Hg Content in EU and Non-EU Processed Meat and Fish Foods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Material and Reagents
2.3. Mercury Analysis
2.4. Method Validation
3. Results
3.1. Method Validation Results
3.2. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Weaver, C.M.; Dwyer, J.; Fulgoni, V.L., III; King, J.C.; Leveille, G.A.; MacDonald, R.S.; Ordovas, J.; Schnakenberg, D. Processed foods: Contributions to nutrition. Am. J. Clin. Nutr. 2014, 99, 1525–1542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monteiro, C.A.; Levy, R.B.; Claro, R.M.; Ribeiro de Castro, I.R.; Cannon, G. Increasing consumption of ultra-processed foods and likely impact on human health: Evidence from Brazil. Public Health Nutr. 2011, 14, 5–13. [Google Scholar] [CrossRef] [PubMed]
- Kowalska, G.; Pankiewicz, U.; Kowalski, R. Determination of the Level of Selected Elements in Canned Meat and Fish and Risk Assessment for Consumer Health. J. Anal. Methods Chem. 2020, 2020, 2148794. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Bella, G.; Lo Vecchio, G.; Albergamo, A.; Nava, V.; Bartolomeo, G.; Macrì, A.; Bacchetta, L.; Lo Turco, V.; Potortì, A.G. Chemical characterization of Sicilian dried nopal [Opuntia ficus-indica (L.) Mill. J. Food Comp. Anal. 2022, 106, 104307. [Google Scholar] [CrossRef]
- Crupi, R.; Lo Turco, V.; Gugliandolo, E.; Nava, V.; Potortì, A.G.; Cuzzocrea, S.; Di Bella, G.; Licata, P. Mineral Composition in Delactosed Dairy Products: Quality and Safety Status. Foods. 2022, 11, 139. [Google Scholar] [CrossRef] [PubMed]
- Liotta, L.; Litrenta, F.; Lo Turco, V.; Potortì, A.G.; Lopreiato, V.; Nava, V.; Bionda, A.; Di Bella, G. Evaluation of Chemical Contaminants in Conventional and Unconventional Ragusana Provola Cheese. Foods. 2022, 11, 3817. [Google Scholar] [CrossRef] [PubMed]
- Roman-Ochoa, Y.; Choque Delgado, G.T.; Tejada, T.R.; Yucra, H.R.; Durand, A.E.; Hamaker, B.R. Heavy metal contamination and health risk assessment in grains and grain-based processed food in Arequipa region of Peru. Chemosphere 2021, 274, 129792. [Google Scholar] [CrossRef]
- Hwang, H.J.; Hwang, G.H.; Ahn, S.M.; Kim, Y.Y.; Shin, H.S. Risk Assessment and Determination of Heavy Metals in Home Meal Replacement Products by Using Inductively Coupled Plasma Mass Spectrometry and Direct Mercury Analyzer. Foods 2022, 11, 504. [Google Scholar] [CrossRef]
- Collado-Lòpez, S.; Betanzos-Robledo, L.; Téllez-Rojo, M.M.; Lamadrid-Figueroa, H.; Reyes, M.; Rìos, C.; Cantoral, A. Heavy Metals in Unprocessed or Minimally Processed Foods Consumed by Humans Worldwide: A Scoping Review. Int. J. Environ. Res. Public Health 2022, 19, 8651. [Google Scholar] [CrossRef]
- Hamasalim, H.Z.; Mohammed, H.N. Determination of heavy metals in exposed corned beef and chicken luncheon that sold in Sulaymaniah markets. Afr. J. Food Sci. 2013, 7, 178–182. [Google Scholar] [CrossRef]
- Peycheva, K.; Panayotova, V.; Stancheva, R.; Makendonski, L.; Merdzhanova, A.; Parrino, V.; Nava, V.; Cicero, N.; Fazio, F. Risk Assessment of Essential and Toxic Elements in Freshwater Fish Species from Lakes near Black Sea, Bulgaria. Toxics 2022, 10, 675. [Google Scholar] [CrossRef]
- Massadeh, A.M.; Al-Massaedh, A.A.T.; Kharibeh, S. Determination of selected elements in canned food sold in Jordan markets. Environ. Sci. Pollut. Res. 2017, 25, 3501–3509. [Google Scholar] [CrossRef] [PubMed]
- Di Bella, G.; Tardugno, R.; Cicero, N. Investigation of Hg Content by a Rapid Analytical Technique in Mediterranean Pelagic Fishes. Separations 2018, 5, 51. [Google Scholar] [CrossRef] [Green Version]
