Application of Speech on Stress Recognition with Neural Network in Nuclear Power Plant
Abstract
:1. Introduction
2. Methods
2.1. Participants
2.2. Measures
2.2.1. Positive and Negative Affect Scale
2.2.2. Physiological Measures
2.3. Acute Psychological Stress Task in the Stimulated Nuclear Power Plant Mission
2.4. Procedure
2.5. Data Analysis
2.6. Back Propagation Neural Network for Stress State Recognition
3. Results
3.1. Verification of the Stress State Induction
3.2. Speech Stress Recognition
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Werner, W.F.; Hirano, M.; Kondo, S.; Johanson, G.; Lanore, J.M.; Murphy, J.A.; Schmocker, U. Results and insights from level-1 probabilistic safety assessments for nuclear power plants in France, Germany, Japan, Sweden, Switzerland and the United States. Reliab. Eng. Syst. Saf. 1995, 48, 165–179. [Google Scholar] [CrossRef]
- Swain, A.D.; Guttmann, H.E. Handbook of Human-Reliability Analysis with Emphasis on Nuclear Power Plant Applications. Final Report; Sandia National Labs.: Albuquerque, NM, USA, 1983. [Google Scholar]
- Driskell, J.E.; Salas, E.; Hughes, S. Introduction: The study of stress and human performance. In Stress and Human Performance (A 97-27090 06-53); Lawrence Erlbaum Associates: Mahwah, NJ, USA, 1996; pp. 223–256. [Google Scholar]
- Heponiemi, T.; Keltikangas-Järvinen, L.; Puttonen, S.; Ravaja, N. Vital exhaustion, temperament, and the circumplex model of affect during laboratory-induced stress. Cogn. Emot. 2005, 19, 879–897. [Google Scholar] [CrossRef]
- Luo, Y.; Nian, J.; Bao, W.; Zhang, J.; Zhao, S.; Pan, Y.; Xu, S.; Zhang, Y. Acute psychological stress impairs attention disengagement toward threat-related stimuli. Acta Psychol. Sin. 2020, 52, 26. [Google Scholar] [CrossRef] [Green Version]
- Ashcraft, M.H.; Kirk, E.P. The relationships among working memory, math anxiety, and performance. J. Exp. Psychol. Gen. 2001, 130, 224. [Google Scholar] [CrossRef] [PubMed]
- Pakarinen, S.; Korpela, J.; Karvonen, H.; Laarni, J. Modeling the cardiac indices of stress and performance of nuclear power plant operators during simulated fault scenarios. Psychophysiology 2019, 57, e13513. [Google Scholar] [CrossRef] [PubMed]
- Peacock, E.J.; Wong, P.T.P. The stress appraisal measure (SAM): A multidimensional approach to cognitive appraisal. Stress Med. 1990, 6, 227–236. [Google Scholar] [CrossRef]
- Cohen, L.H.; Towbes, L.C.; Flocco, R. Effects of Induced Mood on Self-reported Life Events and Perceived and Received Social Support. J. Personal. Soc. Psychol. 1988, 55, 669. [Google Scholar] [CrossRef] [PubMed]
- Watson, D.; Clark, L.A.; Tellegen, A. Development and validation of brief measures of positive and negative affect: The PANAS scales. J. Personal. Soc. Psychol. 1988, 54, 1063. [Google Scholar] [CrossRef] [PubMed]
- Axelrod, J.; Reisine, T.D. Stress hormones: Their interaction and regulation. Science 1984, 224, 452–459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ekman, P.; Levenson, R.W.; Friesen, W.V. Autonomic nervous system activity distinguishes among emotions. Science 1983, 221, 1208–1210. [Google Scholar] [CrossRef] [PubMed]
- Villarejo, M.V.; Zapirain, B.G.; Zorrilla, A.M. A stress sensor based on Galvanic Skin Response (GSR) controlled by ZigBee. Sensors 2012, 12, 6075–6101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, N.; Gedeon, T. Objective measures, sensors and computational techniques for stress recognition and classification: A survey. Comput. Methods Programs Biomed. 2012, 108, 1287–1301. [Google Scholar] [CrossRef] [PubMed]
