Application of the QuEChERS Strategy as a Useful Sample Preparation Tool for the Multiresidue Determination of Pyrrolizidine Alkaloids in Food and Feed Samples: A Critical Overview
Abstract
:1. Introduction
2. Basis of the QuEChERS Method
- (i)
- Extraction step based on partitioning via salting-out extraction, achieving an equilibrium between an aqueous and an organic phase.
- (ii)
- Clean-up step carried out by dispersive solid-phase extraction (dSPE) using different sorbent materials and salts to remove matrix interferences.
3. Evolution of the Original QuEChERS Method and Its Application to the Determination of Pyrrolizidine Alkaloids in Food and Feed Samples
3.1. Modifications in the Amount of Sample
3.2. Modifications in the Extraction Solvent
3.3. Modifications in the Partitioning Salts
3.4. Modifications in the Clean-Up Sorbents
3.5. Miniaturization of the QuEChERS Procedure
4. Conclusions and Future Outlooks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- European Food Safety Authority. Scientific opinion on pyrrolizidine alkaloids in food and feed. EFSA J. 2011, 9, 1–134. [Google Scholar]
- Casado, N.; Morante-Zarcero, S.; Sierra, I. The concerning food safety issue of pyrrolizidine alkaloids: An overview. Trends Food. Sci. Technol. 2022, 120, 123–139. [Google Scholar] [CrossRef]
- Schrenk, D.; Gao, L.; Lin, G.; Mahony, C.; Mulder, P.P.; Peijnenburg, A.; Pfuhler, S.; Ivonne, M.C.M.; Rietjens, I.M.C.M.; Rutz, L.; et al. Pyrrolizidine alkaloids in food and phytomedicine: Occurrence, exposure, toxicity, mechanisms, and risk assessment-A review. Food Chem. Toxicol. 2020, 136, 111107. [Google Scholar] [CrossRef] [PubMed]
- Selmar, D.; Wittke, C.; Beck-von Wolffersdorff, I.; Klier, B.; Lewerenz, L.; Kleinwächter, M.; Nowak, M. Transfer of pyrrolizidine alkaloids between living plants: A disregarded source of contaminations. Environ. Pollut. 2019, 248, 456–461. [Google Scholar] [CrossRef]
- RASFF Portal. Food and Feed Safety Alerts. Available online: https://ec.europa.eu/food/safety/rasff-food-and-feed-safety-alerts/rasff-portal_es (accessed on 11 March 2022).
- Mulder, P.P.; de Witte, S.L.; Stoopen, G.M.; van der Meulen, J.; van Wikselaar, P.G.; Gruys, E.; Groot, M.J.; Hoogenboom, R.L.A.P. Transfer of pyrrolizidine alkaloids from various herbs to eggs and meat in laying hens. Food Addit. Contam. Part A 2016, 33, 1826–1839. [Google Scholar] [CrossRef]
- Mulder, P.P.; Sánchez, P.L.; These, A.; Preiss-Weigert, A.; Castellari, M. Occurrence of pyrrolizidine alkaloids in food. EFSA Support. Publ. 2015, 12, 859E. [Google Scholar] [CrossRef]
- Mulder, P.P.; López, P.; Castelari, M.; Bodi, D.; Ronczka, S.; Preiss-Weigert, A.; These, A. Occurrence of pyrrolizidine alkaloids in animal-and plant-derived food: Results of a survey across Europe. Food Addit. Contam. Part A 2018, 35, 118–133. [Google Scholar] [CrossRef] [Green Version]
- Picron, J.F. Pyrrolizidine Alkaloids in Food…the Good, the Bad and the Ugly! Labinfo n° 18, RTF Étiqueté EndNote XML RIS. 2019. Available online: https://www.sciensano.be/fr/biblio/pyrrolizidine-alkaloids-food-good-bad-and-ugly (accessed on 4 April 2022).
