Application of Response Surface Method in Pulsed Ultrasound-Assisted Extraction of Complex Plant Materials—A Case Study on Cannabis sativa L.
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Material and Regents
2.2. Methods
2.2.1. Pulsed Ultrasound Assisted Extraction
2.2.2. The Total Polyphenols Content (TPC)
2.2.3. Determination of Antioxidant Activity (DPPH and FRAP)
2.2.4. Specific Energy
2.3. The Experimental Design
2.4. Statistical Analysis
3. Results
3.1. Total Phenolic Content (TPC)
3.2. DPPH
3.3. FRAP
3.4. Unit Energy Consumption
3.5. Optimization of the Processing Parameters
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Residual Analysis
References
- Zhang, Q.W.; Lin, L.G.; Ye, W.C. Techniques for extraction and isolation of natural products: A comprehensive review. Chin. Med. 2018, 13, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rocchetti, G.; Blasi, F.; Montesano, D.; Ghisoni, S.; Marcotullio, M.C.; Sabatini, S.; Cossignani, L.; Lucini, L. Impact of conventional/non-conventional extraction methods on the untargeted phenolic profile of Moringa oleifera leaves. Food Res. Int. 2019, 115, 319–327. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Pérez, C.; Gilbert-López, B.; Mendiola, J.A.; Quirantes-Piné, R.; Segura-Carretero, A.; Ibáñez, E. Optimization of microwave-assisted extraction and pressurized liquid extraction of phenolic compounds fromMoringa oleiferaleaves by multiresponse surface methodology. Electrophoresis 2016, 37, 1938–1946. [Google Scholar] [CrossRef]
- Turrini, F.; Donno, D.; Beccaro, G.L.; Zunin, P.; Pittaluga, A.; Boggia, R. Pulsed Ultrasound-Assisted Extraction as an Alternative Method to Conventional Maceration for the Extraction of the Polyphenolic Fraction of Ribes nigrum Buds: A New Category of Food Supplements Proposed by The FINNOVER Project. Foods 2019, 8, 466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chemat, F.; Rombaut, N.; Meullemiestre, A.; Turk, M.; Perino, S.; Fabiano-Tixier, A.-S.; Abert-Vian, M. Review of Green Food Processing techniques. Preservation, transformation, and extraction. Innov. Food Sci. Emerg. Technol. 2017, 41, 357–377. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency. Green Chemistry’s 12 Principles. Available online: https://www.epa.gov/greenchemistry/basics-green-chemistry#twelve (accessed on 26 July 2019).
- De Oliveira, C.F.; Giordani, D.; Lutckemier, R.; Gurak, P.D.; Cladera-Olivera, F.; Marczak, L.D.F. Extraction of pectin from passion fruit peel assisted by ultrasound. Lwt Food Sci. Technol. 2016, 71, 110–115. [Google Scholar] [CrossRef]
- Kumar, K.; Srivastav, S.; Sharanagat, V.S. Ultrasound assisted extraction (UAE) of bioactive compounds from fruit and vegetable processing by-products: A review. Ultrason. Sonochem. 2021, 70, 105325. [Google Scholar] [CrossRef]
- Patra, A.; Abdullah, S.; Pradhan, R.C. Review on the extraction of bioactive compounds and characterization of fruit industry by-products. Bioresour. Bioprocess. 2022, 9, 14. [Google Scholar] [CrossRef]
- Japón-Luján, R.; Luque-Rodríguez, J.; de Castro, M.L. Dynamic ultrasound-assisted extraction of oleuropein and related biophenols from olive leaves. J. Chromatogr. A 2006, 1108, 76–82. [Google Scholar] [CrossRef]
- Ramić, M.; Vidović, S.; Zeković, Z.; Vladić, J.; Cvejin, A.; Pavlić, B. Modeling and optimization of ultrasound-assisted extraction of polyphenolic compounds from Aronia melanocarpa by-products from filter-tea factory. Ultrason. Sonochem. 2015, 23, 360–368. [Google Scholar] [CrossRef]
