The Current State and Future Potential of Microbial Control of Scarab Pests
Abstract
:1. Introduction
2. Non-Target Effects of Entomopathogens
3. Short Term Biopesticides versus Long Term Biocontrol
4. Bacteria
4.1. Bacillus thuringiensis
4.2. Paenibacillus popilliae/Paenibacillus lentimorbus (Milky Spore Disease)
4.3. Serratia Species
4.4. Rickettsiella Species
4.5. Yersinia Species
5. Fungi
5.1. Beauveria Species
5.2. Metarhizium Species
5.3. Other Fungi
5.4. Microsporidia
6. Protozoa
6.1. Eucoccidiorida
6.2. Gregarinasina
7. Nematodes
8. Viruses
8.1. Oryctes Nudivirus
8.2. Iridescent Virus
8.3. Entomopoxvirus
9. Synergistic Interactions
10. Future Advancements
10.1. Paenibacillus
10.2. Microbial Formulations
10.3. Delivery Systems
11. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- USDA. NASS Census of Horticultural Specialties Report. 2019. Available online: https://www.nass.usda.gov/Newsroom/archive/2020/12-08-2020.php (accessed on 16 February 2022).
- Breuninger, J.M.; Welterlen, M.S.; Augustin, B.J.; Cline, V.; Morris, K.; Stier, J.C.; Horgan, B.P.; Bonos, S.A. The Turfgrass Industry; Wiley: Hoboken, NJ, USA, 2015; pp. 37–103. [Google Scholar] [CrossRef]
- Morris, K.E. The National Turfgrass Research Initiative. USGA Turfgrass Environ. Res. Online 2006, 5, 1–10. [Google Scholar]
- Potter, D.A.; Braman, S.K. Ecology and management of turfgrass insects. Ann. Rev. Entomol. 1991, 36, 383–406. [Google Scholar] [CrossRef]
- Koppenhöfer, M.A.; Wu, S. Microbial control of insect pests of turfgrass. In Microbial Control of Insect and Mite Pests; Academic Press: New Brunswick, NJ, USA, 2017; pp. 331–341. [Google Scholar]
- Krischik, V.A.; Davidson, J. IPM (Integrated Pest Management) of Midwest Landscapes; Minnesota Agricultural Experiment Station: St. Paul, MN, USA, 2004. [Google Scholar]
- Potter, D.A.; Held, D.W. Biology and Management of the Japanese Beetle. Annu. Rev. Èntomol. 2002, 47, 175–205. [Google Scholar] [CrossRef] [Green Version]
- Regnault-Roger, C. Trends for commercialization of biocontrol agent (biopesticide) products. In Plant Defence: Biological Control; Mérillon, J.M., Ramawat, K.G., Eds.; Springer: Dordrecht, Germany, 2012; pp. 139–160. [Google Scholar]
- Stenberg, J.A.; Sundh, I.; Becher, P.G.; Björkman, C.; Dubey, M.; Egan, P.A.; Friberg, H.; Gil, J.F.; Jensen, D.F.; Jonsson, M.; et al. When is it biological control? A framework of definitions, mechanisms, and classifications. J. Pest Sci. 2021, 94, 665–676. [Google Scholar] [CrossRef]
- Watson, A.K. The classical approach with plant pathogens. In Microbial Control of Weeds; Chapman and Hall: New York, NY, USA, 1991. [Google Scholar]
- Van Driesche, R.G.; Bellows, J.T.S. Biological Control; Kluwer Academic: Boston, MA, USA, 1996. [Google Scholar]
- Hintz, W. Working Group Report of Biological Canadian Weed Science Society. 2001. Available online: http://www.cwss-scm.ca/biological_control.htm (accessed on 21 May 2004).
- Smith, R.J. Integration of biological control agents with chemical pesticides. In Microbial Control of Weeds; TeBeest, D.O., Ed.; Chapman and Hall: New York, NY, USA, 1991; pp. 189–208. [Google Scholar]
- EPA. U.S. Environmental Protection Agency. Pesticides: Regulating Pesticides? What Are Biopesticides? 2008. Available online: https://www.epa.gov/pesticides/biopesticides (accessed on 18 April 2021).
- Caltagirone, E.L. Landmark Examples in Classical Biological Control. Annu. Rev. Èntomol. 1981, 26, 213–232. [Google Scholar] [CrossRef]
- Hajek, A.E.; McManus, M.L.; Delalibera, I. A review of introductions of pathogens and nematodes for classical biological control of insects and mites. Biol. Control 2006, 41, 1–13. [Google Scholar] [CrossRef]
- Cock, M.J.W.; Murphy, S.T.; Kairo, M.T.K.; Thompson, E.; Murphy, R.J.; Francis, A.W. Trends in the classical biological control of insect pests by insects: An update of the BIOCAT database. Biocontrol 2016, 61, 349–363. [Google Scholar] [CrossRef] [Green Version]
- Kalha, C.S.; Singh, P.P.; Kang, S.S.; Hunjan, M.S.; Gupta, V.; Sharma, R. Entomopathogenic viruses and bacteria for insect-pest control. In Integrated Pest Management; Academic Press: Cambridge, MA, USA, 2014; pp. 225–244. [Google Scholar]
- Jurat-Fuentes, J.L.; Jackson, T.A. Bacterial Entomopathogens. Insect Pathol. 2012, 2, 265–349. [Google Scholar] [CrossRef]
- Porcar, M.; Caballero, P. Molecular and insecticidal characterization of a Bacillus thuringiensis strain isolated during a natural epizootic. J. Appl. Microbiol. 2001 89, 309–316. [CrossRef]
- Konecka, E.; Kaznowski, A.; Ziemnicka, J.; Ziemnicki, K. Molecular and phenotypic characterisation of Bacillus thuringiensis isolated during epizootics in Cydia pomonella L. J. Invert. Pathol. 2007, 94, 56–63. [Google Scholar] [CrossRef]
- Dangar, T.K. Infectivity and ecology of Pseudomonas spp from natural epizootics in the rice leaf folder, C naphalocrocis medinalis (Lepidoptera: Pyralidae) in India. Biocontrol Sci. Technol. 2008, 18, 241–253. [Google Scholar] [CrossRef]
- Klein, M.G. Advances in the use of Bacillus popilliae for pest control. In Microbial Control of Pests and Plant Diseases; Academic Press: Cambridge, MA, USA, 1981. [Google Scholar]
- Adang, M.J.; Crickmore, N.; Jurat-Fuentes, J.L. Diversity of Bacillus thuringiensis crystal toxins and mechanism of action. In Advances in Insect Physiology; Academic Press: Cambridge, MA, USA, 2014. [Google Scholar]
- Jurat-Fuentes, J.L.; Crickmore, N. Specificity determinants for Cry insecticidal proteins: Insights from their mode of action. J. Invert. Pathol. 2017, 142, 5–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ellis, T.; Bradfisch, G.; Coats, J. Bt bacteria might form basis for future biological insecticide. Turf-Grass Trends 2004, 64–66. [Google Scholar]
- Song, P.; Wang, Q.; Nangong, Z.; Su, J.; Ge, D. Identification of Henosepilachna vigintioctomaculata (Coleoptera: Coccinellidae) midgut putative receptor for Bacillus thuringiensis insecticidal Cry7Ab3 toxin. J. Invert. Pathol. 2012, 109, 318–322. [Google Scholar] [CrossRef]
- Asano, S.I.; Yamashita, C.; Iizuka, T.; Takeuchi, K.; Yamanaka, S.; Cerf, D.; Yamamoto, T. A strain of Bacillus thuringiensis subsp. galleriae containing a novel cry8 gene highly toxic to Anomala cuprea (Coleoptera: Scarabaeidae). Biol. Control 2003, 28, 191–196. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Bando, H.; Asano, S.I. Identification of a Bacillus thuringiensis Cry8Da toxin-binding glucosidase from the adult Japanese beetle, Popillia japonica. J. Invert. Pathol. 2013, 113, 123–128. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Sahara, K.; Bando, H.; Asano, S.I. Discovery of a novel Bacillus thuringiensis Cry8D protein and the unique toxicity of the Cry8D-class proteins against scarab beetles. J. Invert. Pathol. 2008, 99, 257–262. [Google Scholar] [CrossRef] [PubMed]
- Sato, R.; Takeuchi, K.; Ogiwara, K.; Miname, M.; Kaje, Y.; Suzuki, M.; Hori., H.; Asano, S.; Inahana, M.; Inahana, H. Cloning, heterologous expression and localization of a novel crystal protein gene from Bacillus thuringiensis serovar japonensis strain buibui toxic to scarabaeid insects. Curr. Microbiol. 1994, 28, 15–19. [Google Scholar] [CrossRef]
- Bixby, A.; Alm, S.R.; Power, K.; Grewal, P.; Swier, S.R. Susceptibility of four species of turfgrass-infesting scarabs (Coleoptera: Scarabaeidae) to Bacillus thuringiensis serovar japonensis strain Buibui. J. Econ. Entomol. 2014, 100, 1604–1610. [Google Scholar] [CrossRef]
- Domínguez-Arrizabalaga, M.; Villanueva, M.; Escriche, B.; Ancín-Azpilicueta, C.; Caballero, P. Insecticidal activity of Bacillus thuringiensis proteins against coleopteran pests. Toxins 2020, 12, 430. [Google Scholar] [CrossRef]
- Redmond, C.T.; Wallis, L.; Geis, M.; Williamson, R.C.; Potter, D.A. Strengths and limitations of Bacillus thuringiensis galleriae for managing Japanese beetle (Popillia japonica) adults and grubs with caveats for cross-order activity to monarch butterfly (Danaus plexippus) larvae. Pest Manag. Sci. 2020, 76, 472–479. [Google Scholar] [CrossRef]
- Lord, C.J. From Metchnikoff to Monsanto and beyond: The path of microbial control. J. Invertebr. Pathol. 2005, 89, 19–29. [Google Scholar] [CrossRef] [Green Version]
- Lacey, L.A.; Grzywacz, D.; Shapiro-Ilan, D.I.; Frutos, R.; Brownbridge, M.; Goettel, M.S. Insect patho-gens as biological control agents: Back to the future. J. Invertebr. Pathol. 2015, 132, 1–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Althoff, E.R.; Rice, K.B. Japanese beetle (Coleoptera: Scarabaeidae) invasion of North America: History, ecology, and management. J. Integr. Pest Manag. 2022, 13, 2. [Google Scholar] [CrossRef]
- Dutky, R.S.; White, T. Effect of the Introduction of Milky Diseases on Populations of Japanese Beetle Larvae. J. Econ. Entomol. 1940, 33, 306–309. [Google Scholar]
- Rippere, K.E.; Tran, M.T.; Yousten, A.A.; Hilu, K.H.; Klein, M.G. Bacillus popilliae and Bacillus lentimorbus, bacteria causing milky disease in Japanese beetles and related scarab larvae. Int. J. Syst. Evol. Microbiol. 1998, 48, 395–402. [Google Scholar] [CrossRef]
- Redmond, C.T.; Potter, D.A. Lack of efficacy of in vivo- and putatively in vitro-produced Bacillus popilliae against field populations of Japanese beetle (Coleoptera: Scarabaeidae) grubs in Kentucky. J. Econ. Èntomol. 1995, 88, 846–854. [Google Scholar] [CrossRef]
- Klein, M.G. Use of Bacillus popilliae in Japanese beetle control. In Use of Pathogens in Scarab Pest Management; Glare, T.R., Jackson, T.A., Eds.; Intercept: Andover, UK, 1992; pp. 179–189. [Google Scholar]
- Fleming, W.E. Biological control of the Japanese beetle. USDA Tech. Bull. 1968, 1383. [Google Scholar]
- Stahly, D.; Klein, M. Problems with in vitro production of spores of Bacillus popilliae for use in biological control of the Japanese beetle. J. Invertebr. Pathol. 1992, 60, 283–291. [Google Scholar] [CrossRef]
- Hutton Jr, P.O.; Buwhiterbutis, P.P. Milky disease and Japanese beetle in Delaware. J. Econ. Entomol. 1974, 67, 247–248. [Google Scholar] [CrossRef]
- White, R.T. Survival of Type a Milky Disease of Japanese Beetle Larvae Under Adverse Field Conditions. J. Econ. Èntomol. 1940, 33, 303–306. [Google Scholar] [CrossRef]
- Ladd, L.T.; McCabe, P. Persistence of spores of Bacillus popilliae, the causal organism of type a milky disease of Japanese Beetle Larvae, in New Jersey Soils. J. Econ. Entomol. 1967, 60, 493–495. [Google Scholar] [CrossRef]
- Dutky, S.R. Investigation of Disease of The immature Stages of the Japanese Beetle. Ph.D. Thesis, Rutgers University, New Brunswick, NJ, USA, 1937. [Google Scholar]
- Jackson, T.A.; O’Callaghan, M. Isolation and enumeration of Serratia entomophila—A bacterial pathogen of the New Zealand grass grub, Costelytra zealandica. J. Appl. Microbiol. 1993, 75, 307–314. [Google Scholar]
- Trought, T.E.T.; Jackson, T.A.; French, R.A. Incidence and transmission of a disease of grass grub (Costelytra zealandica)in Canterbury. N. Z. J. Exp. Agric. 1982, 10, 79–82. [Google Scholar] [CrossRef]
- Johnson, V.; Pearson, J.; Jackson, T. Formulation of Serratia entomophila for biological control of grass grub. N. Z. Plant Prot. 2001, 54, 125–127. [Google Scholar] [CrossRef] [Green Version]
