, A.; García-Domínguez, A.; Serrano, J. Defining a methodology to design and implement business process models in BPMN according to the standard ANSI/ISA-95 in a manufacturing enterprise. Procedia Eng. 2013, 63, 115–122. [Google Scholar] [CrossRef] [Green Version]
- Lin, S.-W.; Miller, B.; Durand, J.; Joshi, R.; Didier, P.; Chigani, A.; Torenbeek, R.; Duggal, D.; Martin, R.; Bleakley, G.; et al. The industrial internet reference architecture. Ind. Internet Consort. (IIC) Tech. Rep. 2015, 1–19. [Google Scholar]
- Soldatos, J.; Gusmeroli, S.; Malo, P.; Di Orio, G. Internet of things applications in future manufacturing. In Digitising Industry-Internet of Things Connecting the Physical, Digital and Virtual Worlds; River Publishers: New York, NY, USA, 2016; pp. 153–183. [Google Scholar]
- Arrais-Castro, A.; Varela, M.L.R.; Putnik, G.D.; Ribeiro, R.A.; Machado, J.; Ferreira, L. Collaborative framework for virtual organisation synthesis based on a dynamic multi-criteria decision model. Int. J. Comput. Integr. Manuf. 2018, 31, 857–868. [Google Scholar] [CrossRef]
- Vafaei, N.; Ribeiro, R.A.; Camarinha-Matos, L.M.; Varela, L.R. Normalization techniques for collaborative networks. Kybernetes 2019, 49, 1285–1304. [Google Scholar] [CrossRef]
- Varela, M.L.; Madureira, A.M.; Dantas, J.D.; Santos, A.S.; Putnik, G.D.; Trojanowska, J.; Machado, J. Collaborative paradigm for single-machine scheduling under just-in-time principles: Total holding-tardiness cost problem. Manag. Prod. Eng. Rev. 2018, 9, 90–103. [Google Scholar]
- Varela, M.L.R.; Putnik, G.D.; Manupati, V.K.; Rajyalakshmi, G.; Trojanowska, J.; Machado, J. Collaborative manufacturing based on cloud, and on other I4.0 oriented principles and technologies: A systematic literature review and reflections. Manag. Prod. Eng. Rev. 2018, 9, 90–99. [Google Scholar] [CrossRef]
- Carvalho, M.S.; Magalhaes, D.S.; Varela, M.L.R.; Sa, J.O.; Gonçalves, I. Definition of a collaborative working model to the logistics area using design for Six Sigma. Int. J. Qual. Reliab. Manag. 2016, 43, 465–475. [Google Scholar] [CrossRef]
- Chen, D. Enterprise-control system integration—An international standard. Int. J. Prod. Res. 2005, 43, 4335–4357. [Google Scholar] [CrossRef]
- Kagermann, H. Change through digitization—Value creation in the age of Industry 4.0. In Management of Permanent Change; Springer Gabler: Wiesbaden, Germany, 2015; pp. 23–45. [Google Scholar]
- Li, L. China’s manufacturing locus in 2025: With a comparison of “Made-in-China 2025” and “Industry 4.0”. Technol. Forecast. Soc. Change 2018, 135, 66–74. [Google Scholar] [CrossRef]
- Sony, M.; Naik, S.S. Ten lessons for managers while implementing Industry 4.0. IEEE Eng. Manag. Rev. 2019, 47, 45–52. [Google Scholar] [CrossRef]
- Liao, Y.; Loures, E.D.F.R.; Deschamps, F. Industrial Internet of Things: A systematic literature review and insights. IEEE Internet Things J. 2018, 5, 4515–4525. [Google Scholar] [CrossRef]
- Shen, W. Distributed manufacturing scheduling using intelligent agents. IEEE Intell. Syst. 2002, 17, 88–94. [Google Scholar] [CrossRef]
- Varela, M.L.R.; Putnik, G.D.; Cruz-Cunha, M.M. Web-based technologies integration for distributed manufacturing scheduling in a virtual enterprise. Int. J. Web Portals (IJWP) 2012, 4, 19–34. [Google Scholar] [CrossRef] [Green Version]