- Mehta, N.; Kumar, P.; Verma, A.K.; Umaraw, P.; Khatkar, S.K.; Khatkar, A.B.; Pathak, D.; Kaka, U.; Sazili, A.Q. Ultrasound-Assisted Extraction and the Encapsulation of Bioactive Components for Food Applications. Foods 2022, 11, 2973. [Google Scholar] [CrossRef]
- Moorthy, I.G.; Maran, J.P.; Muneeswari, S.; Naganyashree, S.; Shivamathi, C.S. Response surface optimization of ultrasound assisted extraction of pectin from pomegranate peel. Int. J. Biol. Macromol. 2015, 72, 1323–1328. [Google Scholar] [CrossRef] [PubMed]
- Moorthy, I.G.; Maran, J.P.; Ilakya, S.; Anitha, S.L.; Sabarima, S.P.; Priya, B. Ultrasound assisted extraction of pectin from waste Artocarpus heterophyllus fruit peel. Ultrason. Sonochem. 2017, 34, 525–530. [Google Scholar] [CrossRef] [PubMed]
- Maran, J.P.; Priya, B. Ultrasound-assisted extraction of polysaccharide from Nephelium lappaceum L. fruit peel. Int. J. Biol. Macromol. 2014, 70, 530–536. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, L.; Bailina, Y.; Ge, Z.; Ding, T.; Ye, X.; Liu, D. Effects of ultrasound and/or heating on the extraction of pectin from grapefruit peel. J. Food Eng. 2014, 126, 72–81. [Google Scholar] [CrossRef]
- Kazemi, M.; Karim, R.; Mirhosseini, H.; Hamid, A.A. Optimization of pulsed ultrasound-assisted technique for extraction of phenolics from pomegranate peel of Malas variety: Punicalagin and hydroxybenzoic acids. Food Chem. 2016, 206, 156–166. [Google Scholar] [CrossRef] [PubMed]
- Ismail, B.B.; Guo, M.; Pu, Y.; Wang, W.; Ye, X.; Liu, D. Valorisation of baobab (Adansonia digitata) seeds by ultrasound assisted extraction of polyphenolics. Optimisation and comparison with conventional methods. Ultrason. Sonochem. 2018, 52, 257–267. [Google Scholar] [CrossRef]
- Insang, S.; Kijpatanasilp, I.; Jafari, S.; Assatarakul, K. Ultrasound-assisted extraction of functional compound from mulberry (Morus alba L.) leaf using response surface methodology and effect of microencapsulation by spray drying on quality of optimized extract. Ultrason. Sonochem. 2022, 82, 105806. [Google Scholar] [CrossRef]
- Ghafoor, K.; Choi, Y.H.; Jeon, J.Y.; Jo, I.H. Optimization of Ultrasound-Assisted Extraction of Phenolic Compounds, Antioxidants, and Anthocyanins from Grape (Vitis vinifera) Seeds. J. Agric. Food Chem. 2009, 57, 4988–4994. [Google Scholar] [CrossRef]
- Luengo, E.; Condón-Abanto, S.; Condón, S.; Álvarez, I.; Raso, J. Improving the extraction of carotenoids from tomato waste by application of ultrasound under pressure. Sep. Purif. Technol. 2014, 136, 130–136. [Google Scholar] [CrossRef]
- Lin, X.; Wu, L.; Wang, X.; Yao, L.; Wang, L. Ultrasonic-assisted extraction for flavonoid compounds content and antioxidant activities of India Moringa oleifera L. leaves: Simultaneous optimization, HPLC characterization and comparison with other methods. J. Appl. Res. Med. Aromat. Plants 2021, 20, 100284. [Google Scholar] [CrossRef]
- Jaeschke, D.P.; Rech, R.; Marczak, L.D.F.; Mercali, G.D. Ultrasound as an alternative technology to extract carotenoids and lipids from Heterochlorella luteoviridis. Bioresour. Technol. 2017, 224, 753–757. [Google Scholar] [CrossRef]
- Del Hierro, J.N.; Herrera, T.; García-Risco, M.R.; Fornari, T.; Reglero, G.; Martin, D.; del Hierro, J.N.; Herrera, T.; García-Risco, M.R.; Fornari, T.; et al. Ultrasound-assisted extraction and bioaccessibility of saponins from edible seeds: Quinoa, lentil, fenugreek, soybean and lupin. Food Res. Int. 2018, 109, 440–447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kobus, Z. Dry matter extraction from valerian roots (Valeriana officinalis L.) with the help of pulsed acoustic field. Int. Agrophys. 2008, 22, 133–137. [Google Scholar]