- Hurst, M.R.; Glare, T. Restriction Map of the Serratia entomophila Plasmid pADAP Carrying Virulence Factors for Costelytra zealandica. Plasmid 2002, 47, 51–60. [Google Scholar] [CrossRef]
- Hurst, M.R.; Jones, S.M.; Tan, B.; Jackson, T.A. Induced expression of the Serratia entomophila Sep proteins shows activity towards the larvae of the New Zealand grass grub. Costelytra zealandica. FEMS Microbiol. Lett. 2007, 275, 160–167. [Google Scholar] [CrossRef] [Green Version]
- Hurst, M.R.H.; Beattie, A.; Jones, S.A.; Laugraud, A.; van Koten, C.; Harper, L. Serratia proteamaculans Strain AGR96X Encodes an Antifeeding Prophage (Tailocin) with Activity against Grass Grub (Costelytra giveni) and Manuka Beetle (Pyronota Species) Larvae. Appl. Environ. Microbiol. 2018, 84. [Google Scholar] [CrossRef] [Green Version]
- Jackson, A.T.; Zimmerman, G. Is there a role for Serratia spp in the biocontrol of Melolontha spp? Bull. OILB SROP 1996, 19, 47–53. [Google Scholar]
- Pineda-Castellanos, M.L.; Rodríguez-Segura, Z.; Villalobos, F.J.; Hernández, L.; Lina, L.; Nuñez-Valdez, M.E. Pathogenicity of Isolates of Serratia Marcescens towards Larvae of the Scarab Phyllophaga Blanchardi (Coleoptera). Pathogens 2015, 4, 210–228. [Google Scholar] [CrossRef] [Green Version]
- Nuñez-Valdez, M.E.; Calderόn, M.A.; Aranda, E.; Hernández, L.; Ramírez-Gama, R.M.; Lina, L.; Rodríguez-Segura, Z.; Gutiérrez, M.D.C.; Villalobos, F.J. Identification of a Putative Mexican Strain of Serratia entomophila Pathogenic against Root-Damaging Larvae of Scarabaeidae (Coleoptera). Appl. Environ. Microbiol. 2008, 74, 802–810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Redmond, C.T.; Potter, D. Incidence of turf-damaging white grubs (Coleoptera: Scarabaeidae) and associated pathogens and parasitoids on Kentucky golf courses. Environ. Entomol. 2010, 39, 1838–1847. [Google Scholar] [CrossRef] [Green Version]
- Redmond, C.T.; Williams, D.W.; Potter, D.A. Comparison of scarab grub populations and associated pathogens and parasitoids in warm-or cool-season grasses used on transitional zone golf courses. J. Econ. Entomol. 2012, 105, 1320–1328. [Google Scholar] [CrossRef] [Green Version]
- Jackson, T.A. A novel bacterium for control of grass grub. In Biological Control: A Global Perspective; Vincent, C., Goettel, M., Lazarovits, G., Eds.; CAB International: Cambridge, MA, USA, 2007. [Google Scholar]
- Jackson, M.D.; Brown, G.C.; Nordin, G.L.; Johnson, D.W. Autodissemination of a baculovirus for management of tobacco budworms (Lepidoptera: Noctuidae) on tobacco. J. Econ. Entomol. 1992, 85, 710–719. [Google Scholar] [CrossRef] [Green Version]
- Townsend, R.J.; Jackson, T.A.; Ferguson, C.M.; Proffitt, J.R.; Slay, M.W.A.; Swaminathan, J.; Day, S.; Gerard, E.M.; O’Callaghan, M.; Johnson, V.W. Establishment of Serratia entomophila after application of a new formulation for grass grub control. N. Z. Plant Prot. 2004, 57, 310–313. [Google Scholar] [CrossRef]
- Burritt, L.N.; Foss, N.J.; Neeno-Eckwall, E.C.; Church, J.O.; Hilger, A.M.; Hildebrand, J.A.; Burritt, J.B. Sepsis and hemocyte loss in honey bees (Apis mellifera) infected with Serratia marcescens strain Sicaria. PLoS ONE 2016, 11, e0167752. [Google Scholar] [CrossRef] [Green Version]
- Glare, T.; O’Callaghan, M.; Wigley, P.J. Checklist of naturally occurring entomopathogenic microbes and nematodes in New Zealand. N. Z. J. Zool. 1993, 20, 95–120. [Google Scholar] [CrossRef] [Green Version]
- Moore, S.G.; Kalmakoff, J.; Miles, J.A.R. An iridescent virus and a rickettsia from the grass grub Costelytra zealandica (Coleoptera: Scarabaeidae). N. Zealand, J. Zool. 1974, 1, 205–210. [Google Scholar] [CrossRef] [Green Version]
- Longworth, J.F.; Archibald, R. A virus of black beetle, Heteronychus arator (F.) (Coleoptera: Scarabaeidae). N. Z. J. Zool. 1975, 2, 233–236. [Google Scholar] [CrossRef] [Green Version]
- Kleespies, R.G.; Marshall, S.D.; Schuster, C.; Townsend, R.J.; Jackson, T.A.; Leclerque, A. Genetic and electron-microscopic characterization of Rickettsiella bacteria from the manuka beetle, Pyronota setosa (Coleoptera: Scarabaeidae). J. Invert. Pathol. 2011, 107, 206–211. [Google Scholar] [CrossRef]
- Marshall, S.D.G.; Townsend, R.J.; Kleepsies, R.G.; van Koten, C.; Jackson, T.A. An epizootic of Rick-ettsiella infection emerges from an invasive scarab pest outbreak following land use change in New Zealand. Ann. Clin. Pathol. 2017, 3, 1058. [Google Scholar]
- Jackson, T.A.; Glare, T.R. Use of Pathogens in Scarab Pest Management; Intercept: Wimborne, UK, 1992. [Google Scholar]
- Dutky, S.R.; Gooden, E. Coxiella popilliae, n. sp., a rickettsia causing blue disease of Japanese beetle larvae. J. Bacteriol. Res. 1952, 1, 743–750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanula, J.L.; Andrealis, T. Parasitic microorganisms of Japanese beetle (Coleoptera: Scarabaeidae) and associated scarab larvae in Connecticut soils. Entomology 1988, 4, 709–714. [Google Scholar] [CrossRef]
- Kaya, H.K.; Klein, M.; Burlando, M.T. Impact of Bacillus popilliae, Rickettsiella popilliae and entomopathogenic nematodes on a population of the scarabaeid, Cyclocephala hirta. Sci. Technol. 1993, 3, 443–453. [Google Scholar]
- Hurst, M.R. Yersinia entomophaga sp nov isolated from the New Zealand grass grub Costelytra zealandica. Int. J. Syst. Evol. Microbiol. 2011, 61, 844–849. [Google Scholar] [CrossRef] [Green Version]
- Mansfield, S.; Wilson, M.J.; Gerard, P.J.; Wilson, D.J.; Swaminathan, J.; Wright, A.D.; Van Koten, C.; Hurst, M.R.H. Potential for a biopesticide bait to control black beetle, Heteronychus arator (Coleoptera: Scarabaeidae). Pest Manag. Sci. 2020, 76, 4150–4158. [Google Scholar] [CrossRef]
- Ruiu, L. Emerging entomopathogenic bacteria for insect pest management. Bull. Insectology 2013, 66, 181–186. [Google Scholar]
- Bowen, D.; Rocheleau, T.A.; Blackburn, M.; Andreev, O.; Golubeva, E.; Bhartia, R.; Ffrench-Constant, R.H. Insecticidal Toxins from the Bacterium Photorhabdus luminescens. Science 1998, 280, 2129–2132. [Google Scholar] [CrossRef]
- Hurst, M.R.; Glare, T.R.; Jackson, T.A. Cloning Serratia entomophila antifeeding genes—A putative defective prophage active against the grass grub Costelytra zealandica. J. Bacteriol. 2004, 186, 511–5128. [Google Scholar] [CrossRef] [Green Version]
- Esparza-Mora, M.; Conteiro, A.M.; Castillo, C.; Fraga, M.E. Classification and infection mechanism of entomopathogenic fungi. Arq. Do Inst. Biológico 2018, 84. [Google Scholar] [CrossRef] [Green Version]
- Brown, A.H.; Smith, G. The genus Paecilomyces Bainier and its perfect stage Byssochlamys Westling. Trans. Br. Mycol. Soc. 1957, 40, 17–89. [Google Scholar] [CrossRef]
- Rao, G.N.; Vijaylakshmi, U. A note on the occurrence of certain parasitic fungi on insect-pests of sugar-cane. Curr. Sci. 1959. 28, 295.
- Avasthy, P.N. Sugarcane Pests in India and Their Control. Int. J. Pest Manag. Part A 1967, 13, 111–117. [Google Scholar] [CrossRef]
- Hurpin, B.; Robert, P. Effects on a natural population of the cockchafer Melonlontha [Col.: Scarabaeidae] of the introduction of Rickettsiella melolonthae and Entomopoxvirus melolonthae. Food Agric. Organ. United Nations AGRIS 1977, 22, 81–85. [Google Scholar]
- Young, E. The epizootiology of two pathogens of the coconut palm rhinoceros beetle. J. Invertebr. Pathol. 1974, 24, 82–92. [Google Scholar] [CrossRef] [PubMed]
- Carrillo-Benítez, M.G.; Guzmán-Franco, A.W.; Alatorre-Rosas, R.; Enríquez-Vara, J.N. Diversity and genetic population structure of fungal pathogens infecting white grub larvae in agricultural soils. Microb. Ecol. 2013, 65, 437–449. [Google Scholar] [CrossRef] [PubMed]
- Chandel, R.S.; Soni, S.; Vashisth, S.; Pathania, M.; Mehta, P.K.; Rana, A.; Bhatnagar, A.; Agrawal, V.K. The potential of entomopathogens in biological control of white grubs. Int. J. Pest Manag. 2018, 65, 348–362. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Huang, D.; Wang, Z. Potential of Beauveria bassiana for biological control of Apriona germari. Front. Agric. China 2011, 5, 666–670. [Google Scholar] [CrossRef]
- Shanmugam, V.; Seethapathy, P. Isolation characterization of white muscardine fungi Beauveria bas-siana (Bals) Vuill—A causative of mulberry silkworm. J. Entomol. Zool. Stud. 2017, 5, 512–515. [Google Scholar]
- Seema, K.D.; Priti, M.G.; Shubhangi, S.P.; Vitthalrao, B.K. The influence of infection of Beauveria bassiana (Bals) Vuill, a fungal species (Family: Clavicipitaceae) on quality of the cocoons of spinned by the larval instars of Bombyx mori (L) (Race: PMx CSR2). Int. Phys. Med. Rehab. J. 2019, 7, 14–18. [Google Scholar]
- Keller, S.; Zimmermann, G.; Wilding, N.; Collins, N.M.; Hammond, P.M.; Webber, J.F. Mycopathogens of soil insects. In Insect-Fungus Interactions; Wilding, N., Collins, N.M., Hammond, P.M., Webber, J.F., Eds.; Academic: London, UK, 1989; pp. 240–265. [Google Scholar]
- Neuvéglise, C.; Brygoo, Y.; Vercambre, B.; Riba, G. Comparative analysis of molecular and biological char-acteristics of strains of Beauveria brongniartii isolated from insects. Mycol. Res. 1994, 98, 322–328. [Google Scholar] [CrossRef]
- Wang, Y.; Fan, Q.; Wang, D.; Zou, W.-Q.; Tang, D.-X.; Hongthong, P.; Yu, H. Species Diversity and Virulence Potential of the Beauveria bassiana Complex and Beauveria scarabaeidicola Complex. Front. Microbiol. 2022, 13. [Google Scholar] [CrossRef] [PubMed]
- Faria, M.R.; Wraight, S. Mycoinsecticides mycoacaricides: A comprehensive list with worldwide coverage international classification of formulation types. J. Biol. Control 2007, 43, 237–256. [Google Scholar] [CrossRef]
- Lacey, L.A.; Adams, J. An iridescent virus from Popillia japonica (Coleoptera: Scarabaeidae). Entomophaga 1994, 39, 131–136. [Google Scholar] [CrossRef]
- Erler, F.; Ates, A.O. Potential of two entomopathogenic fungi, Beauveria bassiana and Metarhizium an-isopliae (Coleoptera: Scarabaeidae), as biological control agents against the June beetle. J. Insect Sci. 2015, 15, 44. [Google Scholar] [CrossRef] [Green Version]
- Nasution, L.; Corah, R.; Nuraida, N.; Siregar, A.Z. Effectiveness Trichoderma and Beauveria bassiana on Larvae of Oryctes rhinoceros On Palm Oil Plant (Elaeis Guineensis Jacq.) In Vitro. Int. J. Environ. Agric. Biotechnol. 2018, 3, 158–169. [Google Scholar] [CrossRef] [Green Version]
- Poprawski, T.J.; Yule, W. Incidence of fungi in natural populations of Phyllophaga spp and susceptibility of Phyllophaga anxia (LeConte) (Col., Scarabaeidae) to Beauveria bassiana and Metarhizium anisopliae (Deuteromycotina). J. Appl. Entomol. 1991, 112, 359–365. [Google Scholar] [CrossRef]
- Rath, A.C.; Worledge, D.; Koen, T.B.; Rowe, B.A. Long-term Field Efficacy of the Entomogenous Fungus Metarhizium anisopliae against the Subterranean Scarab, Adoryphorus couloni. Biocontrol Sci. Technol. 1995, 5, 439–452. [Google Scholar] [CrossRef]
- Guzmán-Franco, A.W.; Hernández-López, J.; Enríquez-Vara, J.N.; Alatorre-Rosas, R.; Tamayo-Mejía, F.; Ortega-Arenas, L.D. Susceptibility of Phyllophaga polyphylla and Anomala cincta larvae to Beauveria bassiana and Metarhizium anisopliae isolates, and the interaction with soil properties. BioControl 2011, 57, 553–563. [Google Scholar] [CrossRef]