- Ramakurthi, V.B.; Manupati, V.K.; Machado, J.; Varela, L. A hybrid multi-objective evolutionary algorithm-based semantic foundation for sustainable distributed manufacturing systems. Appl. Sci. 2021, 11, 6314. [Google Scholar] [CrossRef]
- Chiu, C.; Yih, Y. A learning-based methodology for dynamic scheduling in distributed manufacturing systems. Int. J. Prod. Res. 1995, 33, 3217–3232. [Google Scholar] [CrossRef]
- Zhou, R.; Chen, G.; Yang, Z.H.; Zhang, J.B. Distributed manufacturing scheduling using a novel cooperative system. In Proceedings of the 2008 IEEE International Conference on Service Operations and Logistics, and Informatics, Beijing, China, 12–15 October 2008; IEEE: Piscataway, NJ, USA, 2008; Volume 1, pp. 256–260. [Google Scholar]
- Saeidlou, S.; Saadat, M.; Amini Sharifi, E.; Jules, G.D. Agent-based distributed manufacturing scheduling: An ontological approach. Cogent Eng. 2019, 6, 1565630. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, X.; Tang, S.; Królczyk, G.; Li, Z. Solving scheduling problem in a distributed manufacturing system using a discrete fruit fly optimization algorithm. Energies 2019, 12, 3260. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Ghenniwa, H.; Shen, W. Real time distributed shop floor scheduling using an agent-based service-oriented architecture. Int. J. Prod. Res. 2008, 46, 2433–2452. [Google Scholar] [CrossRef]
- Mishra, N.; Singh, A.; Kumari, S.; Govindan, K.; Ali, S.I. Cloud-based multi-agent architecture for effective planning and scheduling of distributed manufacturing. Int. J. Prod. Res. 2016, 54, 7115–7128. [Google Scholar] [CrossRef]
- Fu, Y.; Wang, H.; Huang, M. Integrated scheduling for a distributed manufacturing system: A stochastic multi-objective model. Enterp. Inf. Syst. 2019, 13, 557–573. [Google Scholar] [CrossRef]
- Mao, X.; Li, J.; Guo, H.; Wu, X. Research on Collaborative Planning and Symmetric Scheduling for Parallel Shipbuilding Projects in the Open Distributed Manufacturing Environment. Symmetry 2020, 12, 161. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Y.; Bi, L.; Tao, F.; Ji, P. Hypernetwork-based manufacturing service scheduling for distributed and collaborative manufacturing operations towards smart manufacturing. J. Intell. Manuf. 2020, 31, 1707–1720. [Google Scholar] [CrossRef]
- Kim, J.; Kim, H.; Lakshmanan, K.; Rajkumar, R. Parallel scheduling for cyber-physical systems: Analysis and case study on a self-driving car. In Proceedings of the ACM/IEEE 4th International Conference on Cyber-Physical Systems, Philadelphia, PA, USA, 8–11 April 2013; pp. 31–40. [Google Scholar]
- Tan, Q.; Tong, Y.; Wu, S.; Li, D. Modeling, planning, and scheduling of shop-floor assembly process with dynamic cyber-physical interactions: A case study for CPS-based smart industrial robot production. Int. J. Adv. Manuf. Technol. 2019, 105, 3979–3989. [Google Scholar] [CrossRef]
- Villalonga, A.; Negri, E.; Biscardo, G.; Castano, F.; Haber, R.E.; Fumagalli, L.; Macchi, M. A decision-making framework for dynamic scheduling of cyber-physical production systems based on digital twins. Annu. Rev. Control. 2021, 51, 357–373. [Google Scholar] [CrossRef]
- Tranfield, D.; Denyer, D.; Smart, P. Towards a methodology for developing evidence-informed management knowledge by means of systematic review. Br. J. Manag. 2003, 14, 207–222. [Google Scholar] [CrossRef]
- Seuring, S.; Müller, M. Core issues in sustainable supply chain management–a Delphi study. Bus. Strategy Environ. 2008, 17, 455–466. [Google Scholar] [CrossRef]