- Pan, Z.; Qu, W.; Ma, H.; Atungulu, G.G.; McHugh, T.H. Continuous and pulsed ultrasound-assisted extractions of antioxidants from pomegranate peel. Ultrason. Sonochem. 2012, 19, 365–372. [Google Scholar] [CrossRef] [PubMed]
- Wani, K.M.; Uppaluri, R.V. Pulsed ultrasound-assisted extraction of bioactive compounds from papaya pulp and papaya peel using response surface methodology: Optimization and comparison with hot water extraction. Appl. Food Res. 2022, 2, 100178. [Google Scholar] [CrossRef]
- Naik, M.; Natarajan, V.; Modupalli, N.; Thangaraj, S.; Rawson, A. Pulsed ultrasound assisted extraction of protein from defatted Bitter melon seeds (Momardica charantia L.) meal: Kinetics and quality measurements. Lwt 2022, 155, 112997. [Google Scholar] [CrossRef]
- Albahari, P.; Jug, M.; Radić, K.; Jurmanović, S.; Brnčić, M.; Brnčić, S.R.; Čepo, D.V. Characterization of olive pomace extract obtained by cyclodextrin-enhanced pulsed ultrasound assisted extraction. Lwt 2018, 92, 22–31. [Google Scholar] [CrossRef]
- Christou, A.; Stavrou, I.J.; Kapnissi-Christodoulou, C.P. Continuous and pulsed ultrasound-assisted extraction of carob’s antioxidants: Processing parameters optimization and identification of polyphenolic composition. Ultrason. Sonochem. 2021, 76, 105630. [Google Scholar] [CrossRef]
- Patil, D.M.; Akamanchi, K.G. Ultrasound-assisted rapid extraction and kinetic modelling of influential factors: Extraction of camptothecin from Nothapodytes nimmoniana plant. Ultrason. Sonochem. 2017, 37, 582–591. [Google Scholar] [CrossRef]
- Patience, N.A.; Schieppati, D.; Boffito, D.C. Continuous and pulsed ultrasound pectin extraction from navel orange peels. Ultrason. Sonochem. 2021, 73, 105480. [Google Scholar] [CrossRef] [PubMed]
- Kobus, Z.; Krzywicka, M.; Pecyna, A.; Buczaj, A. Process Efficiency and Energy Consumption during the Ultrasound-Assisted Extraction of Bioactive Substances from Hawthorn Berries. Energies 2021, 14, 7638. [Google Scholar] [CrossRef]
- Kobus, Z.; Wilczynski, K.; Nadulski, R.; Rydzak, L.; Guz, T. Effect of Solvent Polarity on the Efficiency of Ultrasound-assisted Extraction of Polyphenols from Apple Pomace. In Proceedings of the IX International Scientific Symposium Farm Machinery and Processes Management in Sustainable Agriculture, Lublin, Poland, 20–22 November 2017. [Google Scholar]
- Kobus, Z.; Pecyna, A.; Buczaj, A.; Krzywicka, M.; Przywara, A.; Nadulski, R. Optimization of the Ultrasound-Assisted Extraction of Bioactive Compounds from Cannabis sativa L. Leaves and Inflorescences Using Response Surface Methodology. Appl. Sci. 2022, 12, 6747. [Google Scholar] [CrossRef]
- Kobus, Z.; Krzywicka, M.; Starek-Wójcicka, A.; Sagan, A. Effect of the duty cycle of the ultrasonic processor on the efficiency of extraction of phenolic compounds from Sorbus intermedia. Sci. Rep. 2022, 12, 8311. [Google Scholar] [CrossRef] [PubMed]
- Bibi Sadeer, N.; Montesano, D.; Albrizio, S.; Zengin, G.; Mahomoodally, M.F. The Versatility of Antioxidant Assays in Food Science and Safety—Chemistry, Applications, Strengths, and Limitations. Antioxidants 2020, 9, 709. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frassinetti, S.; Moccia, E.; Caltavuturo, L.; Gabriele, M.; Longo, V.; Bellani, L.; Giorgi, G.; Giorgetti, L. Nutraceutical potential of hemp (Cannabis sativa L.) seeds and sprouts. Food Chem. 2018, 262, 56–66. [Google Scholar] [CrossRef]
- Mkpenie, V.; Essien, E.; Udoh, I. Effect of extraction conditions on total polyphenol contents, antioxidant and antimicrobial activities of Cannabis sativa L. Electron. J. Environ. Agric. Food Chem. 2012, 11, 300–307. Available online: https://www.researchgate.net/publication/260824507 (accessed on 7 November 2022).