- Khalafalla, F.A.; Ali, F.H.M.; Hassan, A.R.H.A.; Basta, S.E. Residues of lead, cadmium, mercury, and tin in canned meat products from Egypt: An emphasis on permissible limits and sources of contamination. J. Verbrauch. Lebensm. 2016, 11, 137–143. [Google Scholar] [CrossRef]
- Ye, B.J.; Kim, B.G.; Jeon, M.G.; Kim, S.Y.; Kim, H.C.; Jang, T.W.; Chae, H.J.; Choi, W.J.; Ha, M.H.; Hong, Y.S. Evaluation of mercury exposure level, clinical diagnosis, and treatment for mercury intoxication. Ann. Occup. Environ. Med. 2016, 28, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stojanovic, B.; Jankovic, S.; Dordevic, V.; Marjanovic, S.; Vasilev, D.; Stojanovic, Z.; Balaban, M.; Antic, V. Determination of toxic elements in meat products from Serbia packaged in tinplate cans. Environ. Sci. Pollut. Res. Int. 2021, 28, 48330–48342. [Google Scholar] [CrossRef] [PubMed]
- Sunderland, E.M.; Tumpney, M. Mercury in foods. In Persistent Organic Pollutants and Toxic Metals in Foods; Series in Food Science, Technology and Nutrition; Woodhead Publishing: Sawston, UK, 2013; pp. 392–413. [Google Scholar]
- EFSA Panel on Contaminants in the Food Chain (CONTAM). Scientific Opinion on the risk for public health related to the presence of mercury and methylmercury in food. EFSA J. 2012, 10, 2985. [Google Scholar]
- International Agency for Research on Cancer (IARC). Agents Classified by the IARC Monographs; IARC: Lyon, France, 2022; Volume 1–132. [Google Scholar]
- EFSA. Statement on the benefits of fish/seafood consumption compared to the risks of methylmercury in fish/seafood. EFSA J. 2015, 13, 3982. [Google Scholar] [CrossRef] [Green Version]
- Costa, F.; Coelho, J.P.; Baptista, J.; Martinho, F.; Pereira, M.E.; Pardal, M.A. Mercury accumulation in fish species along the Portuguese coast: Are there potential risks to human health? Mar. Pollut. Bull. 2020, 150, 110740. [Google Scholar] [CrossRef]
- Jebara, A.; Lo Turco, V.; Faggio, C.; Licata, P.; Nava, V.; Potortì, A.G.; Crupi, R.; Mansour, H.B.; Di Bella, G. Monitoring of Environmental Hg Occurrence in Tunisian Coastal Areas. Int. J. Environ. Res. Public Health 2021, 18, 5202. [Google Scholar] [CrossRef]
- Panebianco, F.; Nava, V.; Giarratana, F.; Gervasi, T.; Cicero, N. Assessment of heavy- and semi-metals contamination in edible seaweed and dried fish sold in ethnic food stores on the Italian market. J. Food Compos. Anal. 2021, 104, 104150. [Google Scholar] [CrossRef]
- Rodriguez-Mendivil, D.D.; Garcia-Flores, E.; Temores-Pena, J.; Wakida, F.T. Health Risk Assessment of Some Heavy Metals from Canned Tuna and Fish in Tijuana, Mexico. Health Scope 2019, 8, e78956. [Google Scholar] [CrossRef] [Green Version]
- Barone, G.; Storelli, A.; Quaglia, N.C.; Garofalo, R.; Meleleo, D.; Busco, A.; Storelli, M.M. Trace Metals in Pork Meat Products Marketed in Italy: Occurrence and Health Risk Characterization. Biol. Trace Elem. Res. 2021, 199, 2826–2836. [Google Scholar] [CrossRef] [PubMed]
- Sharif, R.; Ghazali, A.R.; Rajab, N.F.; Haron, H.; Osman, F. Toxicological evaluation of some Malaysian locally processed raw food products. Food Chem. Toxicol. 2008, 46, 368–374. [Google Scholar] [CrossRef]
- Commission Regulation (EC) No 1881/2006 of 19 December 2006 Setting Maximum Levels for Certain Contaminants in Foodstuffs. Off. J. Eur. 2006, L364, 5–24. Available online: https://eur-lex-europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2006:364:0005:0024:EN:PDF (accessed on 29 November 2022).