- Sahu, A.K.; Narang, H.K.; Rajput, M.S.; Sahu, N.K.; Sahu, A.K. Performance modeling and benchmarking of green supply chain management: An integrated fuzzy approach. Benchmarking Int. J. 2018, 25, 2248–2271. [Google Scholar] [CrossRef]
- Sahu, N.K.; Sahu, A.K.; Sahu, A.K. Green supply chain management assessment under chains of uncertain indices: An intellectual approach. J. Model. Manag. 2018, 13, 973–993. [Google Scholar] [CrossRef]
- Sahu, A.K.; Sahu, A.K.; Sahu, N.K. A review on the research growth of industry 4.0: IIoT business architectures benchmarking. Int. J. Bus. Anal. (IJBAN) 2020, 7, 77–97. [Google Scholar] [CrossRef]
- Bag, S.; Sahu, A.K.; Kilbourn, P.; Pisa, N.; Dhamija, P.; Sahu, A.K. Modeling barriers of digital manufacturing in a circular economy for enhancing sustainability. Int. J. Product. Perform. Manag. 2021, 71, 833–869. [Google Scholar] [CrossRef]
- Kang, D.; Prabhu, M.; Ahmed, R.R.; Zhang, Z.; Sahu, A.K. Digital-IIoTs spheres approach toward public development: An exploiting fuzzy-grey mathematical modeling of IIoTs spheres. Grey Syst. Theory Appl. 2021, 12, 389–416. [Google Scholar] [CrossRef]
- Demoly, F.; Dutartre, O.; Yan, X.T.; Eynard, B.; Kiritsis, D.; Gomes, S. Product relationships management enabler for concurrent engineering and product lifecycle management. Comput. Ind. 2013, 64, 833–848. [Google Scholar] [CrossRef] [Green Version]
- Deshpande, A. Concurrent engineering, knowledge management, and product innovation. J. Oper. Strateg. Plan. 2018, 1, 204–231. [Google Scholar] [CrossRef]
- Manupati, V.K.; Gokula Krishnan, M.; Varela, M.L.R.; Machado, J. Telefacturing based distributed manufacturing environment for optimal manufacturing service by enhancing the interoperability in the hubs. J. Eng. 2017, 2017, 9305989. [Google Scholar] [CrossRef] [Green Version]
- Kays, H.M.E.; Karim, A.N.M.; Daud, M.R.C.; Varela, M.L.R.; Putnik, G.D.; Machado, J.M. A collaborative multiplicative Holt-Winters forecasting approach with dynamic fuzzy-level component. Appl. Sci. 2018, 8, 530. [Google Scholar] [CrossRef] [Green Version]
- Ferreirinha, L.; Baptista, S.; Pereira, Â.; Santos, A.S.; Bastos, J.; Madureira, A.M.; Varela, M.L.R. An Industry 4.0 oriented tool for supporting dynamic selection of dispatching rules based on Kano model satisfaction scheduling. FME Trans. 2019, 47, 757–764. [Google Scholar] [CrossRef] [Green Version]
- Varela, M.L.R.; Putnik, G.D.; Manupati, V.K.; Rajyalakshmi, G.; Trojanowska, J.; Machado, J. Integrated process planning and scheduling in networked manufacturing systems for I4.0: A review and framework proposal. Wirel. Netw. 2021, 27, 1587–1599. [Google Scholar] [CrossRef] [Green Version]
- Cardin, O.; Trentesaux, D.; Thomas, A.; Castagna, P.; Berger, T.; Bril El-Haouzi, H. Coupling predictive scheduling and reactive control in manufacturing hybrid control architectures: State of the art and future challenges. J. Intell. Manuf. 2017, 28, 1503–1517. [Google Scholar] [CrossRef]
- Chen, S.; Fang, S.; Tang, R. An ANN-based approach for real-time scheduling in cloud manufacturing. Appl. Sci. 2020, 10, 2491. [Google Scholar] [CrossRef] [Green Version]
- Coelho, P.; Silva, C. Parallel Metaheuristics for shop scheduling: Enabling industry 4.0. Procedia Comput. Sci. 2021, 180, 778–786. [Google Scholar] [CrossRef]