- Siano, F.; Moccia, S.; Picariello, G.; Russo, G.L.; Sorrentino, G.; Di Stasio, M.; La Cara, F.; Volpe, M.G. Comparative Study of Chemical, Biochemical Characteristic and ATR-FTIR Analysis of Seeds, Oil and Flour of the Edible Fedora Cultivar Hemp (Cannabis sativa L.). Molecules 2018, 24, 83. [Google Scholar] [CrossRef] [Green Version]
- Vonapartis, E.; Aubin, M.-P.; Seguin, P.; Mustafa, A.F.; Charron, J.-B. Seed composition of ten industrial hemp cultivars approved for production in Canada. J. Food Compos. Anal. 2015, 39, 8–12. [Google Scholar] [CrossRef]
- Moccia, S.; Siano, F.; Russo, G.L.; Volpe, M.G.; La Cara, F.; Pacifico, S.; Piccolella, S.; Picariello, G. Antiproliferative and antioxidant effect of polar hemp extracts (Cannabis sativa L., Fedora cv.) in human colorectal cell lines. Int. J. Food Sci. Nutr. 2020, 71, 410–423. [Google Scholar] [CrossRef] [PubMed]
- Izzo, L.; Castaldo, L.; Narváez, A.; Graziani, G.; Gaspari, A.; Rodríguez-Carrasco, Y.; Ritieni, A. Analysis of Phenolic Compounds in Commercial Cannabis sativa L. Inflorescences Using UHPLC-Q-Orbitrap HRMS. Molecules 2020, 25, 631. [Google Scholar] [CrossRef] [PubMed]
- Drini’c, Z.; Vidovi’c, S.; Vladi’c, J.; Koren, A.; Kiprovski, B.; Sikora, V. Effect of extraction solvent on total polyphenols content and antioxidant activity of Cannabis sativa L. Lek. Sirovine 2018, 38, 17–21. [Google Scholar] [CrossRef]
- Ferrante, C.; Recinella, L.; Ronci, M.; Menghini, L.; Brunetti, L.; Chiavaroli, A.; Leone, S.; Di Iorio, L.; Carradori, S.; Tirillini, B.; et al. Multiple pharmacognostic characterization on hemp commercial cultivars: Focus on inflorescence water extract activity. Food Chem. Toxicol. 2019, 125, 452–461. [Google Scholar] [CrossRef] [PubMed]
- Makanjuola, S.A. Influence of particle size and extraction solvent on antioxidant properties of extracts of tea, ginger, and tea-ginger blend. Food Sci. Nutr. 2017, 5, 1179–1185. [Google Scholar] [CrossRef]
- D’Alessandro, L.G.; Kriaa, K.; Nikov, I.; Dimitrov, K. Ultrasound assisted extraction of polyphenols from black chokeberry. Sep. Purif. Technol. 2012, 93, 42–47. [Google Scholar] [CrossRef]
- Romdhanea, M.; Gourdon, C. Investigation in solid–liquid extraction: Influence of ultrasound. Chem. Eng. J. 2002, 87, 11–19. [Google Scholar] [CrossRef]
- Yatma, F.; Falah, S.; Ambarsari, L.; Aisyah, S.I.; Nurcholis, W. Optimization of Extraction of Phenolic and Antioxidant Activities from Celosia cristata Seeds Using Response Surface Methodology. Biointerface Res. Appl. Chem. 2022, 13, 148. [Google Scholar] [CrossRef]
- Jambrak, A.R.; Mason, T.J.; Lelas, V.; Paniwnyk, L.; Herceg, Z. Effect of ultrasound treatment on particle size and molecular weight of whey proteins. J. Food Eng. 2014, 121, 15–23. [Google Scholar] [CrossRef]