- Nong, X.; Wang, Q.; Li, X.; Wang, G.; Cao, G.; Zhang, Z. Laboratory evaluation of entomopathogenic fungi against the white grubs, Holotrichia oblita and Anomala corpulenta (Coleoptera: Scarabaeidae) from the field of peanut, Arachis hypogaea. Biocontrol Sci. Technol. 2011, 21, 593–603. [Google Scholar] [CrossRef]
- Giroux, F.; Lavallée, R.; Guertin, B.C. Susceptibility of the Japanese beetle, Popillia japonica (Newman) (Coleoptera: Scarabaeidae), to entomopathogenic Hypocreales fungi. Phytoprotection 2015, 95, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Ofelia, S.P.; Castillo Gutierrez, A.; Chora, G.P.; Andres, A.G.; Serrano Morales, M.M.; Ramon, S.R. Pathogenicity virulence the interaction of Metarhizium anisopliae Beauveria bassiana against Phyl-lophaga vetula (Coleoptera: Melolonthidae). J. Pure Appl. Microbiol. 2016, 10, 2607–2612. [Google Scholar] [CrossRef]
- Zimmermann, G. The entomopathogenic fungus Metarhizium anisopliae and its potential as a biocontrol agent. Pestic. Sci. 1993, 37, 375–379. [Google Scholar] [CrossRef]
- Keller, S. Use of Beauveria brongniartii in Switzerland and its acceptance by farmers. Bull. IOBC/WPRS 2000, 23, 67–71. [Google Scholar]
- Keller, S.; Kessler, P.; Schweizer, C. Distribution of insect pathogenic soil fungi in Switzerland with spe-cial reference to Beauveria brongniartii and Metharhizium anisopliae. BioControl 2003, 48, 307–319. [Google Scholar] [CrossRef]
- Hadapad, A.B.; Reineke, A.; Zebitz, C.P. Screening and selection of virulent isolates of the entomopath-ogenic fungus Beauveria brongniartii (Sacc.) Petch for the control of scarabs. Insect Pathogens and Insect Para-sitic Nematodes: Melolontha. IOBC/Wprs Bull. 2005, 28, 63–69. [Google Scholar]
- Dolci, P.; Guglielmo, F.; Secchi, F.; Ozino, O. Persistence and efficacy of Beauveria brongniartii strains applied as biocontrol agents against Melolontha melolontha in the Valley of Aosta (northwest Italy). J. Appl. Microbiol. 2006, 100, 1063–1072. [Google Scholar] [CrossRef]
- Townsend, R.; Nelson, T.; Jackson, T. Beauveria brongniartii a potential biocontrol agent for use against manuka beetle larvae damaging dairy pastures on Cape Foulwind. N. Z. Plant Prot. 2010, 63, 224–228. [Google Scholar] [CrossRef]
- Lewis, L.C.; Cossentine, J.E. Season long intraplant epizootics of entomopathogens, Beauveria bassiana andNosema pyrausta, in a corn agroecosystem. BioControl 1986, 31, 363–369. [Google Scholar] [CrossRef]
- Devi, K.U.; Mohan, C.H.M.; Padmavathi, J.; Ramesh, K. Susceptibility to Fungi of Cotton Boll Worms Before and After a Natural Epizootic of the Entomopathogenic Fungus Nomuraea rileyi (Hyphomycetes). Biocontrol Sci. Technol. 2003, 13, 367–371. [Google Scholar] [CrossRef]
- Latifian, M.; Soleiman Nehadian, E.; Ghazavi, M. The epizootic models of Beauveria bassiana in saw-toothed grain beetle, Oryzaephilus surinamensis populations feeding on date fruits. Biol. Control Pest Plant Dis. 2017, 6, 207–220. [Google Scholar]
- Wraight, S.P.; Galaini-Wraight, S.; Howes, R.L.; Castrillo, L.A.; Carruthers, R.I.; Smith, R.H.; Matsumoto, T.K.; Keith, L.M. Prevalence of naturally-occurring strains of Beauveria bassiana in populations of coffee berry borer Hypothenemus hampei on Hawai’i Island with observations on coffee plant-H hampei-B bassiana interactions. J. Invertebr. Pathol. 2018, 156, 54–72. [Google Scholar] [CrossRef]
- Townsend, R.J.; Glare, T.R.; Willoughby, B.E. The fungi Beauveria spp cause epizootic in grass grub pop-ulation in Waikato. In Proceedings of the 48th New Zealand Plant Protection Conference, Hastings, New Zealand, 8–10 August 1995; pp. 237–241. [Google Scholar]
- Storey, G.K.; Gardner, W.A.; Tollner, E. Penetration and Persistence of Commercially Formulated Beauveria bassiana Conidia in Soil of Two Tillage Systems. Environ. Èntomol. 1989, 18, 835–839. [Google Scholar] [CrossRef]
- Vänninen, I.; Tyni-Juslin, J.; Hokkanen, H. Persistence of augmented Metarhizium anisopliae and Beau-veria bassiana in Finnish agricultural soils. BioControl 2000, 45, 201–222. [Google Scholar] [CrossRef]
- Inglis, G.D.; Enkerli, J.U.; Goettel, M.S. Laboratory techniques used for entomopathogenic fungi: Hypocreales. In Manual of Techniques in Invertebrate Pathology; Lacey, L.A., Ed.; Academic Press: Cambridge, MA, USA, 2012; pp. 18–53. [Google Scholar]
- Swiergiel, W.; Meyling, N.V.; Porcel, M.; Rämert, B. Soil application of Beauveria bassiana GHA against apple sawfly, Hoplocampa testudinea (Hymenoptera: Tenthredinidae): Field mortality and fungal persistence. Insect Sci. 2016, 23, 854–868. [Google Scholar] [CrossRef]
- Gaugler, R.; Costa, S.D.; Lashomb, J. Stability and Efficacy of Beauveria bassiana Soil Inoculations. Environ. Èntomol. 1989, 18, 412–417. [Google Scholar] [CrossRef]
- Steinhaus, E.A. Microbial control—The emergence of an idea. A brief history of insect pathology through the nineteenth century. Hilgardia 1956, 26, 107–160. [Google Scholar] [CrossRef] [Green Version]
- Vega, F.E.; Blackwell, M. Insect-Fungal Associations: Ecology and Evolution; Oxford University Press: Oxford, UK, 2005. [Google Scholar]
- Rombach, M.C.; Humber, R.A.; Evans, H.C. Metarhizium album, a fungal pathogen of leaf-and planthop-pers of rice. Trans. Brit. Mycol. Soc. 1987, 88, 451–459. [Google Scholar] [CrossRef]
- Soares, G.G., Jr.; Marchal, M.; Ferron, P. Susceptibility of Otiorhynchus sulcatus (Coleoptera: Curculio-nidae) larvae to Metarhizium anisopliae and Metarhizium flavoviride (Deuteromycotina: Hyphomycetes) at two different temperatures. Environ. Entomol. 1983, 12, 1887–1891. [Google Scholar] [CrossRef]
- Milner, R.J. Metarhizium flavoviride (FI985) as a promising mycoinsecticide for Australian acridids. Memoirs Èntomol. Soc. Can. 1997, 129, 287–300. [Google Scholar] [CrossRef]
- Bidochka, M.J.; Small, C.L. Phylogeography of Metarhizium an insect pathogenic fungus. In Insect-Fungal Associations; Vega, F.E., Blackwell, M., Eds.; Oxford University Press: Oxford, UK, 2005; pp. 28–49. [Google Scholar]
- Behle, R.W.; Richmond, D.S.; Jackson, M.A.; Dunlap, C.A. Evaluation of Metarhizium brunneum F52 (Hypocreales: Clavicipitaceae) for control of Japanese beetle larvae in turfgrass. J. Econ. Entomol. 2015, 108, 1587–1595. [Google Scholar] [CrossRef] [Green Version]
- Hajek, A.E.; Delalibera, I. Fungal pathogens as classical biological control agents against arthropods. BioControl 2010, 55, 147–158. [Google Scholar] [CrossRef]
- Latch, G.C.M. Metarhizium anisopliae (Metch) Sorokin strain in New Zealand their possible use for con-trolling pasture-inhabiting insects NZ. J. Agric. Res. 1965, 8, 394–396. [Google Scholar]
- Rodríguez-del-Bosque, L.A.; Silvestre, F.; Hernández, V.M.; Quiroz, H.; Throne, J.E. Pathogenicity of Me-tarhizium anisopliae Beauveria bassiana against Phyllophaga crinita Anomala flavipennis (Coleoptera: Scarabaeidae). J. Entomol. Sci. 2005, 40, 67–73. [Google Scholar] [CrossRef]
- Morales-Rodriguez, A.; Ospina, A.; Peck, D.C. Variation in the laboratory susceptibility of turf-infesting white grubs (Coleoptera: Scarabaeidae) to biological, biorational and chemical control products. Pest Manag. Sci. 2010, 66, 90–99. [Google Scholar] [CrossRef] [PubMed]
- Fătu, A.C.; Dinu, M.; Andrei, A.M. Susceptibility of some melolonthine scarab species to entomopathogenic fungus Beauveria brongniartii (Sacc.) Petch and Metarhizium anisopliae (Metsch.). Sci. Bull. 2018, 22, 42–49. [Google Scholar]
- Fernando, L.C.P.; Kanagaratnam, P.; Narangoda, N.K. Some studies on the use of Metarhizium anisopliae (Metsch.) Sor. for the control of Oryctes rhinoceros in Sri Lanka. Cocos 1995, 46–52. [Google Scholar] [CrossRef]
- Krueger, S.R.; Villani, M.G.; Martins, A.S.; Roberts, D.W. Efficacy of soil applications of Metarhizium anisopliae (Metsch.) Sorokin conidia, and standard and lyophilized mycelial particles against scarab grubs. J. Invertebr. Pathol. 1992, 59, 54–60. [Google Scholar] [CrossRef]
- Shimazu, M. Metarhizium cylindrosporae Chen et Guo (Deuteromycotina: Hyphomycetes), the causative agent of an epizootic on Graptopsaltria nigrofuscata Motchulski (Homoptera: Cicadiae). Appl. Entomol. Zool. 1989, 24, 430–434. [Google Scholar] [CrossRef] [Green Version]
- Luan, F.; Zhang, S.; Wang, B.; Huang, B.; Li, Z. Genetic diversity of the fungal pathogen Metarhizium spp, causing epizootics in Chinese burrower bugs in the Jingting Mountains, eastern China. Mol. Biol. Rep. 2013, 40, 515–523. [Google Scholar] [CrossRef] [PubMed]
- Hu, G.; Leger, R.J.S. Field Studies Using a Recombinant Mycoinsecticide (Metarhizium anisopliae) Reveal that It Is Rhizosphere Competent. Appl. Environ. Microbiol. 2002, 68, 6383–6387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zimmermann, G. Review on safety of the entomopathogenic fungi Beauveria bassiana and Beauveria brongniartii. Biocontrol Sci. Technol. 2007, 17, 553–596. [Google Scholar] [CrossRef]
- Leger, R.J.S. Studies on adaptations of Metarhizium anisopliae to life in the soil. J. Invertebr. Pathol. 2008, 98, 271–276. [Google Scholar] [CrossRef] [PubMed]
- Pilz, C.; Enkerli, J.; Wegensteiner, R.; Keller, S. Establishment and persistence of the entomopathogenic fungus Metarhizium anisopliae in maize fields. J. Appl. Èntomol. 2010, 135, 393–403. [Google Scholar] [CrossRef]
- Castro, T.; Mayerhofer, J.; Enkerli, J.; Eilenberg, J.; Meyling, N.V.; de Andrade Moral, R.; Demétrio, C.G.B.; Delalibera, I., Jr. Persistence of Brazilian isolates of the entomopathogenic fungi Metarhizium anisopliae and M. robertsii in strawberry crop soil after soil drench application. Agric. Ecosyst. Environ. 2016, 233, 361–369. [Google Scholar] [CrossRef] [Green Version]
- Saleem, A.R.; Ibrahim, R.A. Assessment of the virulence proteolytic activity of three native ento-mopathogenic fungi against the larvae of Oryctes agamemnon (Burmeister) (Coleoptera: Scarabaeidae) Egypt. J. Biol. Pest Control 2019, 29, 1–8. [Google Scholar]
- Dabi, R.K.; Gour, H. Field screening of mothbean (Vigna aconitifolia) for susceptibility to insect pest diseases Indian. J. Agric. Sci. 1988, 58, 843–844. [Google Scholar]
- Goh, H.; Willoughby, B.; Prestidge, R.; Lyons, S. Pathogenicity of Beauvaria, metarhizium, Paecilomyces and Fusarium isolates against early instar grass grub (Costelytra zealandica) larvae. Proc. N. Z. Weed Pest Control Conf. 1991, 44, 209–211. [Google Scholar] [CrossRef] [Green Version]
- Bose, S.; Mehta, P. A new species of Entomophthora on beetles. Trans. Br. Mycol. Soc. 1953, 36, 52–56. [Google Scholar] [CrossRef]
- Chandel, R.S. Natural enemies of Brahmma coriacea (Hope) in Himachal Pradesh. Insect Environ. 2000, 6, 85. [Google Scholar]
- Becnel, J.J.; Andreadis, T.G. Microsporidia in insects. In The Microsporidia and Microsporidiosis; Wittner, M., Weiss, L.M., Eds.; American Society for Microbiology: Washington, DC, USA, 1999; pp. 447–501. [Google Scholar]
- Murareanu, B.M.; Sukhdeo, R.; Qu, R.; Jiang, J.; Reinke, A.W. Generation of a microsporidia species at-tribute database and analysis of the extensive ecological and phenotypic diversity of microsporidia. Mbio 2021, 12, e01490-21. [Google Scholar] [CrossRef]
- Vávra, J.; Lukeš, J. Microsporidia and ‘the art of living together’. Adv. Parasitolol. 2013, 82, 253–319. [Google Scholar]
- Solter, L.F.; Becnel, J. Entomopathogenic Microsporidia; Field Manual of Techniques in Invertebrate Pathology: Dordrecht, The Netherlands, 2007; pp. 199–221. [Google Scholar]