- D’Aniello, G.; De Falco, M.; Mastrandrea, N. Designing a multi-agent system architecture for managing distributed operations within cloud manufacturing. Evol. Intell. 2021, 14, 2051–2058. [Google Scholar] [CrossRef]
- Delaram, J.; Valilai, O.F. A mathematical model for task scheduling in cloud manufacturing systems focusing on global logistics. Procedia Manuf. 2018, 17, 387–394. [Google Scholar] [CrossRef]
- Dogan, A.; Birant, D. Machine learning and data mining in manufacturing. Expert Syst. Appl. 2021, 166, 114060. [Google Scholar] [CrossRef]
- Ebufegha, A.; Li, S. Multi-agent system model for dynamic scheduling in flexibile job shops. In Proceedings of the 2021 Winter Simulation Conference (WSC), Phoenix, AZ, USA, 12–15 December 2021; pp. 1–12. [Google Scholar]
- Fernandez-Viagas, V.; Framinan, J.M. Exploring the benefits of scheduling with advanced and real-time information integration in Industry 4.0: A computational study. J. Ind. Inf. Integr. 2021, 27, 100281. [Google Scholar] [CrossRef]
- Frazzon, E.M.; Albrecht, A.; Pires, M.; Israel, E.; Kück, M.; Freitag, M. Hybrid approach for the integrated scheduling of production and transport processes along supply chains. Int. J. Prod. Res. 2018, 56, 2019–2035. [Google Scholar] [CrossRef] [Green Version]
- Gahm, C.; Denz, F.; Dirr, M.; Tuma, A. Energy-efficient scheduling in manufacturing companies: A review and research framework. Eur. J. Oper. Res. 2016, 248, 744–757. [Google Scholar] [CrossRef]
- Ghaleb, M.; Zolfagharinia, H.; Taghipour, S. Real-time production scheduling in the Industry-4.0 context: Addressing uncertainties in job arrivals and machine breakdowns. Comput. Oper. Res. 2020, 123, 105031. [Google Scholar] [CrossRef]
- Hofer, F.; Sehr, M.A.; Russo, B.; Sangiovanni-Vincentelli, A. ODRE Workshop: Probabilistic Dynamic Hard Real-Time Scheduling in HPC. In Proceedings of the IEEE 23rd International Symposium on Real-Time Distributed Computing (ISORC), Nashville, TN, USA, 19–21 May 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 207–212. [Google Scholar]
- Hsu, C.H.; Yang, H.C. Real-time near-optimal scheduling with rolling horizon for automatic manufacturing cell. IEEE Access 2016, 5, 3369–3375. [Google Scholar] [CrossRef]
- Hsu, T.H.; Wang, L.C.; Chu, P.C. Development of a cloud-based advanced planning and scheduling system. Procedia Manuf. 2018, 17, 427–434. [Google Scholar] [CrossRef]
- Jimenez, J.F.; Bekrar, A.; Trentesaux, D.; Leitão, P. A switching mechanism framework for optimal coupling of predictive scheduling and reactive control in manufacturing hybrid control architectures. Int. J. Prod. Res. 2016, 54, 7027–7042. [Google Scholar] [CrossRef] [Green Version]
- Kalinowski, K.; Krenczyk, D.; Grabowik, C. Predictive-reactive strategy for real time scheduling of manufacturing systems. Appl. Mech. Materials 2013, 307, 470–473. [Google Scholar] [CrossRef]
- Kocsi, B.; Matonya, M.M.; Pusztai, L.P.; Budai, I. Real-time decision-support system for high-mix low-volume production scheduling in industry 4.0. Processes 2020, 8, 912. [Google Scholar] [CrossRef]
- Laili, Y.; Lin, S.; Tang, D. Multi-phase integrated scheduling of hybrid tasks in cloud manufacturing environment. Robot. Comput.-Integr. Manuf. 2020, 61, 101850. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, L.; Wang, X.V.; Xu, X.; Zhang, L. Scheduling in cloud manufacturing: State-of-the-art and research challenges. Int. J. Prod. Res. 2019, 57, 4854–4879. [Google Scholar] [CrossRef] [Green Version]