- Petigny, L.; Périno-Issartier, S.; Wajsman, J.; Chemat, F. Batch and Continuous Ultrasound Assisted Extraction of Boldo Leaves (Peumus boldus Mol.). Int. J. Mol. Sci. 2013, 14, 5750–5764. [Google Scholar] [CrossRef]
- Mason, T.J. Some neglected or rejected paths in sonochemistry–A very personal view. Ultrason. Sonochem. 2015, 25, 89–93. [Google Scholar] [CrossRef] [PubMed]
- Teh, S.-S.; Birch, E.J. Effect of ultrasonic treatment on the polyphenol content and antioxidant capacity of extract from defatted hemp, flax and canola seed cakes. Ultrason. Sonochem. 2014, 21, 346–353. [Google Scholar] [CrossRef] [PubMed]
- Kobus, Z. Energetyczne aspekty sonifikacji suszu z marchwi. Inżynieria Rolnicza 2007, 5, 213–222. [Google Scholar]
- Carciochi, R.A.; Dieu, V.; Vauchel, P.; Pradal, D.; Dimitrov, K. Reduction of environmental impacts of caffeine extraction from guarana by using ultrasound assistance. Food Bioprod. Process. 2021, 127, 266–275. [Google Scholar] [CrossRef]
- Koturevic, B.; Adnadjevic, B.; Jovanovic, J. The kinetics of the extraction of caffeine from guarana seed under the action of ultrasonic field with simultaneous cooling. Green Proc. Synth. 2020, 9, 26–36. [Google Scholar] [CrossRef]
Source | Sum of Squares | df | Mean SQUARE | F Value | p-Value | Coefficient | |
---|---|---|---|---|---|---|---|
Model | 149.95 | 7 | 21.42 | 55.06 | <0.0001 | significant | |
X1 | 23.57 | 1 | 23.57 | 60.57 | 0.0001 | +20.94388 | |
X2 | 12.18 | 1 | 12.18 | 31.29 | 0.0008 | +1.77384 | |
X3 | 36.31 | 1 | 36.31 | 93.32 | <0.0001 | +2.66394 | |
X2X3 | 8.10 | 1 | 8.10 | 20.82 | 0.0026 | −0.081327 | |
X12 | 60.95 | 1 | 60.95 | 156.64 | <0.0001 | −16.25101 | |
X22 | 7.14 | 1 | 7.14 | 18.35 | 0.0036 | −0.055617 | |
X32 | 8.21 | 1 | 8.21 | 21.11 | 0.0025 | −0.121763 | |
Residual | 2.72 | 7 | 0.3891 | ||||
Lack of Fit | 2.39 | 5 | 0.4788 | 2.90 | 0.2757 | not significant | |
Pure Error | 0.3297 | 2 | 0.1648 | ||||
Total | 152.67 | 14 |
Source | Sum of Squares | df | Mean Square | F-Value | p-Value | Coefficient | |
---|---|---|---|---|---|---|---|
Model | 3149.25 | 7 | 449.89 | 61.39 | <0.0001 | significant | |
X1 | 586.22 | 1 | 586.22 | 79.99 | <0.0001 | +83.48110 | |
X2 | 408.74 | 1 | 408.74 | 55.77 | 0.0001 | +8.52065 | |
X3 | 705.70 | 1 | 705.70 | 96.29 | <0.0001 | +12.07336 | |
X2X3 | 274.34 | 1 | 274.34 | 37.43 | 0.0005 | −0.473237 | |
X12 | 1038.02 | 1 | 1038.02 | 141.64 | <0.0001 | −67.06768 | |
X22 | 126.23 | 1 | 126.23 | 17.22 | 0.0043 | −0.233878 | |
X32 | 115.53 | 1 | 115.53 | 15.76 | 0.0054 | −0.456619 | |
Residual | 51.30 | 7 | 7.33 | ||||
Lack of Fit | 45.43 | 5 | 9.09 | 3.10 | 0.2620 | not significant | |
Pure Error | 5.87 | 2 | 2.94 | ||||
Cor Total | 3200.55 | 14 |
Source | Sum of Squares | df | Mean Square | F-Value | p-Value | Coefficient | |
---|---|---|---|---|---|---|---|
Model | 7754.84 | 5 | 1550.97 | 11.44 | 0.0011 | significant | |
X1 | 1139.76 | 1 | 1139.76 | 8.40 | 0.0176 | +127.50213 | |