- Hall, I.M.; Oliver, E.H.A.; Given, B.B. Nosema takapauensis n sp a microsporidan parasite of Costelytra zea-landica (Coleoptera: Scarabaeidae) in New Zealand. N. Z. J. Zool. 1976, 3, 257–260. [Google Scholar] [CrossRef] [Green Version]
- Wigley, P.J. Practical: Counting micro-organisms. In Microbial Control of Insect Pests; DSIR Bulletin: Wellington, New Zealand, 1980; pp. 29–35. [Google Scholar]
- Malone, L. Longevity and fecundity of Argentine stem weevils, Listronotus bonariensis (Coleoptera: Curculionidae), infected with Microsporidium itiiti (Protozoa: Microspora). J. Invertebr. Pathol. 1987, 50, 113–117. [Google Scholar] [CrossRef]
- Milner, R.; Beaton, C. Pleistophora oncoperae sp.n. (Protozoa: Microsporida) from Oncopera alboguttata (Lepidoptera: Hepialidae) in Australia. J. Invertebr. Pathol. 1977, 29, 133–140. [Google Scholar] [CrossRef]
- Milner, R.; Lutton, G. Interactions between Oncopera alboguttata (Lepidoptera: Hepialidae) and its microsporidan pathogen, Pleistophora oncoperae (Protozoa: Microsporida). J. Invertebr. Pathol. 1980, 36, 198–202. [Google Scholar] [CrossRef]
- Purrini, K.; Kohring, G.-W. Light-and Electron Microscopic Studies on a New Microsporidian, Pleistophora tanzaniae n. sp. (Microsporida: Microspora) Parasitizing the Orydes monoceros OLIV.(Scarabaeidae, Coleoptera). Arch. Für Protistenkd. 1986, 131, 281–286. [Google Scholar] [CrossRef]
- Hurpin, B. The influence of temperature and larval stage on certain diseases of Melolontha melolontha. J. Invertebr. Pathol. 1968, 10, 252–262. [Google Scholar] [CrossRef]
- Hurpin, B.; Robert, P. Comparison of the activity of certain pathogens of the cockchafer Melolontha melolontha in plots of natural meadowland. J. Invertebr. Pathol. 1972, 19, 291–298. [Google Scholar] [CrossRef]
- Andreadis, T.G.; Hanula, J. Ultrastructural study description of Ovavesicula popilliae, N.G.; N Sp. (Microsporida: Pleistophoridae) from the Japanese beetle, Popillia japonica (Coleoptera: Scarabaeidae). J. Protozool. 1987, 34, 15–21. [Google Scholar] [CrossRef]
- Cappaert, D.L.; Smitley, D.R. Parasitoids and Pathogens of Japanese Beetle (Coleoptera: Scarabaeidae) in Southern Michigan. Environ. Èntomol. 2002, 31, 573–580. [Google Scholar] [CrossRef]
- Smitley, D.R.; Jo, Y.-K.; Hudson, I. Association of Ovavesicula popilliae (Microsporida: Ovavesiculidae) With Winter Mortality of Larvae and Reduced Fecundity of Female Japanese Beetles (Coleoptera: Scarabaeidae). Environ. Èntomol. 2011, 40, 589–596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petty, B.; Johnson, D.; Steinkraus, D. Survey of pathogens and parasitoids of Popillia japonica (Coleoptera: Scarabaeidae) in northwest Arkansas. J. Invertebr. Pathol. 2012, 111, 56–59. [Google Scholar] [CrossRef] [PubMed]
- Hulbert, D.; Smitley, D.; Hotchkiss, E.; Lewis, P.; Wu, Y.; Smith, J.J. Geographic distribution of Ovavesicula popilliae in the United States and sensitivity of visual diagnosis compared with qPCR detection. J. Invertebr. Pathol. 2020, 175, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Hanula, J.L.; Andreadis, T. Protozoan pathogens of the Scarabaeidae. In Use of Pathogens in Scarab Pest Management; Glare, T.R., Jackson, T.A., Eds.; Intercept Andover: Hampshire, UK, 1992; pp. 79–91. [Google Scholar]
- Vossbrinck, C.R.; Andreadis, T.G. The phylogenetic position of Ovavesicula popilliae (Microsporidia) and its relationship to Antonospora and Paranosema based on small subunit rDNA analysis. J. Invertebr. Pathol. 2007, 96, 270–273. [Google Scholar] [CrossRef]
- Piombino, M.; Smitley, D.; Lewis, P. Survival of Japanese beetle, Popillia japonica Newman, larvae in field plots when infected with a microsporidian pathogen, Ovavesicula popilliae. J. Invertebr. Pathol. 2020, 174, 107434. [Google Scholar] [CrossRef]
- Lange, C.E. Long-term patterns of occurrence of Nosema locustae and Perezia dichroplusae (Microsporidia) in grasshoppers (Orthoptera: Acrididae) of the Pampas, Argentina. Acta Protozool. 2003, 42, 309–316. [Google Scholar]
- Piombino, M.A. Biological Control of Japanese Beetle (Popillia japonica) through the Use of the Microsporidian Pathogen, Ovavesicula popilliae. M.S. Thesis, Michigan State University, Ann Arbor, MI, USA, 2019. [Google Scholar]
- Ignoffo, C.M. Environmental factors affecting persistence of entomopathogens. Fla. Entomol. 1992, 75, 516–525. [Google Scholar] [CrossRef]
- Jeffords, M.R.; Maddox, J.V.; McManus, M.L.; Webb, R.E.; Wieber, A. Evaluation of the overwintering success of two European microsporidia inoculatively released into gypsy moth populations in Maryland. J. Invert. Pathol. 1989, 53, 235–240. [Google Scholar] [CrossRef]
- Yaeger, R.G. Protozoa: Structure classification, growth development. In Medical Microbiology, 4th ed.; Baron, S., Ed.; University of Texas: Galveston, TX, USA, 1996. [Google Scholar]
- Lacey, L.A.; Frutos, R.; Kaya, H.K.; Vail, P. Insect pathogens as biological control agents: Do they have a future? Biol. Control 2001, 21, 230–248. [Google Scholar] [CrossRef] [Green Version]
- Tuzet, O.; Vago, C.; Ormieres, R.; Robert, P. Adelina melolonthae n. sp., coccidie parasite des larves de Melol-ontha rnelolontha. Arch. Zool. Exp. Gen. 1965, 106, 513–521. [Google Scholar]
- Hurpin, B. Study of various strains of milky disease on the larvae of Melolontha melolontha L. and on those of some related species. BioControl 1959, 4, 233–248. [Google Scholar]
- Hurpin, B. Principles of microbiological control in agriculture. Ann. Parasitol. Hum. Comp. 1971, 46, 243–276. [Google Scholar] [CrossRef]
- Hurpin, B. Prospects constraints of microbiological control. J. Appl. Entomol. 1974, 77, 377–386. [Google Scholar]
- Hurpin, B.; Robert, P. Studies on the use of V. melolonthae for the microbiological control of white grubs. Entomophaga 1970, 14, 349–357. [Google Scholar] [CrossRef]
- Yaman, M.; Eroğlu, M.; Radek, R. Occurrence of a microsporidium in the predatory beetle Calosoma syco-phanta L (Coleoptera: Carabidae) Turk. J. Argric. For. 2016, 40, 420–424. [Google Scholar]
- Weiser, J.; Beard, R. Adelina sericesthis n sp a new coccidian parasite of scarabaeid larvae. J. Insect Pathol. 1959, 1, 99–106. [Google Scholar]
- Weiser, J. Sporozoan infections. In Insect Pathology, an Advanced Treatise; Academic Press: New York, NY, USA, 1963; pp. 291–334. [Google Scholar]
- Malone, L.A.; Dhana, S. Life cycle and ultrastructure of Adelina tenebrionis (Sporozoea: Adeleidae) from Heteronychus arator (Coleoptera: Scarabaeidae). Parasitol. Res. 1988, 74, 201–207. [Google Scholar] [CrossRef]
- King, C.H.; Shotts, E.B., Jr.; Wooley, R.E.; Porter, K.G. Survival of coliforms and bacterial pathogens within protozoa during chlorination. Appl. Environ. Entomol. 1985, 54, 3023–3033. [Google Scholar] [CrossRef] [Green Version]
- King, P.D.; Mercer, C.F. Effect of Adelina sp. (Protozoa: Coccidia) on Heteronychus arator fecundity and populations (Coleoptera: Scarabaeidae). In Proceedings of the 2nd Australasian Conference on Grassland Invertebrate Ecology, Palmerston North, New Zealand, 22–26 May 1979; pp. 200–202. [Google Scholar]
- Klein, M.G. Pest management of soil-inhabiting insects with microorganisms. Agric. Ecosyst. Environ. 1988, 24, 337–349. [Google Scholar] [CrossRef]
- Larsson, R. Ultrastructural study and description of Klossia aphodii n. sp. (Apicomplexa, Adeleidae) a coccidian parasite of Aphodius fimetarius and A. contaminatus (Coleoptera, Scarabaeidae) in Sweden. Zool. Anz. 1985, 214, 241–261. [Google Scholar]
- Lipa, J.J. Miscellaneous observations on protozoan infections of Nepa cinerea Linnaeus including descriptions of two previously unknown species of Microsporidia, Nosema bialoviesianae sp. n. and Thelohania nepae sp.n. J. Invertebr. Pathol. 1966, 8, 158–166. [Google Scholar] [CrossRef] [PubMed]
- Beard, R.L. A coccidian parasite of Galleria mellonella. In Proceedings of the IVth International Colloquium on Insect Pathology, College Park, MD, USA, 25–28 August 1970. [Google Scholar]
- Henry, J.E.; Oma, E.A. Pest control by Nosema locustae a pathogen of grasshopper crickets. J. Invertebr. Pathol. 1981, 23, 371–377. [Google Scholar] [CrossRef] [PubMed]
- Njila, H.L.; Mwansat, G.S. Evaluation of some Protozoan Pathogens of Tribolium castaneum HERST. (Coleoptera: Tenebrionidae) and Dermestes maculates DEGEER. (Coleoptera: Dermestidae) as possible Biocontrol Agents. J. Appl. Res. Technol. 2012, 1, 174–179. [Google Scholar]
- Alfazairy, A.A.; El-Abed, Y.M.G.; Karam, H.H.; Ramadan, H.M. Morphological characteristics of local entomopathogenic protozoan strains isolated from insect cadavers of certain stored-grain pests in Egypt. Egypt. J. Biol. Pest Control 2020, 30, 1–13. [Google Scholar] [CrossRef]
- Logan, J.D.; Janovy, J., Jr.; Bunker, B.E. The life cycle and fitness domain of gregarine (Apicomplexa) para-sites. Ecol. Model. 2012, 233, 31–40. [Google Scholar] [CrossRef]
- Rueckert, S.; Chantangsi, C.; Leander, S.L. Molecular systematics of marine gregarines (Apicomplexa) from North-eastern Pacific polychaetes and nemerteans, with descriptions of three novel species: Lecudina phyllochaetopteri sp. nov., Difficilina tubulani sp. nov. and Difficilina paranemertis sp. nov. Inter. J. System. Evol. Microbiol. 2010, 60, 2681–2690. [Google Scholar]
- Allison, M.J. Biosynthesis of Amino Acids by Ruminal Microorganisms. J. Anim. Sci. 1969, 29, 797–807. [Google Scholar] [CrossRef]
- Hurpin, B.; Vago, C. Diseases of the common cockchafer (Melolontha melolontha L.). Entomophaga 1958, 3, 285–330. [Google Scholar] [CrossRef]
- Pfeiffer, D.G. Japanese beetle and other Coleoptera feeding on grapevines in eastern North America. In Arthropod Management in Vineyards; Springer: Dordrecht, The Netherlands, 2012; pp. 403–429. [Google Scholar]
- Kowalczyk, S.A. A Report on the Intestinal Protozoa of the Larva of the Japanese Beetle (Popillia japonica Newm., Coleoptera). Trans. Am. Microsc. Soc. 1938, 57, 229. [Google Scholar] [CrossRef]
- Grener, P.; Théodoridés, J. The Simuliidae of Morocco. Arch. Inst. Pasteur Maroc. 1953, 4, 429–441. [Google Scholar]
- Hurpin, B.; Robert, P. On some epizootiological characters of the fusiform inclusion virus in the larvae of Melolontha melolontha. J. Invertebr. Pathol. 1971, 2, 72–81. [Google Scholar]
- Weiser, J.; Wille, H. Über eine Gregarine aus den Engerlingen von Hoplia sp. aus Schweiz. Cesk. Parasitol. 1960, 7, 351–354. [Google Scholar]
- Canning, E.U. Observations on the life history of Mattesia trogodermae sp. n., a schizogregarine parasite of the fat body of the Khapra beetle, Trogoderma granarium Everts. J. Insect Pathol. 1964, 6, 107. [Google Scholar]
- McLaughlin, R.; Scott, H.; Bell, M. Infection of the boll weevil by Chilo iridescent virus. J. Invertebr. Pathol. 1972, 19, 285–290. [Google Scholar] [CrossRef]
- Henry, E.J. Natural and Applied Control of Insects by Protozoa. Annu. Rev. Èntomol. 1981, 26, 49–73. [Google Scholar] [CrossRef]
- Purrini, K.; Kohring, G. Ophryocystis oryctesi n.sp. (Ophryocystidae, Neogregarinida), a new gregarine parasitizing the rhinoceros beetle, Oryctes monoceros Oliv. (Scarabaeidae, Coleoptera). Zool. Anz. 1987, 218, 237–245. [Google Scholar]
- Miln, A.J. The effects of different times of insecticide application on disease incidence in grass grub popula-tions. Proc. N. Z. Weed Pest Control Conf. 1983, 36, 199–202. [Google Scholar]