- Lohmer, J.; Lasch, R. Production planning and scheduling in multi-factory production networks: A systematic literature review. Int. J. Prod. Res. 2021, 59, 2028–2054. [Google Scholar] [CrossRef]
- Leusin, M.; Frazzon, E.; Uriona Maldonado, M.; Kück, M.; Freitag, M. Solving the Job-Shop Scheduling Problem in the Industry 4.0 Era. Technologies 2018, 6, 107. [Google Scholar] [CrossRef] [Green Version]
- Modekurthy, V.P.; Saifullah, A.; Madria, S. A Distributed Real-time Scheduling System for Industrial Wireless Networks. ACM Trans. Embed. Comput. Syst. (TECS) 2021, 20, 1–28. [Google Scholar] [CrossRef]
- Moon, J.-Y.; Park, J. Smart production scheduling with time-dependent and machine-dependent electricity cost by considering distributed energy resources and energy storage. Int. J. Prod. Res. 2014, 52, 3922–3939. [Google Scholar] [CrossRef]
- Morariu, C.; Morariu, O.; Raileanu, S.; Borangiu, T. Machine learning for predictive scheduling and resource allocation in large scale manufacturing systems. Comput. Ind. 2020, 120, 103244. [Google Scholar] [CrossRef]
- Nouiri, M.; Trentesaux, D.; Bekrar, A. Towards energy efficient scheduling of manufacturing systems through collaboration between cyber physical production and energy systems. Energies 2019, 12, 4448. [Google Scholar] [CrossRef] [Green Version]
- Rahman, H.F.; Janardhanan, M.N.; Nielsen, I.E. Real-time order acceptance and scheduling problems in a flow shop environment using hybrid GA-PSO algorithm. IEEE Access 2019, 7, 11275–12742. [Google Scholar] [CrossRef]
- Rohaninejad, M.; Tavakkoli-Moghaddam, R.; Vahedi-Nouri, B.; Hanzalek, Z.; Shirazian, S. A hybrid learning-based meta-heuristic algorithm for scheduling of an additive manufacturing system consisting of parallel SLM machines. Int. J. Prod. Res. 2021, 60, 6205–6225. [Google Scholar] [CrossRef]
- Rossit, D.A.; Tohmé, F.; Frutos, M. Industry 4.0: Smart Scheduling. Int. J. Prod. Res. 2019, 57, 3802–3813. [Google Scholar] [CrossRef]
- Saboor, A.; Imran, M.; Agha, M.H.; Ahmed, W. Flexible cell formation and scheduling of robotics coordinated dynamic cellular manufacturing system: A gateway to Industry 4.0. In Proceedings of the 2019 International Conference on Robotics and Automation in Industry, Rawalpindi, Pakistan, 21–22 October 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–6. [Google Scholar]
- Sobaszek, L.; Gola, A.; Świć, A. Predictive scheduling as a part of intelligent job scheduling system. In Proceedings of the International Conference on Intelligent Systems in Production Engineering and Maintenance, Wroclaw, Poland, 28–29 September 2017; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Sousa, A.L.; Oliveira, A.S. Distributed MAS with Leaderless Consensus to Job-Shop Scheduler in a Virtual Smart Factory with Modular Conveyors. In Proceedings of the 2020 Latin American Robotics Symposium (LARS), 2020 Brazilian Symposium on Robotics (SBR) and 2020 Workshop on Robotics in Education (WRE), Natal, Brazil, 9–13 November 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–6. [Google Scholar]
- Tighazoui, A.; Sauvey, C.; Sauer, N. Predictive-reactive Strategy for Flowshop Rescheduling Problem: Minimizing the Total Weighted Waiting Times and Instability. J. Syst. Sci. Syst. Eng. 2021, 30, 253–275. [Google Scholar] [CrossRef]
