Design Optimization and Comparative Study of a Novel Halbach Permanent Magnet Vernier Machine with Alternate Flux Bridge
Abstract
:1. Introduction
2. Machine Structure and Force Operation Principle
2.1. Machine Structure and Winding Configuration
2.2. Operation Principle
2.3. Function of Bridge and Magnetic Circuit
2.4. Machine Optimization
3. Machine Optimization
4. Machine Performance Comparison
4.1. Flux Distribution and Flux Density
4.2. Back EMF
4.3. Torque Performance
4.4. Loss and Efficiency
4.5. Power Factor
5. Experiment Validation
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, W.; Ching, T.W.; Chau, K.T.; Lee, C.H.T. A Superconducting Vernier Motor for Electric Ship Propulsion. IEEE Trans. Appl. Supercond. 2017, 28, 5201706. [Google Scholar] [CrossRef]
- Li, J.; Chau, K.T.; Jiang, J.Z.; Liu, C.; Li, W. A New Efficient Permanent-Magnet Vernier Machine for Wind Power Generation. IEEE Trans. Magn. 2010, 46, 1475–1478. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Wu, D.; Zhang, X.; Gao, S. A new permanent-magnet vernier in-wheel motor for electric vehicles. In Proceedings of the 2010 IEEE Vehicle Power and Propulsion Conference, Lille, France, 1–3 September 2010; pp. 1–6. [Google Scholar] [CrossRef]
- Hashemnia, N.; Asaei, B. Comparative study of using different electric motors in the electric vehicles. In Proceedings of the 18th International Conference on Electrical Machines, Vilamoura, Portugal, 6–9 September 2008; pp. 1–5. [Google Scholar] [CrossRef]
- Choietal, J. Design of high power permanent magnet motor with segment rectangular copper wire and closed slot opening on electric vehicles. IEEE Trans. Magn. 2010, 46, 2070–2073. [Google Scholar]
- Kakihata, H.; Kataoka, Y.; Takayama, M.; Matsushima, Y.; Anazawa, Y. Design of surface permanent magnet-type Vernier motor. In Proceedings of the 2012 15th International Conference on Electrical Machines and Systems (ICEMS), Sapporo, Japan, 21–24 October 2012; pp. 1–6. [Google Scholar]
- Han, J.; Zhang, Z. Design and Optimization of a Low-Cost Hybrid-Pole Rotor for Spoke-Type Permanent Magnet Machine. IEEE Trans. Magn. 2022, 58, 8103105. [Google Scholar] [CrossRef]
- Zhao, W.; Zhao, F.; Lipo, T.A.; Kwon, B.I. Optimal design of a novel v-type interior permanent magnet motor with assisted barriers for the improvement of torque characteristics. IEEE Trans. Magn. 2014, 50, 8104504. [Google Scholar] [CrossRef]
- Kronacher, G. Design, Performance and Application of the Vernier Resolver*. Bell Syst. Tech. J. 1957, 36, 1487–1500. [Google Scholar] [CrossRef]
- Ishizaki, A.; Tanaka, T.; Takasaki, K.; Nishikata, S. Theory and optimum design of PM Vernier motor. In Proceedings of the 1995 Seventh International Conference on Electrical Machines and Drives (Conf. Publ. No. 412), Durham, UK, 11–13 September 1995; pp. 208–212. [Google Scholar]
- Liu, Y.; Li, H.Y.; Zhu, Z.Q. A high-power factor Vernier machine with coil pitch of two slot pitches. IEEE Trans. Magn. 2018, 54, 8105405. [Google Scholar] [CrossRef]