- Popay, A.J. Population regulation of Costelytra zealandica by pathogens in the north island of New Zealand. In Use of Pathogens in Scarab Pest Management; Jackson, T.A., Glare, T.R., Eds.; T. Intercept: Andover, UK, 1992; pp. 141–152. [Google Scholar]
- Bekircan, Ç.; Baki, H.; Baki, H.; Tosun, O. The Distribution of Aranciocystis muskarensis (Neogregarinida: Ophryocystidae) in Populations of Anisoplia segetum Herbst (Coleoptera: Scarabaeidae) in Turkey and Its Relationship with Climatic Factors. Türk. Tarım Ve Doğa Bilim. Derg. 2018, 5, 146–152. [Google Scholar] [CrossRef] [Green Version]
- Nara, J.M.; Burkholder, W.E.; Boush, G.M. The influence of storage temperature on spore viability of Mattesia trogodermae (Protozoa: Neogregarinida). J. Invert. Pathol. 1981, 38, 404–408. [Google Scholar] [CrossRef]
- Bjørnson, S. Natural enemies of the convergent lady beetle, Hippodamia convergens Guérin-Méneville: Their inadvertent importation and potential significance for augmentative biological control. Biol. Control 2008, 44, 305–311. [Google Scholar] [CrossRef]
- Dillman, A.R.; Chaston, J.M.; Adams, B.J.; Ciche, T.A.; Goodrich-Blair, H.; Stock, S.P.; Sternberg, P.W. An Entomopathogenic Nematode by Any Other Name. PLOS Pathog. 2012, 8, e1002527. [Google Scholar] [CrossRef] [Green Version]
- Kaya, H.K.; Gaugler, R. Entomopathogenic nematodes. Ann. Rev. Entomol. 1993, 38, 181–206. [Google Scholar] [CrossRef]
- Peters, A. The Natural Host Range of Steinernema and Heterorhabditis spp and Their Impact on Insect Populations. Biocontrol Sci. Technol. 1996, 6, 389–402. [Google Scholar] [CrossRef]
- Bhat, A.H.; Chaubey, A.K.; Askary, T.H. Global distribution of entomopathogenic nematodes, Steinernema and Heterorhabditis. Egypt. J. Biol. Pest Control 2020, 30. [Google Scholar] [CrossRef] [Green Version]
- Klein, M. Biological control of scarabs with entomopathogenic nematodes. In Nematodes and the Biological Control of Insect Pests; Bedding, R.A., Akhurst, R.J., Kaya, H.K., Eds.; CSIRO: Melbourne, Australia, 1990; pp. 49–58. [Google Scholar]
- Grewal, P.; Ehlers, R.U.; Shapiro-Ilan, D.I. Nematodes as Biocontrol Agents; CABI Publishing: Cambridge, MA, USA, 2005. [Google Scholar]
- Allahverdipour, H.H.; Karimi, J. Nematodes Versus White Grubs: Long but Challenging Association. Ann. Èntomol. Soc. Am. 2021, 114, 448–458. [Google Scholar] [CrossRef]
- Klein, M.G.; Grewal, P.S.; Jackson, T.A.; Koppenhöfer, A.M. Lawn, turf and grassland pests. In Field Manual of Techniques in Invertebrate Pathology; Springer: Dordrecht, The Netherlands, 2007; pp. 655–675. [Google Scholar]
- Grewal, P.S.; Koppenhöfer, A.M.; Choo, H.Y. Lawn turfgrass pasture applications. In Nematodes as Biocontrol Agents; Grewal, P.S., Ehlers, R.U., ShapiroIlan, D.I., Eds.; CABI Publishing: Cambridge, MA, USA, 2005; pp. 115–144. [Google Scholar]
- Grewal, P.; Power, K.; Grewal, S.; Suggars, A.; Haupricht, S. Enhanced consistency in biological control of white grubs (Coleoptera: Scarabaeidae) with new strains of entomopathogenic nematodes. Biol. Control 2004, 30, 73–82. [Google Scholar] [CrossRef]
- Guo, W.; Yan, X.; Zhao, G.; Han, R. Efficacy of Entomopathogenic Steinernema and Heterorhabditis Nematodes Against White Grubs (Coleoptera: Scarabaeidae) in Peanut Fields. J. Econ. Èntomol. 2013, 106, 1112–1117. [Google Scholar] [CrossRef]
- Patil, J.; Vijayakumar, R.; Linga, V.; Sivakumar, G. Susceptibility of Oriental armyworm, Mythimna sepa-rata (Lepidoptera: Noctuidae) larvae and pupae to native entomopathogenic nematodes. J. Appl. Entomol. 2020, 144, 647–654. [Google Scholar] [CrossRef]
- Vashisth, S.; Chandel, Y.; Sharma, P.K. Entomopathogenic nematodes—A review. Agric. Rev. 2013, 34, 163–175. [Google Scholar] [CrossRef]
- Stuart, R.J.; Barbercheck, M.E.; Grewal, P.S. Entomopathogenic nematodes in the soil environment: Dis-tributions interactions the influence of biotic abiotic factors. In Nematode Pathogenesis of Insects and Other Pests; Springer: Cham, Switzerland, 2015; pp. 97–137. [Google Scholar]
- Dzięgielewska, M.; Skwiercz, A. The influence of selected abiotic factors on the occurrence of ento-mopathogenic nematodes (Steinernematidae, Heterorhabditidae) in soil. Polish. J. Soil Sci. 2018, 51, 11. [Google Scholar]
- Ansari, M.A.; Shah, F.A.; Butt, T.M. Combined use of entomopathogenic nematodes and Metarhizium an-isopliae as a new approach for black vine weevil, Otiorhynchus sulcatus, control. Entomol. Exp. Appl. 2008, 129, 340–347. [Google Scholar] [CrossRef]
- Koppenhöfer, A.M.; Fuzy, E.M. Effect of white grub developmental stage on susceptibility to ento-mopathogenic nematodes. J. Econ. Entomol. 2004, 97, 1842–1849. [Google Scholar] [CrossRef]
- Lacey, L.A.; Georgia, R. Entomopathogenic nematodes for control of insect pests above below ground with comments on commercial production. J. Nematol. 2012, 44, 218–225. [Google Scholar]
- Akhurst, R.J.; Smigielski, A.J.; Mari, J.; Boemare, N.; Mourant, R.G. Restriction Analysis of Phase Variation in Xenorhabdus spp (Enterobacteriaceae), Entomopathogenic Bacteria Associated with Nematodes. Syst. Appl. Microbiol. 1992, 15, 469–473. [Google Scholar] [CrossRef]
- Smits, H.H.; Everts, B.; Hartgers, F.C.; Yazdanbakhsh, M. Chronic Helminth Infections Protect Against Allergic Diseases by Active Regulatory Processes. Curr. Allergy Asthma Rep. 2010, 10, 3–12. [Google Scholar] [CrossRef] [Green Version]
- Kung, S.P.; Gaugler, R.; Kaya, H.K. Effects of soil temperature, moisture, and relative humidity on entomopathogenic nematode persistence. J. Invertebr. Pathol. 1991, 57, 242–249. [Google Scholar] [CrossRef]
- Wilson, M.; Gaugler, R. Factors limiting short-term persistence of entomopathogenic nematodes. J. Appl. Èntomol. 2004, 128, 250–253. [Google Scholar] [CrossRef]
- Grzywacz, D. Basic applied research: Baculovirus. In Microbial Control of Insect and Mite Pests; Lacey, L.E., Ed.; Academic Press: Boston, MA, USA, 2017; pp. 27–46. [Google Scholar]
- Cory, J.S.; Myers, J.H. The Ecology and Evolution of Insect Baculoviruses. Annu. Rev. Ecol. Evol. Syst. 2003, 34, 239–272. [Google Scholar] [CrossRef] [Green Version]
- Capinera, J. Encyclopedia of Entomology, 2nd ed.; University of Florida: Gainesville, FL, USA, 2008. [Google Scholar]
- Gressitt, J.L. The Coconut Rhinoceros Beetle (Oryctes rhinoceros) with Particular Reference to the Palau Islands; Bulletin of the Bernice P. Bishop Museum: Honolulu, HI, USA, 1953; p. 212. [Google Scholar]
- Huger, A.M. The Oryctes virus: Its detection, identification, and implementation in biological control of the coconut palm rhinoceros beetle, Oryctes rhinoceros (Coleoptera: Scarabaeidae). J. Invertebr. Pathol. 2005, 89, 78–84. [Google Scholar] [CrossRef]
- Huger, A.M. A virus disease of the Indian rhinoceros beetle, Oryctes rhinoceros (linnaeus), caused by a new type of insect virus, Rhabdionvirus oryctes gen. n., sp. n. J. Invertebr. Pathol. 1966, 8, 38–51. [Google Scholar] [CrossRef]
- Crawford, A.M.; Sheehan, C. Replication of Oryctes Baculovirus in Cell Culture: Viral Morphogenesis, Infectivity and Protein Synthesis. J. Gen. Virol. 1985, 66, 529–539. [Google Scholar] [CrossRef]
- Rohrmann, G.F. Baculovirus Molecular Biology, 4th ed.; National Center for Biotechnology Information: Bethesda, MD, USA, 2019. [Google Scholar]
- Frederici, R.J.; Maw, C.R. Change at environmental laboratories. Water Eng. Manag. 1993, 140, 32–33. [Google Scholar]
- King, L.A.; Wilkinson, N.; Miller, D.P.; Marlow, S.A. Entomopoxviruses. In The Insect Viruses; Miller, L.K., Ball, L.A., Eds.; Plenum Press: New York, NY, USA, 1998; pp. 1–29. [Google Scholar]
- Williams, T. Invertebrate iridescent viruses. In The Insect Viruses; Springer: Boston, MA, USA, 1998; pp. 31–68. [Google Scholar]
- Day, M.; Mercer, E. Properties of an iridescent virus from the beetle, Serioesthis pruinosa. Aust. J. Biol. Sci. 1964, 17, 892. [Google Scholar] [CrossRef] [Green Version]
- Carey, G.; Lescott, T.; Robertson, J.; Spencer, L.K.; Kelly, D. Three African isolates of small iridescent viruses: Type 21 from Heliothis armigera (Lepidoptera: Noctuidae), type 23 from Heteronychus arator (Coleoptera: Scarabaeidae), and type 28 from Lethocerus columbiae (Hemiptera Heteroptera: Belostomatidae). Virology 1978, 85, 307–309. [Google Scholar] [CrossRef]
- Jenkins, D.A.; Hunter, W.; Goenaga, R. Effects of invertebrate iridescent virus 6 in Phyllophaga vandinei its potential as a biocontrol delivery system. J. Insect Sci. 2011, 11, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Carter, J.B. Field trials with Tipula iridescent virus against Tipula spp larvae in grassland. Entomophaga 1978, 23, 169–174. [Google Scholar] [CrossRef]
- Mitsuhashi, J. Continuously passaged cell line derived from Elytron (Elytron: Koganemushi). J. The. Jpn. For. Soc. 1989, 71, 491–496. [Google Scholar]
- Hernandez, O.; Maldonado, G.; Williams, T. An epizootic of patent iridescent virus disease in multiple species of blackflies in Chiapas, Mexico. Med. Veter Èntomol. 2000, 14, 458–462. [Google Scholar] [CrossRef]
- Prasad, V.; Srivastava, S. Insect viruses. In Ecofriendly Pest Management for Food Security; Academic Press: Cambridge, MA, USA, 2016; pp. 411–442. [Google Scholar]
- Vago, C. A new type of insect virus. J. Invertebr. Pathol. 1963, 5, 275–276. [Google Scholar]
- Weiser, J. Vagoiavirus gen.n., a virus causing disease in insects. J. Invertebr. Pathol. 1965, 7, 82–85. [Google Scholar] [CrossRef] [PubMed]
- Goodwin, R.H.; Filshie, B.K. Morphology and development of an occluded virus from the black-soil scarab, Othnonius batesi. J. Invertebr. Pathol. 1969, 13, 317–329. [Google Scholar] [CrossRef]
- Milner, R.; Lutton, G. The pathogenicity of an entomopoxvirus from Othnonius batesi [Col.: Scarabae-idae] and its possible use as a control agent. Entomophaga 1975, 20, 213–220. [Google Scholar] [CrossRef]
- Roberts, D.W.; McCarthy, W. Partial characterization of virions and proteins of an entomopoxvirus from lepidopterous insects. Monogr. Virol. 1972, 6, 7–9. [Google Scholar]
- Beaudoin, L.; Robert, P.; Lal, S.N. An entomopoxvirus observed in Adoretus versutus Harold (Coleoptera; Scarabaeidae; Rutelinae) in Fiji. Int. J. Pest Manag. 1994, 40, 66–68. [Google Scholar] [CrossRef]
- Sezen, K.; Demirbağ, Z. Insecticidal effects of some biological agents on Agelastica alni (Coleoptera: Chrysomelidae). Biologia 2006, 61, 687–692. [Google Scholar] [CrossRef]
- Arif, B.; Pavlik, L. Insect cell culture: Virus replication and applications in biotechnology. J. Invertebr. Pathol. 2013, 112, S138–S141. [Google Scholar] [CrossRef]
- Lipa, J.J.; Santiago-Alvarez, C.; Vargas-Osuna, E.; Aldebis, H.K.; Caballero, P.; Hernandez-Crespo, P. Microorganisms, nematodes and parasitoids of Ocnogyna baetica (Rambur) (Lep.: Arctiidae) in southern Spain with potential for use in biological control. Biocontrol Sci. Technol. 1993, 3, 347–353. [Google Scholar] [CrossRef]
- Harkrider, J.R.; Hall, I.M. The Dynamics of an Entomopoxvirus in a Field Population of Larval Midges of the Chironomus decorus1 Complex 3. Environ. Èntomol. 1978, 7, 858–862. [Google Scholar] [CrossRef]
- Glare, T.R. Stage-dependent synergism using Metarhizium anisopliae and Serratia entomophila against Costelytra zealandica. Biol. Sci. Technol. 1994, 4, 321–329. [Google Scholar] [CrossRef]