- Wang, L.; Li, Q.; Ding, R.; Sun, M.; Wang, G. Integrated scheduling of energy supply and demand in microgrids under uncertainty: A robust multi-objective optimization approach. Energy 2017, 130, 1–14. [Google Scholar] [CrossRef]
- Wenzelburger, P.; Allgöwer, F. Model Predictive Control for flexible job shop scheduling in Industry 4.0. Appl. Sci. 2021, 11, 8145. [Google Scholar] [CrossRef]
- Yang, W.; Takakuwa, S. Simulation-based dynamic shop floor scheduling for a flexible manufacturing system in the industry 4. In Proceedings of the Winter Simulation Conference (WSC), Las Vegas, NV, USA, 3–6 December 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 3908–3916. [Google Scholar]
- Reddy, M.S.; Ratnam, C.; Agrawal, R.; Varela, M.L.R.; Sharma, I.; Manupati, V.K. Investigation of reconfiguration effect on makespan with social network method for flexible job shop scheduling problem. Comput. Ind. Eng. 2017, 110, 231–241. [Google Scholar] [CrossRef] [Green Version]
- Ramakurthi, V.; Manupati, V.K.; Machado, J.; Varela, L.; Babu, S. An innovative approach for resource sharing and scheduling in a sustainable distributed manufacturing system. Adv. Eng. Inform. 2022, 52, 101620. [Google Scholar] [CrossRef]
GK1 | GK2 | GK3 |
---|---|---|
Global | Dynamic | Industry 4.0 |
Collaborative | Decentralized | Industrie 4.0 |
Cooperative | Distributed | I4.0 |
Concurrent | Integrated | Digitalization |
Networked | Artificial | Cyber-physical System |
B2B | Smart | Manufacturing |
P2P | Intelligent | Production |
End-to-end | Predictive | Process |
Point-to-point | Real-time | Business |
Group | Parallel | Resource |
Shared | Learning | Machine |
Joint | Management | Operator |
Open | Planning | User |
Cloud | Programming | Human |
Innovative | Scheduling |
Global Resources Management Paradigm | Dynamic | Intelligent/Predictive | Distributed | Parallel | Integrated | Real-Time | Total nº of Combinations |
---|---|---|---|---|---|---|---|
Research Publications | |||||||
Alves, Putnik, and Varela (2021) [14] | X | X | 2 | ||||
Azevedo, Varela, and Pereira (2021) [18] | X | X | 2 | ||||
Cardin et al. (2017) [66] | X | X | 2 | ||||
Chen, Fang, and Tang (2020) [67] | X | X | X | 3 | |||
Coelho and Silva (2021) [68] | X | X | X | X | 4 | ||
D’Aniello, Falco, and Mastrandrea (2021) [69] | X | X | X | 3 | |||
Delaram and Valilai (2018) [70] | X | X | 2 | ||||
Demoly et al. (2013) [60] | X | X | 2 | ||||
Dogan and Birant (2021) [71] | X | X | X | 3 | |||
Deshpande (2018) [61] | X | X | X | 3 | |||
Ebufegha and Li (2021) [72] | X | X | X | X | 4 | ||
Ferreirinha et al. (2019) [64] | X | X | 2 | ||||
Fernandez-Viagas and Framinan (2021) [73] | X | X | X | X | 4 | ||
Frazzon et al. (2018) [74] | X | X | 2 | ||||
Fu, Wang, and Huang (2019) [47] | X | X | 2 | ||||
Gahm et al. (2016) [75] | X | X | 2 | ||||
Ghaleb, Taghipour, & Zolfagharinia (2020) [76] | X | X | X | 3 | |||
Hofer et al. (2020) [77] | X | X | X | 3 | |||
Hsu and Yang (2016) [78] | X | X | X | 3 | |||
Hsu, Wang, and Chu (2018) [79] | X | X | X | 3 | |||
Jimenez, Bekrar, Trentesaux, Leitão (2016) [80] | X | X | X | X | 4 | ||
Kalinowski, Krenczyk, & Grabowik (2013) [81] | X | X | 2 | ||||
Kim et al. (2013) [50] | X | X | 2 | ||||
Kocsi, Matonya, Pusztai, and Budai (2020) [82] | X | X | 2 | ||||
Laili, Lin, and Tang (2020) [83] | X | X | X | X | 4 | ||
Liu, Zhang, Zhang, Tao, and Wang (2019) [84] | X | X | X | 3 | |||
Lohmer and Lasch (2021) [85] | X | X | X | X | 4 | ||