- Xie, K.; Li, D.; Qu, R.; Gao, Y. A Novel Permanent Magnet Vernier Machine with Halbach Array Magnets in Stator Slot Opening. IEEE Trans. Magn. 2017, 53, 7207005. [Google Scholar] [CrossRef]
- Kataoka, Y.; Takayama, M.; Matsushima, Y.; Anazawa, Y. Design of surface permanent magnet-type vernier motor using Halbach array magnet. In Proceedings of the 18th International Conference on Electrical Machines and Systems (ICEMS), Pattaya, Thailand, 25–28 October 2015; pp. 177–183. [Google Scholar] [CrossRef]
- Allahyari, A.; Mahmoudi, A.; Kahourzade, S. High Power Factor Dual-Rotor Halbach Array Permanent-Magnet Vernier Machine. In Proceedings of the 2020 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), Jaipur, India, 16–19 December 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Bilal, M.; Ikram, J.; Fida, A.; Bukhari, S.S.H.; Haider, N.; Ro, J.S. Performance Improvement of dual stator axial flux spoke type permanent magnet Vernier machine. IEEE Access 2021, 9, 64179–64188. [Google Scholar] [CrossRef]
- Liu, W.; Lipo, T.A. Alternating flux barrier design of vernier ferrite magnet machine having high torque density. In Proceedings of the 2017 IEEE Electric Ship echnologies Symposium (ESTS), Arlington, VA, USA, 14–17 August 2017; pp. 445–450. [Google Scholar]
- Wang, Q.; Niu, S. Design optimization and comparative analysis of dual-stator flux modulation machines. In Proceedings of the IECON 2017—43rd Annual Conference of the IEEE Industrial Electronics Society, Beijing, China, 5–8 November 2017; pp. 3719–3724. [Google Scholar]
- Wang, F.; Zhou, L.; Wang, J.; Xiao, Y.; Zhou, J.; Shentu, L. A Novel Dual-Stator Permanent Magnet Vernier Machine with Magnets in Rotor and Both Stators. In Proceedings of the 2018 21st International Conference on Electrical Machines and Systems (ICEMS), Jeju, Republic of Korea, 7–10 October 2018. [Google Scholar] [CrossRef]
- Baloch, N.; Kwon, B.-I.; Gao, Y. Low-Cost High-Torque-Density Dual-Stator Consequent-Pole Permanent Magnet Vernier Machine. IEEE Trans. Magn. 2018, 54, 8206105. [Google Scholar] [CrossRef]
- Firdaus, R.N.; Suhairi, R.; Farina, S.; Karim, K.A.; Ibrahim, Z. Improvement of power density spoke type Permanent Magnet Generator. In Proceedings of the 2015 IEEE 11th International Conference on Power Electronics and Drive Systems, Sydney, Australia, 9–12 June 2015; pp. 197–201. [Google Scholar]
- Zou, T.; Li, D.; Qu, R.; Jiang, D. Performance Comparison of Surface and Spoke-Type Flux-Modulation Machines with Different Pole Ratios. IEEE Trans. Magn. 2017, 53, 7402605. [Google Scholar] [CrossRef]
- Kim, B.; Lipo, T.A. Analysis of a PM Vernier motor with spoke structure. IEEE Trans. Ind. Appl. 2016, 52, 217–225. [Google Scholar] [CrossRef]
- Ren, X.; Li, D.; Qu, R.; Yu, Z.; Gao, Y. Investigation of Spoke Array Permanent Magnet Vernier Machine with Alternate Flux Bridges. IEEE Trans. Energy Convers. 2018, 33, 2112–2121. [Google Scholar] [CrossRef]
Item | Notation | Unit | Value |
---|---|---|---|
Stack Length | Lst | (mm) | 85 |