- Commission Regulation (EC) No 617/2022 of 12 April 2022 Setting Maximum Levels for Mercury in Fish and Salt. Off. J. Eur. 2022, L115/60, 60–63. Available online: https://eur-lex.europa.eu/eli/reg/2022/617/oj (accessed on 29 November 2022).
- Falco, F.; Salvagio Manta, D.; Bonsignore, M.; Mazzola, S. Determinazione del Mercurio Mediante DMA-80; Istituto per l’Ambiente Marino Costiero del Consiglio Nazionale delle Ricerche (IAMC-CNR): Granitola Torretta, Italy, 2016. [Google Scholar]
- Guerin, T.; Chekri, R.; Chafey, C.; Testu, C.; Hulin, M.; Noel, L. Mercury in foods from the first French total diet study on infants and toddlers. Food Chem. 2018, 239, 920–925. [Google Scholar] [CrossRef]
- Folch, J.; Lees, M.; Stanley, G.S. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- Tropea, A.; Potortì, A.G.; Lo Turco, V.; Russo, E.; Vadalà, R.; Rando, R.; Di Bella, G. Aquafeed production from fermented fish waste and lemon peel. Fermentation 2021, 7, 272. [Google Scholar] [CrossRef]
- Di Bella, G.; Litrenta, F.; Pino, S.; Tropea, A.; Potortì, A.G.; Nava, V.; Lo Turco, V. Variations in fatty acid composition of Mediterranean anchovies (Engraulis encrasicolus) after different cooking methods. Eur. Food Res. Technol. 2022, 248, 2285–2290. [Google Scholar] [CrossRef]
- U.S. EPA. Principles of Environmental Impact Assessment Review: Appendix A: Environmental Assessment Checklist. 1998. Available online: https://elaw.org/content/us-epa-1998-principles-environmental-impact-assessment-review-appendix-d-contents-specific-e (accessed on 5 December 2022).
- Bertil, M.; Örnemark, U. The Fitness for Purpose of Analytical Methods: A Laboratory Guide to Method Validation and Related Topics. A Laboratory Guide to Method Validation and Related Topics; LGC: Middlesex, UK, 2014. [Google Scholar]
- Available online: https://www.fao.org/faostat/en/#data/FBS (accessed on 5 December 2022).
- Bosch, A.C.; O’Neill, B.; Sigge, G.O.; Kerwath, S.E.; Hoffman, L.C. Mercury accumulation in Yellowfin tuna (Thunnus albacares) with regards to muscle type, muscle position and fish size. Food Chem. 2016, 190, 351–356. [Google Scholar] [CrossRef] [PubMed]
- Cizdziel, J.V.; Hinners, T.A.; Pollard, J.E.; Heithmar, E.M.; Cross, C.L. Mercury Concentrations in Fish from Lake Mead, USA, Related to Fish Size, Condition, Trophic Level, Location, and Consumption Risk. Arch. Environ. Contam. Toxicol. 2002, 43, 309–317. [Google Scholar] [CrossRef] [PubMed]
- Miedico, O.; Pompa, C.; Moscatelli, S.; Chiappinelli, A.; Carosielli, L.; Chiaravalle, A.E. Lead, cadmium and mercury in canned and unprocessed tuna: Six-years monitoring survey, comparison with previous studies and recommended tolerable limits. J. Food Compos. Anal. 2020, 94, 103638. [Google Scholar] [CrossRef]
- Luczynska, J.; Paszxzyk, B.; Nowosad, J.; Luczynski, M.J. Mercury, Fatty Acids Content and Lipid Quality Indexes in Muscles of Freshwater and Marine Fish on the Polish Market. Risk Assessment of Fish Consumption. Int. J. Environ. Res. Public Health 2017, 14, 1120. [Google Scholar] [CrossRef]