- Dusemund, B.; Nowak, N.; Sommerfeld, C.; Lindtner, O.; Schäfer, B.; Lampen, A. Risk assessment of pyrrolizidine alkaloids in food of plant and animal origin. Food Chem. Toxicol. 2018, 115, 63–72. [Google Scholar] [CrossRef]
- Xu, J.; Wang, W.; Yang, X.; Xiong, A.; Yang, L.; Wang, Z. Pyrrolizidine alkaloids: An update on their metabolism and hepatotoxicity mechanism. Liver Res. 2019, 3, 176–184. [Google Scholar] [CrossRef]
- Letsyo, E.; Jerz, G.; Winterhalter, P.; Beuerle, T. Toxic pyrrolizidine alkaloids in herbal medicines commonly used in Ghana. J. Ethnopharmacol. 2017, 202, 154–161. [Google Scholar] [CrossRef]
- Rivera-Pérez, A.; Romero-González, R.; Garrido-Frenich, A. Determination and occurrence of alkenylbenzenes, pyrrolizidine and tropane alkaloids in spices, herbs, teas, and other plant-derived food products using chromatographic methods: Review from 2010–2020. Food Rev. Int. 2021, in press. [Google Scholar] [CrossRef]
- COMMISSION REGULATION (EU) 2020/2040 of 11 December 2020 Amending Regulation (EC) No 1881/2006 as Regards Maximum Levels of Pyrrolizidine Alkaloids in Certain Foodstuffs. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32020R2040&from=ES (accessed on 11 March 2022).
- Perestrelo, R.; Silva, P.; Porto-Figueira, P.; Pereira, J.A.; Silva, C.; Medina, S.; Câmara, J.S. QuEChERS-Fundamentals, relevant improvements, applications and future trends. Anal. Chim. Acta 2019, 1070, 1–28. [Google Scholar] [CrossRef] [PubMed]
- Bruzzoniti, M.C.; Checchini, L.; De Carlo, R.M.; Orlandini, S.; Rivoira, L.; Del Bubba, M. QuEChERS sample preparation for the determination of pesticides and other organic residues in environmental matrices: A critical review. Anal. Bioanal. Chem. 2014, 406, 4089–4116. [Google Scholar] [CrossRef] [PubMed]
- Anastassiades, M.; Lehotay, S.J.; Štajnbaher, D.; Schenck, F.J. Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce. J. AOAC Int. 2003, 86, 412–431. [Google Scholar] [CrossRef] [Green Version]
- Lehotay, S.J.; Kok, A.D.; Hiemstra, M.; Bodegraven, P.V. Validation of a fast and easy method for the determination of residues from 229 pesticides in fruits and vegetables using gas and liquid chromatography and mass spectrometric detection. J. AOAC Int. 2005, 88, 595–614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinello, M.; Borin, A.; Stella, R.; Bovo, D.; Biancotto, G.; Gallina, A.; Mutinelli, F. Development and validation of a QuEChERS method coupled to liquid chromatography and high resolution mass spectrometry to determine pyrrolizidine and tropane alkaloids in honey. Food Chem. 2017, 234, 295–302. [Google Scholar] [CrossRef] [PubMed]
- Martinello, M.; Cristofoli, C.; Gallina, A.; Mutinelli, F. Easy and rapid method for the quantitative determination of pyrrolizidine alkaloids in honey by ultra performance liquid chromatography-mass spectrometry: An evaluation in commercial honey. Food Control 2014, 37, 146–152. [Google Scholar] [CrossRef]
- Kempf, M.; Wittig, M.; Reinhard, A.; Von der Ohe, K.; Blacquière, T.; Raezke, K.P.; Michel, R.; Schreier, P.; Beuerle, T. Pyrrolizidine alkaloids in honey: Comparison of analytical methods. Food Addit. Contam. Part A 2011, 28, 332–347. [Google Scholar] [CrossRef] [Green Version]
- Sixto, A.; Niell, S.; Heinzen, H. Straightforward determination of pyrrolizidine alkaloids in honey through simplified methanol extraction (QuPPE) and LC-MS/MS modes. ACS Omega 2019, 4, 22632–22637. [Google Scholar] [CrossRef] [Green Version]