Outer radius | Rso | (mm) | 62 |
Air gap length | Ag | (mm) | 0.8 |
Rotation speed | Spd | (rpm) | 300 |
Number of turns of armature winding | NAC | / | 143 |
Current density | Cd | A/mm2 | 6 |
Slot filling factor | Sf | / | 0.5 |
Item | Notation | Unit | Structure I | Structure II | Structure III | Structure Iv | Vibration Ranges |
---|---|---|---|---|---|---|---|
Stator tooth width | Wst | (mm) | 7.15 | 3.89 | 5.11 | 5.38 | 3.5−7.5 |
Stator yoke height | Tsy | (mm) | 8.4 | 10.9 | 10.5 | 12.1 | 7.5−12.5 |
Slot open size | Rdiff | (mm) | 1.27 | 1.4 | 1.46 | 0.7 | 0.4−1.6 |
Ast | (degree) | 17.78 | 9.64 | 10.53 | 8.76 | 5−20 | |
Hss | (mm) | 1.48 | 0.28 | 0.63 | 0.25 | 0.1−1.8 | |
PMs size | tr | (mm) | 2.92 | 4.77 | 3.21 | 3.99 | 2.5−5 |
θt | (degree) | 9.4 | 6.52 | 5.39 | 8.76 | 4−11 | |
Rotor inner radius | Rr1 | (mm) | 17.2 | 8.61 | 12.15 | 13.85 | 5−20 |
Rotor outer radius | Rr2 | (mm) | 30.9 | 32 | 35.4 | 33.5 | 25−35 |
Item | Notation | Unit | Structure I | Structure II | Structure III | Structure IV | Vibration Ranges |
---|---|---|---|---|---|---|---|
Stator tooth width | Wst | (mm) | 7.74 | 4.37 | 3.89 | 5.05 | 3.5−7.5 |
Stator yoke height | Tsy | (mm) | 8.1 | 9.9 | 10.9 | 10.4 | 7.5–12.5 |
Slot open size | Rdiff | (mm) | 1.44 | 0.83 | 0.72 | 1.12 | 0.4–1.6 |
Ast | (degree) | 14.4 | 10.2 | 6.73 | 8.11 | 5–20 | |
Hss | (mm) | 1.6 | 0.97 | 0.21 | 0.28 | 0.1–1.8 | |
PMs size | tr | (mm) | 2.98 | 3.56 | 3.14 | 3.69 | 2.5–5 |
θt | (degree) | 8.86 | 8.8 | 9.74 | 9.96 | 4–11 | |
Rotor inner radius | Rr1 | (mm) | 16.08 | 7.5 | 9.4 | 12.32 | 5–20 |
Rotor outer radius | Rr2 | (mm) | 29.5 | 32.6 | 33 | 36.3 | 25–35 |
Winding Configurations | Structure | Average Torque | Value |
---|---|---|---|
FP | I | 30.92 Nm | 0.59% |
II | 39.78 Nm | 0.61% | |
III | 47.45 Nm | 0.88% | |
IV | 43.98 Nm | 0.98% | |
SP | I | 23.58 Nm | 0.49% |
II | 36.21 Nm | 0.95% | |
III | 40.42 Nm | 0.86% | |
IV | 41.17 Nm | 0.96% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Z.; Chau, A.M.H.; Niu, S.; Zhao, X.; Xue, Z. Design Optimization and Comparative Study of a Novel Halbach Permanent Magnet Vernier Machine with Alternate Flux Bridge. Appl. Sci. 2023, 13, 764. https://doi.org/10.3390/app13020764
Huang Z, Chau AMH, Niu S, Zhao X, Xue Z. Design Optimization and Comparative Study of a Novel Halbach Permanent Magnet Vernier Machine with Alternate Flux Bridge. Applied Sciences. 2023; 13(2):764. https://doi.org/10.3390/app13020764
Chicago/Turabian StyleHuang, Ziqi, Aten Man Ho Chau, Shuangxia Niu, Xing Zhao, and Zhiwei Xue. 2023. "Design Optimization and Comparative Study of a Novel Halbach Permanent Magnet Vernier Machine with Alternate Flux Bridge" Applied Sciences 13, no. 2: 764. https://doi.org/10.3390/app13020764
APA StyleHuang, Z., Chau, A. M. H., Niu, S., Zhao, X., & Xue, Z. (2023). Design Optimization and Comparative Study of a Novel Halbach Permanent Magnet Vernier Machine with Alternate Flux Bridge. Applied Sciences, 13(2), 764. https://doi.org/10.3390/app13020764