Lopes et al. (2022) [20] | X | X | 2 | ||||
Leusin et al. (2018) [86] | X | X | X | 3 | |||
Low and Chang (2013) [11] | X | X | 2 | ||||
Mao et al. (2020) [48] | X | X | 2 | ||||
Modekurthy, Saifullah, and Madria (2021) [87] | X | X | X | 3 | |||
Moon and Park (2014) [88] | X | X | 2 | ||||
Morariu et al. (2020) [89] | X | X | X | X | 4 | ||
Nouiri, Trentesaux, and Bekrar (2019) [90] | X | X | X | 3 | |||
Rahman, Janardhanan, and Nielsen (2019) [91] | X | X | X | 3 | |||
Rohaninejad et al. (2021) [92] | X | X | X | 3 | |||
Rossit et al. (2021) [93] | X | X | X | 3 | |||
Saboor et al. (2019) [94] | X | X | X | 3 | |||
Sahu et al. (2018) [55] | X | X | X | 3 | |||
Sobaszek, Gola, and Świć (2017) [95] | X | X | 2 | ||||
Sousa and Oliveira (2020) [96] | X | X | X | 3 | |||
Tan, Tong, Wu, and Li (2019) [51] | X | X | X | X | 4 | ||
Tighazoui, Sauvey, and Sauer (2021) [97] | X | X | X | 3 | |||
Vafaei et al. (2019) [29] | X | X | 2 | ||||
Varela et al. (2021) [65] | X | X | X | X | 4 | ||
Villalonga et al. (2021) [52] | X | X | X | X | 4 | ||
Wang et al. (2017) [98] | X | X | X | 3 | |||
Wenzelburger and Allgöwer (2021) [99] | X | X | X | 3 | |||
Yang and Takakuwa (2017) [100] | X | X | X | 3 |
Management Paradigm | Main Characteristics | References |
---|---|---|
Dynamic | Adapts to changing manufacturing conditions | [11,14,18,20,29,51,52,61,64,67,68,69,72,73,75,76,77,78,80,83,86,86,89,94,97,99,100] |
Distributed | Decomposes complex management problems | [29,47,48,55,60,61,65,67,69,70,72,74,79,80,83,85,86,87,88,90,96,98] |
Intelligent/predictive | Processes big data in complex and highly demanding and uncertain manufacturing environments | [18,50,51,52,55,64,65,66,68,69,71,72,73,76,77,80,81,82,85,86,86,88,89,90,91,92,93,95,96,97,98,99,100] |
Parallel | Decentralizes the resolution of management problems | [20,48,50,68] |
Integrated | Tackles the combined resolution of different management functions | [11,48,51,52,55,60,61,65,66,70,73,74,78,79,80,83,85,86,87,89,90,91,92,93,94,95,96,97,98,99] |
Real-time | Enables businesses to capture, process, and analyze manufacturing and management data in due course | [14,47,51,52,65,67,68,72,73,75,76,77,78,79,81,82,83,85,87,89,91,92,93,94,100] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Varela, L.R.; Trojanowska, J.; Cruz-Cunha, M.M.; Pereira, M.Â.; Putnik, G.D.; Machado, J.M. Global Resources Management: A Systematic Review and Framework Proposal for Collaborative Management of CPPS. Appl. Sci. 2023, 13, 750. https://doi.org/10.3390/app13020750
Varela LR, Trojanowska J, Cruz-Cunha MM, Pereira MÂ, Putnik GD, Machado JM. Global Resources Management: A Systematic Review and Framework Proposal for Collaborative Management of CPPS. Applied Sciences. 2023; 13(2):750. https://doi.org/10.3390/app13020750
Chicago/Turabian StyleVarela, Leonilde R., Justyna Trojanowska, Maria Manuela Cruz-Cunha, Miguel Ângelo Pereira, Goran D. Putnik, and José M. Machado. 2023. "Global Resources Management: A Systematic Review and Framework Proposal for Collaborative Management of CPPS" Applied Sciences 13, no. 2: 750. https://doi.org/10.3390/app13020750
APA StyleVarela, L. R., Trojanowska, J., Cruz-Cunha, M. M., Pereira, M. Â., Putnik, G. D., & Machado, J. M. (2023). Global Resources Management: A Systematic Review and Framework Proposal for Collaborative Management of CPPS. Applied Sciences, 13(2), 750. https://doi.org/10.3390/app13020750