X2 | 1383.28 | 1 | 1383.28 | 10.20 | 0.0109 | +4.84345 | |
X3 | 2624.75 | 1 | 2624.75 | 19.35 | 0.0017 | +9.51553 | |
X2X3 | 230.77 | 1 | 230.77 | 1.70 | 0.0244 | −0.434029 | |
X12 | 2376.28 | 1 | 2376.28 | 17.52 | 0.0024 | −100.91616 | |
Residual | 1220.51 | 9 | 135.61 | ||||
Lack of Fit | 1167.95 | 7 | 166.85 | 6.35 | 0.1428 | not significant | |
Pure Error | 52.56 | 2 | 26.28 | ||||
Cor Total | 8975.35 | 14 |
Source | Sum of Squares | df | Mean Square | F-Value | p-Value | Coefficient | |
---|---|---|---|---|---|---|---|
Model | 7.17 | 7 | 1.02 | 36.16 | <0.0001 | significant | |
X1 | 0.7689 | 1 | 0.7689 | 27.15 | 0.0012 | −1.83239 | |
X2 | 2.21 | 1 | 2.21 | 77.87 | <0.0001 | −0.213000 | |
X3 | 2.84 | 1 | 2.84 | 100.29 | <0.0001 | −0.155604 | |
X1X3 | 0.2493 | 1 | 0.2493 | 8.80 | 0.0209 | +0.142643 | |
X2X3 | 0.5869 | 1 | 0.5869 | 20.72 | 0.0026 | +0.021888 | |
X12 | 0.3070 | 1 | 0.3070 | 10.84 | 0.0133 | +1.14998 | |
X22 | 0.2472 | 1 | 0.2472 | 8.73 | 0.0213 | +0.010320 | |
Residual | 0.1983 | 7 | 0.0283 | ||||
Lack of Fit | 0.1908 | 5 | 0.0382 | 10.25 | 0.0912 | not significant | |
Pure Error | 0.0074 | 2 | 0.0037 | ||||
Cor Total | 7.37 | 14 |
Optimized Condition | Extraction Variables | Response | Yield of Extraction | ||||
---|---|---|---|---|---|---|---|
X1 | X2 | X3 | Predicted | Experimental a | Predictive Capacity (%) | ||
TPC | 0.65 | 13.14 | 6.92 | TPC | 15.90 | 15.24 ± 0.42 | 95.82 ± 2.62 |
DPPH | 0.59 | 12.35 | 8.07 | DPPH | 71.96 | 66.90 ± 3.61 | 92.96 ± 5.02 |
FRAP | 0.63 | 15 | 8.6 | FRAP | 106.98 | 100.40 ± 8.25 | 93.84 ± 7.71 |
Unit Energy Consumption | 0.48 | 7.69 | 1.84 | UEC | 0.38 | 0.36 ± 0.01 | 94.74 ± 3.72 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kobus, Z.; Buczaj, A.; Pecyna, A.; Kapica, J.; Findura, P.; Kocira, S. Application of Response Surface Method in Pulsed Ultrasound-Assisted Extraction of Complex Plant Materials—A Case Study on Cannabis sativa L. Appl. Sci. 2023, 13, 760. https://doi.org/10.3390/app13020760
Kobus Z, Buczaj A, Pecyna A, Kapica J, Findura P, Kocira S. Application of Response Surface Method in Pulsed Ultrasound-Assisted Extraction of Complex Plant Materials—A Case Study on Cannabis sativa L. Applied Sciences. 2023; 13(2):760. https://doi.org/10.3390/app13020760
Chicago/Turabian StyleKobus, Zbigniew, Agnieszka Buczaj, Anna Pecyna, Jacek Kapica, Pavol Findura, and Sławomir Kocira. 2023. "Application of Response Surface Method in Pulsed Ultrasound-Assisted Extraction of Complex Plant Materials—A Case Study on Cannabis sativa L." Applied Sciences 13, no. 2: 760. https://doi.org/10.3390/app13020760
APA StyleKobus, Z., Buczaj, A., Pecyna, A., Kapica, J., Findura, P., & Kocira, S. (2023). Application of Response Surface Method in Pulsed Ultrasound-Assisted Extraction of Complex Plant Materials—A Case Study on Cannabis sativa L. Applied Sciences, 13(2), 760. https://doi.org/10.3390/app13020760