- Hansen, J.H.; Patil, S.; Müller, C. Speaker Classification i. ch. Speech Under Stress: Analysis, Modeling and Recognition; Springer: Berlin, Heidelberg, 2007; pp. 108–137. [Google Scholar]
- Tan, L.; Karnjanadecha, M. Modified mel-frequency cepstrum coefficient. In Proceedings of the Information Engineering Postgraduate Workshop, Songkhla, Thailand; 2003; pp. 127–130. [Google Scholar]
- Besbes, S.; Lachiri, Z. Multi-class SVM for stressed speech recognition. In Proceedings of the 2016 2nd International Conference on Advanced Technologies for Signal and Image Processing (ATSIP), Monastir, Tunisia, 21–23 March 2016; IEEE; pp. 782–787. [Google Scholar]
- Kirschbaum, C.; Pirke, K.M.; Hellhammer, D.H. The ‘Trier Social Stress Test’—A tool for investigating psychobiological stress responses in a laboratory setting. Neuropsychobiology 1993, 28, 76–81. [Google Scholar] [CrossRef] [PubMed]
- Lejuez, C.W.; Kahler, C.W.; Brown, R.A. A modified computer version of the Paced Auditory Serial Addition Task (PASAT) as a laboratory-based stressor. Behav. Ther. 2003, 26, 290–293. [Google Scholar]
- Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagating errors. Nature 1986, 323, 533–536. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Healey, J.A.; Picard, R.W. Detecting stress during real-world driving tasks using physiological sensors. IEEE Trans. Intell. Transp. Syst. 2005, 6, 156–166. [Google Scholar] [CrossRef] [Green Version]
- Liao, W.; Zhang, W.; Zhu, Z.; Ji, Q. A real-time human stress monitoring system using dynamic bayesian network. In Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05)-Workshops, San Diego, CA, USA, 21–23 September 2005; IEEE; p. 70. [Google Scholar]
- Reinhardt, T.; Schmahl, C.; Wüst, S.; Bohus, M. Salivary cortisol, heart rate, electrodermal activity and subjective stress responses to the Mannheim Multicomponent Stress Test (MMST). Psychiatry Res. 2012, 198, 106–111. [Google Scholar] [CrossRef] [PubMed]
- Pengcheng, L.; Li, Z.; Licao, D.; Weigang, H. Effects of digital human-machine interface characteristics on human error in nuclear power plants. Nucl. Power Eng. 2011, 32, 48–52. [Google Scholar]
- Hopkins, C.S.; Ratley, R.J.; Benincasa, D.S.; Grieco, J.J. Evaluation of voice stress analysis technology. In Proceedings of the 38th Annual Hawaii International Conference on System Sciences, Big Island, HI, USA, 6 January 2005; IEEE; p. 20b. [Google Scholar]
- Rodellar-Biarge, V.; Palacios-Alonso, D.; Nieto-Lluis, V.; Gómez-Vilda, P. Towards the search of detection in speech-relevant features for stress. Expert Syst. 2015, 32, 710–718. [Google Scholar] [CrossRef]
Number of layers | 4 |
Neurons | Input: 20 |
Hidden: 15 | |
Hidden: 8 | |
Output: 1 | |
Activation function | tanh Function |
Learning rate | 0.005 |
Optimizer | Adam |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Wu, B.; Xie, K.; Ma, S.; Yang, Z.; Shen, Y. Application of Speech on Stress Recognition with Neural Network in Nuclear Power Plant. Appl. Sci. 2023, 13, 779. https://doi.org/10.3390/app13020779
Chen J, Wu B, Xie K, Ma S, Yang Z, Shen Y. Application of Speech on Stress Recognition with Neural Network in Nuclear Power Plant. Applied Sciences. 2023; 13(2):779. https://doi.org/10.3390/app13020779
Chicago/Turabian StyleChen, Jiaqi, Bohan Wu, Kaijie Xie, Shu Ma, Zhen Yang, and Yi Shen. 2023. "Application of Speech on Stress Recognition with Neural Network in Nuclear Power Plant" Applied Sciences 13, no. 2: 779. https://doi.org/10.3390/app13020779
APA StyleChen, J., Wu, B., Xie, K., Ma, S., Yang, Z., & Shen, Y. (2023). Application of Speech on Stress Recognition with Neural Network in Nuclear Power Plant. Applied Sciences, 13(2), 779. https://doi.org/10.3390/app13020779