- Thurston, G.S.; Kaya, H.K.; Burlando, T.M.; Harrison, R.E. Milky disease bacterium as a stressor to in-crease susceptibility of scarabaeid larvae to an entomopathogenic nematode. J. Invertebr. Pathol. 1993, 61, 167–172. [Google Scholar] [CrossRef]
- Thurston, G.S.; Kaya, H.K.; Gaugler, R.A. Characterizing the enhanced susceptibility of milky dis-ease-infected scarabaeid grubs to entomopathogenic nematodes. Biol. Control 1994, 4, 67–73. [Google Scholar] [CrossRef]
- Kaya, H.K.; Koppenhöfer, A.M. Effects of Microbial and Other Antagonistic Organism and Competition on Entomopathogenic Nematodes. Biocontrol Sci. Technol. 1996, 6, 357–372. [Google Scholar] [CrossRef]
- Koppenhöfer, A.M.; Kaya, H.K. Synergism of Imidacloprid and an Entomopathogenic Nematode: A Novel Approach to White Grub (Coleoptera: Scarabaeidae) Control in Turfgrass. J. Econ. Èntomol. 1998, 91, 618–623. [Google Scholar] [CrossRef]
- Wu, S.; Youngman, R.R.; Kok, L.T.; Laub, C.A.; Pfeiffer, D.G. Interaction between entomopathogenic nematodes and entomopathogenic fungi applied to third instar southern masked chafer white grubs, Cyclocephala lurida (Coleoptera: Scarabaeidae), under laboratory and greenhouse conditions. Biol. Control 2014, 76, 65–73. [Google Scholar] [CrossRef]
- Ansari, M.A.; Tirry, L.; Moens, M. Interaction between Metarhizium anisopliae CLO 53 and entomopatho-genic nematodes for the control of Hoplia philanthus. Biol. Control 2004, 31, 172–180. [Google Scholar] [CrossRef]
- Ansari, M.; Shah, F.; Tirry, L.; Moens, M. Field trials against Hoplia philanthus (Coleoptera: Scarabaeidae) with a combination of an entomopathogenic nematode and the fungus Metarhizium anisopliae CLO 53. Biol. Control 2006, 39, 453–459. [Google Scholar] [CrossRef]
- Nermuť, J.; Konopická, J.; Zemek, R.; Kopačka, M.; Bohatá, A.; Půža, V. Dissemination of Isaria fumosoro-sea Spores by Steinernema feltiae and Heterorhabditis bacteriophora. J. Fungi 2020, 6, 359. [Google Scholar] [CrossRef]
- Koppenhöfer, A.M.; Brown, I.M.; Gaugler, R.; Grewal, P.S.; Kaya, H.K.; Klein, M.G. Synergism of en-tomopathogenic nematodes and imidacloprid against white grubs: Greenhouse and field evaluation. Biol. Control 2000, 19, 245–251. [Google Scholar] [CrossRef]
- Koppenhofer, A.M.; Grewal, P.S.; Kaya, H.K. Synergism of imidacloprid and entomopathogenic nematodes against white grubs: The mechanism. Èntomol. Exp. Appl. 2000, 94, 283–293. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.W.; Choo, H.Y.; Kaya, H.K.; Lee, S.M.; Smitley, D.R.; Shin, H.K.; Park, C.G. Laboratory field evaluation of Korean entomopathogenic nematode isolates against the oriental beetle Exomala orientalis (Cole-optera: Scarabaeidae). J. Econ. Entomol. 2002, 95, 918–926. [Google Scholar] [CrossRef]
- Batta, Y.A. Control of main stored-grain insects with new formulations of entomopathogenic fungi in diato-maceous earth dusts. Int. J. Food Eng. 2008, 4, 1–16. [Google Scholar] [CrossRef]
- Athanassiou, C.; Kavallieratos, N.; Meletsis, C. Insecticidal effect of three diatomaceous earth formulations, applied alone or in combination, against three stored-product beetle species on wheat and maize. J. Stored Prod. Res. 2007, 43, 330–334. [Google Scholar] [CrossRef]
- Michalaki, M.P.; Athanassiou, C.G.; Kavallieratos, N.G.; Batta, Y.A.; Balotis, G.N. Effectiveness of Me-tarhizium anisopliae (Metschinkoff) Sorokin applied alone or in combination with diatomaceous earth against Tribolium confusum Du Val larvae: Influence of temperature, relative humidity and type of commodity. Crop Prod. 2006, 25, 418–425. [Google Scholar] [CrossRef]
- Bitsadze, N.; Jaronski, S.; Khasdan, V.; Abashidze, E.; Abashidze, M.; Latchininsky, A.; Samadashvili, D.; Sokhadze, I.; Rippa, M.; Ishaaya, I.; et al. Joint Action of Beauveria Bassiana and the Insect Growth Regulators Diflubenzuron and Novaluron, on the Migratory Locust, Locusta Migratoria. J. Pest Sci. 2013, 86, 293–300. [Google Scholar] [CrossRef]
- Hadi, M.S.; Himawan, T.; Aini, L.Q. The Effectiveness of Entomopathogenic Fungi Beauveria bassiana with the Addition of Insect Growth Regulator Lufenuron f or Controlling Bactrocera carambolae. J. Trop. Life Sci. 2013, 3, 187–192. [Google Scholar] [CrossRef] [Green Version]
- Cowles, R.S.; Villani, M.G. Susceptibility of Japanese beetle, oriental beetle, and European chafer (Coleoptera: Scarabaeidae) to halofenozide, an insect growth regulator. J. Econ. Entomol. 1996, 89, 1556–1565. [Google Scholar] [CrossRef]
- Cowles, R.S.; Alm, S.R.; Villani, M.G. Selective toxicity of halofenozide to exotic white grubs (Coleop-tera: Scarabaeidae). J. Econ. Entomol. 1999, 92, 427–434. [Google Scholar] [CrossRef]
- Roy, H.E.; Pell, J.K. Interactions Between Entomopathogenic Fungi and Other Natural Enemies: Implications for Biological Control. Biocontrol Sci. Technol. 2000, 10, 737–752. [Google Scholar] [CrossRef]
- Roy, H.E.; Pell, J.K.; Clark, S.J.; Alderson, P.G. Implications of predator foraging on aphid pathogen dynamics. J. Invertebr. Pathol. 1998, 71, 236–247. [Google Scholar] [CrossRef] [PubMed]
- Furlong, M.J.; Pell, J.K. Interactions between the Fungal EntomopathogenZoophthora radicansBrefeld (Entomophthorales) and Two Hymenopteran Parasitoids Attacking the Diamondback Moth, Plutella xylostellaL. J. Invertebr. Pathol. 1996, 68, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Smith, F.F.; Brierley, P. Insect Transmission of Plant Viruses. Annu. Rev. Èntomol. 1956, 1, 299–322. [Google Scholar] [CrossRef]
- Stairs, G. Quantitative differences in susceptibility to nuclear-polyhedrosis virus among larval Instars of the forest tent caterpillar, Malacosoma disstria (Hübner). J. Invertebr. Pathol. 1965, 7, 427–429. [Google Scholar] [CrossRef]
- Capinera, J.L.; Barbosa, P. Transmission of Nuclear-Polyhedrosis Virus to Gypsy Moth Larvae by Calosoma sycophanta, Ann. Èntomol. Soc. Am. 1975, 68, 593–594. [Google Scholar] [CrossRef]
- Reardon, R.C.; Podwaite, J. Disease-parasitoid relationships in natural populations of Lymantria dispar [Lep.: Lymantriidae] in the Northeastern United States. Entomophaga 1976, 21, 333–341. [Google Scholar] [CrossRef]
- Andreadis, T.G. A new cytoplasmic polyhedrosis virus from the salt-marsh mosquito, Aedes cantator (Diptera: Culicidae). J. Invertebr. Pathol. 1981, 37, 160–167. [Google Scholar] [CrossRef]
- Levin, D.B.; Laing, J.E.; Jaques, R.P.; Corrigan, J.E. Transmission of the Granulosis Virus of Pieris rapae (Lepidoptera: Pieridae) by the Parasitoid Apanteles glomeratus (Hymenoptera: Braconidae). Environ. Èntomol. 1983, 12, 166–170. [Google Scholar] [CrossRef]
- Schabel, H. Phoretic mites as carriers of entomopathogenic fungi. J. Invertebr. Pathol. 1982, 39, 410–412. [Google Scholar] [CrossRef]
- Poprawski, T.J.; Yule, W. Field assays to determine attractancy of natural synthetic lures to Phyllophaga anxia (LeConte) (Col Scarabaeidae). J. Appl. Entomol. 1992, 114, 305–314. [Google Scholar] [CrossRef]
- Butt, T.M.; Carreck, N.L.; Ibrahim, L.; Williams, I.H. Honey-bee-mediated infection of pollen beetles (Meligethes aeneus Fab.) by the insect-pathogenic fungus, Metarhizium anisopliae. Biocon. Sci. Technol. 1998, 8, 533–538. [Google Scholar] [CrossRef]
- Roy, H.E. Interactions between Aphid Predators and the Entomopathogenic Fungus Erynia Neoaphidis. Ph.D. Thesis, Nottingham University, Nottingham, UK, 1997. [Google Scholar]
- Campos-Herrera, R.; Trigo, D.; Gutiérrez, C. Phoresy of the entomopathogenic nematode Steinernema feltiae by the earthworm Eisenia fetida. J. Invertebr. Pathol. 2006, 92, 50–54. [Google Scholar] [CrossRef]
- Shapiro-Ilan, D.I.; Brown, I. Earthworms as phoretic hosts for Steinernema carpocapsae and Beauveria bas-siana: Implications for enhanced biological control. Biol. Contr. 2013, 66, 41–48. [Google Scholar]
- Chelkha, M.; Blanco-Pérez, R.; Vicente-Díez, I.; Bueno-Pallero, F.Á.; Amghar, S.; El Harti, A.; Campos, H. Earthworms their cutaneous excreta can modify the virulence reproductive ca-pability of entomopathogenic nematodes fungi. J. Invert. Pathol. 2021, 184, 107620. [Google Scholar] [CrossRef] [PubMed]
- Arora, R.; Shera, P.S. Genetic Improvement of Biocontrol Agents for Sustainable Pest Management; Springer: Berlin/Heidelberg, Germany, 2014; pp. 255–285. [Google Scholar] [CrossRef]
- Harrison, R.B.; Hoover, K. Baculoviruses other occluded insect viruses. In Insect Pathology; Vega, F.E., Kaya, H.K., Eds.; USDA ARS: London, UK, 2012; pp. 73–131. [Google Scholar]
- Karabörklü, S.; Azizoglu, U.; Azizoglu, Z.B. Recombinant entomopathogenic agents: A review of biotechnological approaches to pest insect control. World J. Microbiol. Biotechnol. 2017, 34, 14. [Google Scholar] [CrossRef]
- Wang, C.; Leger, R.J.S. A scorpion neurotoxin increases the potency of a fungal insecticide. Nat. Biotechnol. 2007, 25, 1455–1456. [Google Scholar] [CrossRef]
- Pava-Ripoll, M.; Posada, F.J.; Momen, B.; Wang, C.; Leger, R.S. Increased pathogenicity against coffee berry borer, Hypothenemus hampei (Coleoptera: Curculionidae) by Metarhizium anisopliae expressing the scorpion toxin (AaIT) gene. J. Invertebr. Pathol. 2008, 99, 220–226. [Google Scholar] [CrossRef]
- Xie, C.; Zhang, J.; Li, R.; Li, J.; Hong, P.; Xia, J.; Chen, P. Automatic classification for field crop insects via multiple-task sparse representation and multiple-kernel learning. Comput. Electron. Agric. 2015, 119, 123–132. [Google Scholar] [CrossRef]
- Raina, A.; Bland, J.; Doolittle, M.; Lax, A.; Boopathy, R.; Folkins, M. Effect of orange oil extract on the formosan subterranean termite (Isoptera: Rhinotermitidae). J. Econ. Entomol. 2007, 100, 880–885. [Google Scholar] [CrossRef]
- Slack, E.; Hapfelmeier, S.; Stecher, B.; Velykoredko, Y.; Stoel, M.; Lawson, M.A.E.; Geuking, M.B.; Beutler, B.; Tedder, T.F.; Hardt, W.-D.; et al. Innate and Adaptive Immunity Cooperate Flexibly to Maintain Host-Microbiota Mutualism. Science 2009, 325, 617–620. [Google Scholar] [CrossRef] [Green Version]
- Kroemer, J.A.; Bonning, B.C.; Harrison, R.L. Expression, Delivery and Function of Insecticidal Proteins Expressed by Recombinant Baculoviruses. Viruses 2015, 7, 422–455. [Google Scholar] [CrossRef] [Green Version]
- Fan, Y.; Ortiz-Urquiza, A.; Kudia, R.A.; Keyhani, N.O. A fungal homologue of neuronal calcium sen-sor-1, Bbcsa1, regulates extracellular acidification and contributes to virulence in the entomopathogenic fun-gus Beauveria bassiana. Microbiology 2012, 158, 1843–1851. [Google Scholar]
- Yang, L.; Keyhani, N.O.; Tang, G.; Tian, C.; Lu, R.; Wang, X.; Pei, Y.; Fan, Y. Expression of a Toll Signaling Regulator Serpin in a Mycoinsecticide for Increased Virulence. Appl. Environ. Microbiol. 2014, 80, 4531–4539. [Google Scholar] [CrossRef] [Green Version]
- Ortiz-Urquiza, A.; Luo, Z.; Keyhani, N.O. Improving mycoinsecticides for insect biological control. Appl. Microbiol. Biotechnol. 2014, 99, 1057–1068. [Google Scholar] [CrossRef]
- Chen, Y.; Feng, P.; Shang, Y.; Xu, Y.-J.; Wang, C. Biosynthesis of non-melanin pigment by a divergent polyketide synthase in Metarhizium robertsii. Fungal Genet. Biol. 2015, 81, 142–149. [Google Scholar] [CrossRef]
- Merzendorfer, H. Insect-derived chitinases. In Yellow Biotechnology II; Vilcinskas, A., Ed.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 19–50. [Google Scholar]