- Amadi, C.N.; Frazzoli, C.; Orisakwe, O.E. Sentinel species for biomonitoring and biosurveillance of environmental heavy metals in Nigeria. J. Environ. Sci. Health C Toxicol. 2020, 38, 21–60. [Google Scholar] [CrossRef] [PubMed]
- Okoye, E.A.; Bocca, B.; Ruggieri, F.; Ezejiofor, A.N.; Nwaogazie, I.L.; Domingo, J.L.; Rovira, J.; Frazzoli, C.; Orisakwe, O.E. Metal pollution of soil, plants, feed and food in the Niger Delta, Nigeria: Health risk assessment through meat and fish consumption. Environ. Res. 2021, 198, 111273. [Google Scholar] [CrossRef] [PubMed]
Sample Code | Sample | Sample No | Constituents (%) | Species | Country or Origin | ||
---|---|---|---|---|---|---|---|
Fat | Protein | Fiber | |||||
F1 | Canned tuna in olive oil | 4 | 22 | 19 | ** | Katsuwonus pelamis | Spain |
F2 | Canned tuna in olive oil | 3 | 33 | 18 | 0 | Thynnus albacares | Italy |
F3 | Canned natural tuna | 2 | 0.9 | 23 | ** | Thynnus albacares | Italy |
F4 | Canned tuna in olive oil | 3 | 13 | 29 | ** | Katsuwonus pelamis | Italy |
F5 | Canned natural tuna | 2 | 0.6 | 20 | ** | Thynnus albacares | Spain |
F6 | Natural shrimp | 3 | 1 | 17 | ** | ** | Italy |
F7 | Canned horse mackerel | 3 | 4.9 | 24 | ** | Trachurus murphyi | Chile |
F8 | Canned sardines | 3 | 42 | 16 | ** | Sardina pilchardus | Morocco |
F9 | Canned crab meat | 3 | 0.5 | 12 | ** | ** | Indonesia |
F10 | Canned pink Salmon | 2 | 7 | 19 | ** | ** | USA |
F11 | Canned tuna pate | 3 | 25 | 13 | ** | Euthynnus (Katsuwonus) pelamis | Italy |
F12 | Canned mackerel fillets | 4 | 22 | 22 | ** | ** | Portugal |
F13 | Dried shrimp | 4 | 2 * | 19 * | 0 | ** | Argentina |
F14 | Dried sardines | 3 | 19 * | 15 * | ** | Sardinella aurita | Argentina |
M1 | Canned beef and pork pate | 2 | 14 | 11 | 3.5 | ** | Italy |
M2 | Canned beef and pork pate | 2 | 14 | 11 | ** | ** | Italy |
M3 | Canned jelly with meat stock | 4 | 1.2 | 11 | <0.5 | ** | Italy |
M4 | Canned chicken | 3 | 1 | 1.1 | ** | ** | Italy |
M5 | Canned ham pate | 3 | 26 | 9 | ** | ** | Italy |
M6 | Canned beef | 4 | 1.5 | 11 | ** | ** | Italy |
M7 | Canned jellied chicken breast | 3 | 1 | 11 | ** | ** | Italy |
M8 | Canned chicken Luncheon Meat | 4 | 10 | 12 | ** | ** | Philippines |
M9 | Canned chopped Pork and Ham with real bacon | 2 | 22 | 15 | ** | ** | Denmark |
M10 | Canned chicken meat | 3 | 14 | 13 | ** | ** | Poland |
Tot | 72 |
Sample | Mean Hg Concentration (μg/Kg) |
---|---|
F1 | 250.92 ± 3.68 |
F2 | 290.21 ± 4.64 |
F3 | 9.25 ± 0.85 |
F4 | 70.11 ± 4.22 |
F5 | 50.82 ± 3.58 |
F6 | 11.90 ± 0.88 |
F7 | 25.71 ± 1.40 |
F8 | 14.00 ± 0.18 |
F9 | 10.05 ± 1.74 |
F10 | 12.89 ± 2.55 |
F11 | 20.65 ± 3.52 |
F12 | 32.45 ± 5.68 |
F13 | 9.45 ± 0.30 |
F14 | 99.93 ± 1.43 |
M1 | 3.17 ± 0.12 |
M2 | <LOQ |
M3 | <LOQ |
M4 | <LOQ |
M5 | <LOQ |
M6 | <LOQ |
M7 | <LOQ |
M8 | 3.17 ± 0.11 |
M9 | 3.73 ± 0.18 |
M10 | <LOQ |
Hg | |||
---|---|---|---|
Samples | No Samples | μg/Kg | TWI% |
Range Min–Max | Range Min–Max | ||