- Guo, Q.; Yang, Y.; Li, J.; Shao, B.; Zhang, J. Screening for plant toxins in honey and herbal beverage by ultrahigh-performance liquid chromatography-ion mobility-quadrupole time of flight mass spectrometry. Am. J. Anal. Chem. 2022, 13, 108–134. [Google Scholar] [CrossRef]
- Takatsuji, Y.; Kakitani, A.; Nagatomi, Y.; Harayama, K.; Suzuki, K. A novel method for the detection of pyrrolizidine alkaloids in bottled tea and tea leaves by LC-MS/MS. Jpn. J. Food Chem. Saf. 2018, 25, 97–104. [Google Scholar]
- León, N.; Miralles, P.; Yusà, V.; Coscollà, C. A green analytical method for the simultaneous determination of 30 tropane and pyrrolizidine alkaloids and their N-oxides in teas and herbs for infusions by LC-Q-Orbitrap HRMS. J. Chromatogr. A 2022, 1666, 462835. [Google Scholar] [CrossRef] [PubMed]
- Kaczyński, P.; Łozowicka, B. A novel approach for fast and simple determination pyrrolizidine alkaloids in herbs by ultrasound-assisted dispersive solid phase extraction method coupled to liquid chromatography–tandem mass spectrometry. J. Pharm. Biomed. Anal. 2020, 187, 113351. [Google Scholar] [CrossRef] [PubMed]
- Izcara, S.; Casado, N.; Morante-Zarcero, S.; Sierra, I. A miniaturized QuEChERS method combined with ultrahigh liquid chromatography coupled to tandem mass spectrometry for the analysis of pyrrolizidine alkaloids in oregano samples. Foods 2020, 9, 1319. [Google Scholar] [CrossRef]
- Izcara, S.; Casado, N.; Morante-Zarcero, S.; Pérez-Quintanilla, D.; Sierra, I. Miniaturized and modified QuEChERS method with mesostructured silica as clean-up sorbent for pyrrolizidine alkaloids determination in aromatic herbs. Food Chem. 2022, 380, 132189. [Google Scholar] [CrossRef]
- Vaclavik, L.; Krynitsky, A.J.; Rader, J.I. Targeted analysis of multiple pharmaceuticals, plant toxins and other secondary metabolites in herbal dietary supplements by ultra-high performance liquid chromatography–quadrupole-orbital ion trap mass spectrometry. Anal. Chim. Acta 2014, 810, 45–60. [Google Scholar] [CrossRef]
- Mol, H.G.J.; Van Dam, R.C.J.; Zomer, P.; Mulder, P.P. Screening of plant toxins in food, feed and botanicals using full-scan high-resolution (Orbitrap) mass spectrometry. Food Addit. Contam. Part A 2011, 28, 1405–1423. [Google Scholar] [CrossRef]
- Dzuman, Z.; Zachariasova, M.; Veprikova, Z.; Godula, M.; Hajslova, J. Multianalyte high performance liquid chromatography coupled to high resolution tandem mass spectrometry method for control of pesticide residues, mycotoxins, and pyrrolizidine alkaloids. Anal. Chim. Acta 2015, 863, 29–40. [Google Scholar] [CrossRef]
- Bessaire, T.; Ernest, M.; Christinat, N.; Carrères, B.; Panchaud, A.; Badoud, F. High resolution mass spectrometry workflow for the analysis of food contaminants: Application to plant toxins, mycotoxins and phytoestrogens in plant-based ingredients. Food Addit. Contam. Part A 2021, 38, 978–996. [Google Scholar] [CrossRef]
- Dzuman, Z.; Jonatova, P.; Stranska-Zachariasova, M.; Prusova, N.; Brabenec, O.; Novakova, A.; Fenclova, M.; Hajslova, J. Development of a new LC-MS method for accurate and sensitive determination of 33 pyrrolizidine and 21 tropane alkaloids in plant-based food matrices. Anal. Bioanal. Chem. 2020, 412, 7155–7167. [Google Scholar] [CrossRef]