- Fan, Y.; Fang, W.; Guo, S.; Pei, X.; Zhang, Y.; Xiao, Y.; Li, D.; Jin, K.; Bidochka, M.J.; Pei, Y. Increased Insect Virulence in Beauveria bassiana Strains Overexpressing an Engineered Chitinase. Appl. Environ. Microbiol. 2007, 73, 295–302. [Google Scholar] [CrossRef] [Green Version]
- Fan, Y.; Sun, P.; Wang, Y.; He, X.; Deng, X.; Chen, X.; Zhang, G.; Chen, X.; Zhou, N. The G protein-coupled receptors in the silkworm, Bombyx mori. Insect Biochem. Mol. Biol. 2010, 40, 581–591. [Google Scholar] [CrossRef]
- Fang, W.; Feng, J.; Fan, Y.; Zhang, Y.; Bidochka, M.J.; Leger, R.J.S.; Pei, Y. Expressing a fusion protein with protease and chitinase activities increases the virulence of the insect pathogen Beauveria bassiana. J. Invertebr. Pathol. 2009, 102, 155–159. [Google Scholar] [CrossRef]
- Zhao, W.; Yang, P.; Kang, L.; Cui, F. Different pathogenicities of Rice stripe virus from the insect vector and from viruliferous plants. New Phytol. 2015, 210, 196–207. [Google Scholar] [CrossRef] [Green Version]
- Ying, S.-H.; Feng, M.-G. Integration of Escherichia coli thioredoxin (trxA) into Beauveria bassiana enhances the fungal tolerance to the stresses of oxidation, heat and UV-B irradiation. Biol. Control 2011, 59, 255–260. [Google Scholar] [CrossRef]
- Fang, W.; St. Leger, R.J. Enhanced UV Resistance and Improved Killing of Malaria Mosquitoes by Photolyase Transgenic Entomopathogenic Fungi. PLoS ONE 2012, 7, e43069. [Google Scholar] [CrossRef] [Green Version]
- Vellai, T.; Molnár, A.; Laktos, L.; Bánfalvi, Z.; Fodor, A.; Sáringer, G. Transgenic nematodes carrying a cloned stress resistance gene from yeast. In Survival of Entomopathogenic Nematodes; Glazer, I., Richardson, P., Boemare, N., Coudert, F., Eds.; European Commision Publications: Luxembourg, 1999; pp. 105–119. [Google Scholar]
- St. Leger, R.S.; Joshi, L.; Bidochka, M.J.; Roberts, D.W. Construction of an improved mycoinsecticide overexpressing a toxic protease. Proc. Natl. Acad. Sci. USA 1996, 93, 6349–6354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harrison, R.L.; Bonning, B.C. The nucleopolyhedroviruses of Rachiplusia ou and Anagrapha falcifera are isolates of the same virus. J. Gen. Virol. 1999, 80, 2793–2798. [Google Scholar] [CrossRef] [PubMed]
- Fang, W.; Leng, B.; Xiao, Y.; Jin, K.; Ma, J.; Fan, Y.; Feng, J.; Yang, X.; Zhang, Y.; Pei, Y. Cloning of Beau-veria bassiana chitinase gene Bbchit1 and its application to improve fungal strain virulence. Appl. Environ. Microbiol. 2005, 71, 363–370. [Google Scholar] [CrossRef] [PubMed]
- Peng, P.; Hu, A.; Gerlich, A.P.; Zou, G.; Liu, L.; Zhou, Y.N. Joining of silver nanomaterials at low tempera-tures: Processes, properties, and applications. ACS Appl. Mater. Interfaces 2015, 7, 12597–12618. [Google Scholar] [CrossRef]
- Xie, X.-Q.; Wang, J.; Huang, B.-F.; Ying, S.-H.; Feng, M.-G. A new manganese superoxide dismutase identified from Beauveria bassiana enhances virulence and stress tolerance when overexpressed in the fungal pathogen. Appl. Microbiol. Biotechnol. 2010, 86, 1543–1553. [Google Scholar] [CrossRef]
- O’Reilly, D.R.; Miller, L.K. Improvement of a Baculovirus Pesticide by Deletion of the EGT Gene. Bio/Technology 1991, 9, 1086–1089. [Google Scholar] [CrossRef]
- Moore, D.; Bridge, P.D.; Higgins, P.M.; Bateman, R.P.; Prior, C. Ultra-violet radiation damage to Metarhi-zium flavoviride conidia the protection given by vegetable mineral oils chemical sunscreens. J. Ann. Appl. Biol. 1993, 122, 605–616. [Google Scholar] [CrossRef]
- Alves, R.T.; Bateman, R.P.; Prior, C.; Leather, S.R. Effects of simulated solar radiation on conidial germi-nation of Metarhizium anisopliae in different formulations. Crop Prot. 1998, 17, 675–679. [Google Scholar] [CrossRef]
- Inglis, G.; Goettel, M.; Johnson, D. Influence of Ultraviolet Light Protectants on Persistence of the Entomopathogenic Fungus, Beauveria bassiana. Biol. Control 1995, 5, 581–590. [Google Scholar] [CrossRef]
- Cohen, E.; Joseph, T.; Kahana, F.; Magdassi, S. Photostabilization of an entomopathogenic fungus using composite clay matrices. Photochem. Photobiol. 2003, 77, 180–185. [Google Scholar] [CrossRef]
- Reddy, N.P.; A Khan, P.A.; Devi, K.U.; Victor, J.S.; Sharma, H.C. Assessment of the suitability of Tinopal as an enhancing adjuvant in formulations of the insect pathogenic fungus Beauveria bassiana (Bals.) Vuillemin. J. Pest Manag. Sci. 2008, 64, 909–915. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Behle, R.W.; Compton, D.L.; Laszlo, J.A.; Shapiro-Ilan, D.I. Evaluation of Soyscreen in an Oil-Based Formulation for UV Protection of Beauveria bassiana Conidia. J. Econ. Èntomol. 2009, 102, 1759–1766. [Google Scholar] [CrossRef] [PubMed]
- Posada, J.B.; Maricel, A.L.; Jorge, I.M.; Roberto, E.L. Natural tolerance to UV-B and assessment of photoprotectants in conidia of six native isolates of Beauveria bassiana (Bals-Criv) Vuillemin. World Appl. Sci. J. 2012, 20, 1024–1030. [Google Scholar]
- Fernandes, E.K.; Rangel, D.E.; Braga, G.U.; Roberts, D.W. Tolerance of entomopathogenic fungi to ultra-violet radiation: A review on screening of strains and their formulation. Curr. Genet. 2015, 61, 427–440. [Google Scholar] [CrossRef] [PubMed]
- Leland, J.E.; Behle, R. Coating Beauveria bassiana 1 with lignin for protection from solar radiation effects on pathogenicity to Lygus lineolaris (Heteroptera: Miridae). J. Biocontrol Sci. Technol. 2005, 15, 309–320. [Google Scholar] [CrossRef]
- El Salamouny, S.; Shapiro, M.; Ling, K.S.; Shepard, B.M. Black Tea and Lignin as Ultraviolet Protectants for the Beet Armyworm Nucleopolyhedrovirus. J. Èntomol. Sci. 2009, 44, 50–58. [Google Scholar] [CrossRef] [Green Version]
- Argauer, R.; Shapiro, M. Fluorescence relative activities of stilbene optical brighteners as enhancers for the Gypsy Moth (Lepidoptera: Lymantriidae) baculovirus. J. Econ. Entomol. 1997, 90, 416–420. [Google Scholar] [CrossRef]
- Pemsel, M.; Schwab, S.; Scheurer, A.; Freitag, D.; Schatz, R.; Schlücker, E. Advanced PGSS process for the encapsulation of the biopesticide Cydia pomonella granulovirus. J. Supercrit. Fluids 2010, 53, 174–178. [Google Scholar] [CrossRef]
- Jackson, M.A.; Jaronski, S. Development of pilot-scale fermentation stabilization processes for the production of microsclerotia of the entomopathogenic fungus Metarhizium brunneum strain F52. J. Biocontrol Sci. Technol. 2012, 22, 915–930. [Google Scholar] [CrossRef]
- Rivas-Franco, F.; Hampton, J.G.; Altier, N.A.; Swaminathan, J.; Rostás, M.; Wessman, P.; Saville, D.J.; Jackson, T.A.; Jackson, M.A.; Glare, T.R. Production of Microsclerotia from Entomopathogenic Fungi and Use in Maize Seed Coating as Delivery for Biocontrol Against Fusarium graminearum. Front. Sustain. Food Syst. 2020, 4, 606828. [Google Scholar] [CrossRef]
- Wu, S.; Kostromytska, O.S.; Goble, T.; Hajek, A.E.; Koppenhöfer, A.M. Compatibility of a microsclerotial granular formulation of the entomopathogenic fungus Metarhizium brunneum with fungicides. BioControl 2019, 65, 113–123. [Google Scholar] [CrossRef]
- Jackson, M.A.; Jaronski, S.T. Production of microsclerotia of the fungal entomopathogen Metarhizium anisopliae and their potential for use as a biocontrol agent for soil-inhabiting insects. Mycol. Res. 2009, 113, 842–850. [Google Scholar] [CrossRef]
- Wu, B.; Li, X.; Zhang, Y.; Dan, H.; Chen, X.; Liu, T. Study on technology for rapid propagation of Verticillium dahliae microsclerotia. Xinjiang Agric. Sci. 2014, 51, 1526–1531. [Google Scholar]
- Koppenhöfer, A.M.; Shapiro-llan, D.; Hitpold, I. Entomopathogenic nematodes in sustainable food production. Front. Sustain. Food Syst. 2020, 4, 125. [Google Scholar] [CrossRef]
- Huarte-Bonnet, C.; Paixão, F.R.S.; Mascarin, G.M.; Santana, M.; Fernandes, K.K.; Pedrini, N. The entomopathogenic fungus Beauveria bassiana produces microsclerotia-like pellets mediated by oxidative stress and peroxisome biogenesis. Environ. Microbiol. Rep. 2019, 11, 518–524. [Google Scholar] [CrossRef]
- Rogers, C.D.; Armsworth, C.G.; Poppy, G.M. Conspecific transmission of insecticidal adhesive powder through mating in the Mediterranean fruit fly Ceratitis capitata. J. Sci. 2013, 87, 361–369. [Google Scholar] [CrossRef]
- Swale, D.R.; Li, Z.; Kraft, J.Z.; Healy, K.; Liu, M.; David, C.M.; Liu, Z.; Foil, L.D. Development of an auto-dissemination strategy for the deployment of novel control agents targeting the common malaria mosquito, Anopheles quadrimaculatus say (Diptera: Culicidae). PLoS Negl. Trop. Dis. 2018, 12, e0006259. [Google Scholar] [CrossRef]
- Gaugler, R.; Suman, D.; Wang, Y. An autodissemination station for the transfer of an insect growth regulator to mosquito oviposition sites. Med. Veter Èntomol. 2011, 26, 37–45. [Google Scholar] [CrossRef]
- Suman, T.; Rajasree, S.R.; Ramkumar, R.; Rajthilak, C.; Perumal, P. The Green synthesis of gold nanoparticles using an aqueous root extract of Morinda citrifolia L. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2013, 118, 11–16. [Google Scholar] [CrossRef]
- Biale, H.; Chiel, E.; Geden, C.J. Autodissemination of pyriproxyfen as a method for controlling the house fly Musca domestica. J. Pest Sci. 2019, 92, 1283–1292. [Google Scholar] [CrossRef] [Green Version]
- Vega, F.E.; Dowd, P.F.; Lacey, L.A.; Pell, J.K.; Jackson, D.M.; Klein, M.G. Dissemination of beneficial mi-robial agents by insects. In Field Manual of Techniques in Invertebrate Pathology; Lawrence, L.A., Kaya, H.K., Eds.; Springer: Dordrecht, The Netherland, 2000; pp. 153–177. [Google Scholar]
- Dowd, P.F.; Vega, F. Autodissemination of Beauveria bassiana by sap beetles (Coleoptera: Nitidulidae) to overwintering sites. J. Biocontrol Sci. Technol. 2003, 13, 65–75. [Google Scholar]
- Thaochan, N.; Ngampongsai, A. Effects of autodisseminated Metarhizium guizhouense PSUM02 on mating propensity and mating competitiveness of Bactrocera cucurbitae (Diptera: Tephritidae). Biocontrol Sci. Technol. 2015, 25, 629–644. [Google Scholar] [CrossRef]
- Pope, T.W.; Hough, G.; Arbona, C.; Roberts, H.; Bennison, J.; Buxton, J.; Prince, G.; Chandler, D. Investigating the potential of an autodissemination system for managing populations of vine weevil, Otiorhynchus sulcatus (Coleoptera: Curculionidae) with entomopathogenic fungi. J. Invertebr. Pathol. 2018, 154, 79–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pushnya, M.V.; Rodionova, E.Y.; Snesareva, E.G.; Tsygichko, A.A.; Ismailov, V.Y. Study of the possibility of using pheromones to control the number of polyphagous soybean (Glycine max) pests. Res. Crop 2021, 22, 677–685. [Google Scholar]
- Klein, M.G.; Lacey, L. An attractant trap for autodissemination of entomopathogenic fungi into populations of the Japanese beetle Popillia japonica (Coleoptera: Scarabaeidae). J. Biocontrol Sci. Technol. 1999, 9, 151–158. [Google Scholar] [CrossRef]
- Benvenuti, C.; Barzanti, G.P.; Marianelli, L.; Peverieri, G.S.; Paoli, F.; Bosio, G.; Venanzio, D.; Giacometto, E.; Roversi, P.F. A new device for auto-disseminating entomopathogenic fungi against Popillia japonica: A study case. Bull. Insectol. 2019, 72, 219–225. [Google Scholar]
- Moslim, R.; Kamarudin, N.; Wahid, M.B. Trap for the auto dissemination of Metarhizium anisopliae in the management of rhinoceros beetle, Oryctes rhinoceros. J. Oil Palm. Res. 2011, 23, 1011–1017. [Google Scholar]