Canned tuna | 17 | 9.25–290.21 | 4.63–145.11 |
Natural and dried shrimp | 7 | 9.45–11.90 | 4.73–5.95 |
Canned sardines | 3 | 13.89–14.21 | 6.95–7.11 |
Canned crab meat | 3 | 8.07–11.30 | 4.03–5.65 |
Canned pink salmon | 2 | 10.15–15.19 | 5.08–7.59 |
Dried sardines | 3 | 98.34–101.08 | 49.17–50.54 |
Canned mackerel fillets | 4 | 24.84–27.33 | 12.42–13.67 |
Canned horse mackerel | 3 | 26.62–37.96 | 13.31–18.98 |
Hg | |||
---|---|---|---|
Species | No Samples | μg/Kg | TWI% |
Range Min–Max | Range Min–Max | ||
Canned beef and pork pate | 4 | <LOQ–3.27 | n.d.–1.63 |
Canned beef | 8 | <LOQ | n.d. |
Canned chicken | 13 | <LOQ–3.28 | n.d.–1.64 |
Canned pork | 5 | <LOQ–3.92 | n.d.–1.96 |
Hg | |||||||
---|---|---|---|---|---|---|---|
Samples | No Samples | μg/Kg | TWI% | ||||
Africa | America | Asia | Europe | Oceania | |||
Range Min–Max | Range Min–Max | Range Min–Max | Range Min–Max | Range Min–Max | Range Min–Max | ||
Canned tuna | 17 | 9.25–290.21 | 1.55–48.61 | 1.36–42.81 | 1.11–34.83 | 2.54–79.81 | 3.47–108.83 |
Natural and dried shrimp | 7 | 9.45–11.90 | 1.58–1.99 | 1.39–1.76 | 1.13–1.43 | 2.60–3.27 | 3.54–4.46 |
Canned sardines | 3 | 13.89–14.21 | 2.33–2.38 | 2.05–2.10 | 1.67–1.71 | 3.82–3.91 | 5.21–5.33 |
Canned crab meat | 3 | 8.07–11.30 | 1.35–1.89 | 1.19–1.67 | 0.97–1.36 | 2.22–3.11 | 3.03–4.24 |
Canned pink salmon | 2 | 10.15–15.19 | 1.70–2.54 | 1.50–2.24 | 1.22–1.82 | 2.79–4.18 | 3.81–5.70 |
Dried sardines | 3 | 98.34–101.08 | 16.47–16.93 | 14.50–14.91 | 11.80–12.13 | 27.04–27.80 | 36.88–37.91 |
Canned mackerel fillets | 4 | 24.84–27.33 | 4.16–4.58 | 3.66–4.03 | 2.98–3.28 | 6.83–7.52 | 9.32–10.25 |
Canned horse mackerel | 3 | 26.62–37.96 | 4.46–6.36 | 3.93–5.60 | 3.19–4.56 | 7.32–10.44 | 9.98–14.24 |
Canned beef and pork pate | 4 | <LOQ–3.27 | n.d.–0.71 | n.d.–4.82 | n.d.–1.85 | n.d.–4.50 | n.d.–4.99 |
Canned beef | 8 | <LOQ | n.d. | n.d. | n.d. | n.d. | n.d. |
Canned chicken | 13 | <LOQ–3.28 | n.d.–0.71 | n.d.–4.83 | n.d.–1.56 | n.d.–3.77 | n.d.–4.18 |
Canned pork | 5 | <LOQ–3.92 | n.d.–0.85 | n.d.–5.78 | n.d.–1.86 | n.d.–4.51 | n.d.–5.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nava, V.; Di Bella, G.; Fazio, F.; Potortì, A.G.; Lo Turco, V.; Licata, P. Hg Content in EU and Non-EU Processed Meat and Fish Foods. Appl. Sci. 2023, 13, 793. https://doi.org/10.3390/app13020793
Nava V, Di Bella G, Fazio F, Potortì AG, Lo Turco V, Licata P. Hg Content in EU and Non-EU Processed Meat and Fish Foods. Applied Sciences. 2023; 13(2):793. https://doi.org/10.3390/app13020793
Chicago/Turabian StyleNava, Vincenzo, Giuseppa Di Bella, Francesco Fazio, Angela Giorgia Potortì, Vincenzo Lo Turco, and Patrizia Licata. 2023. "Hg Content in EU and Non-EU Processed Meat and Fish Foods" Applied Sciences 13, no. 2: 793. https://doi.org/10.3390/app13020793
APA StyleNava, V., Di Bella, G., Fazio, F., Potortì, A. G., Lo Turco, V., & Licata, P. (2023). Hg Content in EU and Non-EU Processed Meat and Fish Foods. Applied Sciences, 13(2), 793. https://doi.org/10.3390/app13020793