- Latifian, M.; Mostaan, A. Advanced trap design of Metarhizium anisopliae spore release for controlling date palm horned beetle Oryctes elegans. Plant Pest Res. 2020, 10, 1–15. [Google Scholar]
- Getahun, M.N.; Biasazin, T.D.; Wolde-Hawariat, Y.; Bengtsson, J.M.; Hillbur, Y.; Seyoum, E. Metarhizium sp. isolated from dead Pachnoda interrupta (Coleoptera: Scarabaeidae) as a potential entomopathogenic fungus for the pest insect: Proof-of-concept for autodissemination. Int. J. Trop. Insect Sci. 2016, 36, 1–9. [Google Scholar] [CrossRef]
- Habtegebreiel, B.; Getu, E.; Dawd, M.; Seyoum, E.; Atenafu, G.; Welde-Hawariat, Y.; Ekesi, S.; Hilbur, Y.; Larsson, M. Field level auto-inoculation of sorghum chafer, Pachnoda interrupta (Olivier) (Coleoptera: Scarabaedae) with Metarhizium anisopliae based microbial bio-control agents using locally affordable traps. J. Biol. Control 2016, 30, 68–77. [Google Scholar]
- Furlong, M.J.; Pell, J.; Choo, O.P. Field and laboratory evaluation of a sex pheromone trap for the autodissemination of the fungal entomopathogen Zoophthora radicans (Entomophthorales) by the diamondback moth, Plutella xylostella (Lepidoptera: Yponomeutidae). Bull. Entomol. Res. 1995, 85, 331–337. [Google Scholar] [CrossRef]
- Moscardi, F. Assessment of the application of baculoviruses for control of Lepidoptera. Annu. Rev. Èntomol. 1999, 44, 257–289. [Google Scholar] [CrossRef]
- Morris, E.E.; Grewal, P.S. Susceptibility of the Adult Japanese Beetle, Popillia japonica to Entomopathogenic Nematodes. J. Nematol. 2011, 43, 196–200. [Google Scholar]
- Sayed, A.M.; Kim, S.; Behle, R.W. Characterization of silver nanoparticles synthesized by Bacillus thurin-giensis as a nanobiopesticide for insect pest control. J. Biocontrol Sci. Technol. 2017, 27, 1308–1326. [Google Scholar] [CrossRef]
- Oliveira, M.L.S.; Dotto, G.L.; Pinto, D.; Neckel, A.; Silva, L.F. Nanoparticles as vectors of other contami-nants in estuarine suspended sediments: Natural and real conditions. Mar. Pollut. Bull. 2021, 168, 112429. [Google Scholar] [CrossRef]
- Sabbour, M.; Sahab, A.; Waly, A.F. Synthesis, antifungal and insecticidal potential of Chitosan (CS)-g-poly (acrylic acid) (PAA) nanoparticles against some seed borne fungi and insects of soybean. Int. J. Chem. Tech. Res. 2015, 8, 589–598. [Google Scholar] [CrossRef]
- Sabbour, M.M.; Solieman, N. Usage of nanotechnology of the fungi Nomuraea rileyi against the potato tuber moth Phthorimaea operculella (zeller) under laboratory field store conditions. Int. J. Inf. Res. Rev. 2015, 2, 1131–1136. [Google Scholar]
- Whyard, S.; Singh, A.D.; Wong, S. Ingested double-stranded RNAs can act as species-specific insecticides. Insect Biochem. Mol. Biol. 2009, 39, 824–832. [Google Scholar] [CrossRef]
- He, Y.; Du, Z.; Lv, H.; Jia, Q.; Tang, Z.; Zheng, X.; Zhao, F. Green synthesis of silver nanoparticles by Chrysanthemum morifolium Ramat. extract and their application in clinical ultrasound gel. Int. J. Nanomed. 2013, 8, 1809–1815. [Google Scholar] [CrossRef] [Green Version]
- Pugsley, C.E.; Isaac, R.E.; Warren, N.J.; Cayre, O.J. Recent Advances in Engineered Nanoparticles for RNAi-Mediated Crop Protection Against Insect Pests. Front. Agron. 2021, 3, 652981. [Google Scholar] [CrossRef]
- Rahman, M.M.; Jamal, A.; Khan, S.B.; Faisal, M. Characterization and applications of as-grown β-Fe2O3 nanoparticles prepared by hydrothermal method. J. Nanoparticle Res. 2011, 13, 3789–3799. [Google Scholar] [CrossRef]
- Vahabi, K.; Mansoori, G.; Karimi, S. Biosynthesis of Silver Nanoparticles by Fungus Trichoderma Reesei (A Route for Large-Scale Production of AgNPs). Insciences J. 2011, 1, 65–79. [Google Scholar] [CrossRef]
- Qamandar, A.M.; Shafeeq, M. Biosynthesis properties of silver nanoparticles of fungus Beauveria bassiana. Int. J. Chem. Tech. Res. 2017, 10, 1073–1083. [Google Scholar]
- Ahmad, A.; Mukherjee, P.; Mandal, D.; Senapati, S.; Khan, M.I.; Kumar, R.; Sastry, M. Enzyme mediated extracellular synthesis of CdS nanoparticles by the fungus, Fusarium oxysporum. J. Am. Chem. Soc. 2002, 124, 12108–12109. [Google Scholar] [CrossRef]
- Kamaraj, S.; Palanisamy, U.M.; Mohamed, M.S.B.K.; Gangasalam, A.; Maria, G.A.; Kandasamy, R. Curcumin drug delivery by vanillin-chitosan coated with calcium ferrite hybrid nanoparticles as carrier. Eur. J. Pharm. Sci. 2018, 116, 48–60. [Google Scholar] [CrossRef]
- Chandra, S.; Kandambeth, S.; Biswal, B.P.; Lukose, B.; Kunjir, S.M.; Chaudhary, M.; Babarao, R.; Heine, T.; Banerjee, R. Chemically stable multilayered covalent organic nanosheets from covalent organic frame-works via mechanical delamination. J. Am. Chem. Soc. 2013, 135, 17853–17861. [Google Scholar] [CrossRef]
- Muttis, E.; Micieli, M.V.; Urrutia, M.I.; García, J.J. Transmission of a pathogenic virus (Iridoviridae) of Culex pipiens larvae mediated by the mermithid Strelkovimermis spiculatus (Nematoda). J. Invert. Pathol. 2015, 129, 40–44. [Google Scholar] [CrossRef]
- Liu, S.; Xie, J.; Cheng, J.; Li, B.; Chen, T.; Fu, Y.; Li, G.; Wang, M.; Jin, H.; Wan, H.; et al. Fungal DNA virus infects a mycophagous insect and utilizes it as a transmission vector. Proc. Natl. Acad. Sci. USA 2016, 113, 12803–12808. [Google Scholar] [CrossRef]
Product | Species/Strain | Estimated Cost/Acre |
---|---|---|
Bacteria | ||
Milky Spore Powder (St. Gabriel Organics) | P. popilliae | $320 |
grubGONE! G (Phyllom BioProducts) | Bt galleriae | $533–800 |
beetleGONE! (Phyllom BioProducts) | Bt galleriae | $179–787 |
grubHALT! (Phyllom BioProducts) | Bt galleriae | $1346–2019 |
Fungi | ||
BotaniGard 22WP (GHA; BioWorks) | B. bassiana | $245–900 |
BotaniGard ES (GHA; BioWorks) | B. bassiana | $23–92 |
Mycotrol WPO (GHA; BioWorks) | B. bassiana | $74–295 |
Mycotrol ESO (GHA; BioWorks) | B. bassiana | $30–117 |
XPULSE OD (GHA; LAM International) | B. bassiana | n/a |
BioCeres WP (ANT-03; BioSafe Systems) | B. bassiana | $1130–4520 |
Velifer (PPRI 5339; BASF) | B. bassiana | $14–61 |
balance Darking Beetle Bait (JABB; HF) | B. bassiana | $128 |
Natuarlis L (ATCC 74040; Lallemand) | B. bassiana | $35 |
Met52 EC (F52; Novozymes Biologicals Inc.) | M. anisopliae | $50–200 |
PFR-97 20% WDG (Apopka 97; Certis USA) | I. fumosorosea | $36–72 |
NoFly WP (FE9901; Blacksmith Bioscience) | I. fumosorosea | $56–225 |
Nematodes | ||
NemaSeek (Arbico Organics) | H. bacteriophora, S. kraussei, H. indica | $72 |
NemAttack (Arbico Organics) | H. bacteriophora, S. feltiae, S. riobrave, S. carpocapsae | $72 |
Larvanem (Koppert Biologial Systems) | H. bacteriophora | $652 |
Millenium (BASF) | S. carpocapsae | $64–1920 |
Nemgard (Purely Organic Products, LLC) | S. scarabaei | $320 |
Nemashield (BioWorks) | S. feltiae | |
Entonem (Koppert Biologial Systems) | S. feltiae | $604 |
Nema Globe Grub Busters (The Environmental Factor Inc.) | S. carpocapsae and S. feltiae | $441 |
Field Guardian Nematode Mix (Hydro-Gardens) | Heterohabditidae/Steinernematidae | $1389 |
H. bacteriophora (Rincon-Vitova Insectaries) | H. bacteriophora | $380 |
Nemasys (G) (BASF) | H. bacteriophora | $300–600 |
Grub Away (Gardens Alive!) | H. bacteriophora | $400 |
Nema-green (Biolgicher Pflanzenchutz) | H. bacteriophora | $656 |
Terranem (Koppert Biologial Systems) | H. bacteriophora | $644 |
Heteromask (BioLogic) | H. bacteriophora | $1000 |
Scanmask (BioLogic) | S. feltiae | $1000 |
Ecomask (BioLogic) | S. carpocapsae | $1000 |
Capsanem (Koppert Biologial Systems) | S. carpocapsae | $800 |
Nemastar (Bioforce Limited) | S. carpocapsae | $900 |
Bt Toxin | Subspecies/Strain | Insect Targets |
---|---|---|
Cry3Aa | Bt tenebrionis | A. corpulenta, A. solstitiale, M. melolontha |
Cry3Ba | Bt tolworthi | Cyclocephala spp., P. japonica |
Cry7Ab | Bt kumanotoensis | A. corpulenta |
Cry8Aa | Bt kumanotoensis | Cotinis spp., H. oblita, H. parallela |
Cry8Ba | Bt kumanotoensis | Cotinis spp., C. borealis, C. pasadanae, P. japonica |
Cry8Ca | Bt japonensis | A. corpulenta, A. cuprea, A. exolete, Cotinis spp., Cyclocephala spp., H. parallela |
Cry8Da | Bt galleriae | A. cuprea, A. orientalis, P. japonica |
Cry8Db | Bt BBT2-5 | P. japonica |
Cry8Ea | Bt BT185 | A. corpulenta, H. parallela, P. japonica |
Cry8Fa | Bt BT185 | A. corpulenta, H. oblita, P. japonica |
Cry8Ga | Bt HBF-18 | H. oblita, H. parallela |
Cry8Na | Bt Q52-7 | A. corpulenta, H. oblita, H. parallela |
Cry8Sa | Bt 62 | H. serrata |
Cry9Da | Bt japonensis | A. cuprea |
Cry18Aa1 | Bt laterosporus | M. melolontha |
Cry23Aa/37Aa | Bt (unknown) | P. japonica |
Cry43Ba | P. lentimorbus | A. cuprea |
Cry43Aa | P. lentimorbus | A. cuprea |
Cyt2Ca | Bt SK-1007 | P. japonica |
Vip1Ac | Bt kurtaki | H. oblita |
Vip1Ad | Bt HBF-18 | H. parallela |
Vip2Ae | Bt BREF24, B. cereus HL12 | H. oblita |
Vip2Ag | Bt HBF-18 | A. corpulenta, H. oblita, H. parallela |
Vip1Ac+Vip2Ae | B. cereus HL12 | H. oblita |
Vip1Ad+Vip2Ag | Bt HBF-18 | A. corpulenta, H. oblita, H. parallela |
Nematode Species | Field Effectiveness | Pot Effectiveness | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
P H | C L | A T | A P | C T | P J | A O | A M | M C | P H | C L | A T | A P | C T | P J | A O | A M | M C | |
Heterorhabditidae | ||||||||||||||||||
H. bacteriophora | x | x | x | x | x | - | - | x | x | x | x- | x | x- | - | - | |||
H. zealandica | x | x | - | x | x | |||||||||||||
H. megidis | - | - | x | x | - | - | ||||||||||||
H. marelatus | - | - | ||||||||||||||||
H. heliothidis | ||||||||||||||||||
H. indica | - | x | - | - | ||||||||||||||
Steinernematidae | ||||||||||||||||||
S. glaseri | - | - | x | x | - | x | x | x | x- | x | x | - | - | |||||
S. scarabaei | x | x | x | x | x | x | x | x | x | - | x | x | x | x | ||||
S. carpocapsae | x | x | x | x | - | - | x | |||||||||||
S. arenarium | - | |||||||||||||||||
S. kushidai | x | x | x | - | x | - | ||||||||||||
S. feltiae | x | - | x | - | - | - | ||||||||||||
S. longicaudum | x | |||||||||||||||||
S. krausei | x | - | ||||||||||||||||
S. riobrave | - | - |
Microbe | Species-Specific | Kill Time | Relative Cost | Ease of Use | Shelf Life | Potential Persistence | Commercial Products |
---|---|---|---|---|---|---|---|
Bacteria | yes | weeks | $$ | easy | 3 years | decades | yes |
Fungi | no | days | $ | easy | 1.5 years | years | yes |
Microsporidian | yes | ≥month | - | - | - | years | no |
Nematodes | somewhat | days | $$$ | moderate | 3 weeks–1 year | years | yes |
Viruses | yes | weeks | - | - | - | variable | no |
Protozoa | yes | ≥month | - | - | - | unknown | no |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deans, C.; Krischik, V. The Current State and Future Potential of Microbial Control of Scarab Pests. Appl. Sci. 2023, 13, 766. https://doi.org/10.3390/app13020766
Deans C, Krischik V. The Current State and Future Potential of Microbial Control of Scarab Pests. Applied Sciences. 2023; 13(2):766. https://doi.org/10.3390/app13020766
Chicago/Turabian StyleDeans, Carrie, and Vera Krischik. 2023. "The Current State and Future Potential of Microbial Control of Scarab Pests" Applied Sciences 13, no. 2: 766. https://doi.org/10.3390/app13020766
APA StyleDeans, C., & Krischik, V. (2023). The Current State and Future Potential of Microbial Control of Scarab Pests. Applied Sciences, 13(2), 766. https://doi.org/10.3390/app13020766