- Martinello, M.; Manzinello, C.; Gallina, A.; Mutinelli, F. In-house validation and application of UHPLC-MS/MS method for the quantification of pyrrolizidine and tropane alkaloids in commercial honey bee-collected pollen, teas and herbal infusions purchased on Italian market in 2019–2020 referring to recent European Union regulations. Int. J. Food Sci. Technol. 2022, in press. [Google Scholar]
- Qie, M.; Li, S.; Guo, C.; Yang, S.; Zhao, Y. Study of the occurrence of toxic alkaloids in forage grass by liquid chromatography tandem mass spectrometry. J. Chromatogr. A 2021, 1654, 462463. [Google Scholar] [CrossRef]
- Bolechová, M.; Čáslavský, J.; Pospíchalová, M.; Kosubová, P. UPLC–MS/MS method for determination of selected pyrrolizidine alkaloids in feed. Food Chem. 2015, 170, 265–270. [Google Scholar] [CrossRef] [PubMed]
- Mandić, B.M.; Vlajić, M.D.; Trifunović, S.S.; Simić, M.R.; Vujisić, L.V.; VuČković, I.M.; Novaković, M.M.; Nikolić-Mandić, S.D.; Tešević, V.V.; Vajs, V.V.; et al. Optimisation of isolation procedure for pyrrolizidine alkaloids from Rindera umbellata Bunge. Nat. Prod. Res. 2015, 29, 887–890. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Liu, Y.; Zhu, L.; Ji, H.; Song, X.; Guo, H.; Yi, T. Determination and regulation of hepatotoxic pyrrolizidine alkaloids in food: A critical review of recent research. Food Chem. Toxicol. 2018, 119, 50–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- QuEChERS CVUA Stuttgart. A Mini-Multiresidue Method for the Analysis of Pesticide Residues in Low-Fat Products. Available online: https://www.quechers.com/pdf/reality.pdf (accessed on 4 April 2022).
- Crews, C.; Berthiller, F.; Krska, R. Update on analytical methods for toxic pyrrolizidine alkaloids. Anal. Bioanal. Chem. 2010, 396, 327–338. [Google Scholar] [CrossRef]
- UNE-EN 15662:2009. Foods of Plant Origin—Determination of Pesticide Residues Using GC-MS and/or LC-MS/MS Following Acetonitrile Extraction/Partitioning and Clean-Up by Dispersive SPE—QuEChERS-Method. 2009. Available online: https://www.une.org/encuentra-tu-norma/busca-tu-norma/norma?c=N0043515 (accessed on 4 April 2022).
- AOAC Official Method 2007.01 Pesticide Residues in Foods by Acetonitrile Extraction and Partitioning with Magnesium Sulfate. 2007. Available online: https://nucleus.iaea.org/sites/fcris/Shared%20Documents/SOP/AOAC_2007_01.pdf (accessed on 4 April 2022).
- Oellig, C.; Schmid, S. Polyethyleneimine as weak anionic exchanger adsorbent for clean-up in pesticide residue analysis of fruits and vegetables. J. Chromatogr. A 2019, 1597, 9–17. [Google Scholar] [CrossRef]
- Zhao, P.; Wang, L.; Zhou, L.; Zhang, F.; Kang, S.; Pan, C. Multi-walled carbon nanotubes as alternative reversed-dispersive solid phase extraction materials in pesticide multi-residue analysis with QuEChERS method. J. Chromatogr. A 2012, 1225, 17–25. [Google Scholar] [CrossRef]
- Han, Y.; Zou, N.; Song, L.; Li, Y.; Qin, Y.; Liu, S.; Li, X.; Pan, C. Simultaneous determination of 70 pesticide residues in leek, leaf lettuce and garland chrysanthemum using modified QuEChERS method with multi-walled carbon nanotubes as reversed-dispersive solid-phase extraction materials. J. Chromatogr. B 2015, 1005, 56–64. [Google Scholar] [CrossRef]
- Uclés, A.; López, S.H.; Hernando, M.D.; Rosal, R.; Ferrer, C.; Fernández-Alba, A.R. Application of zirconium dioxide nanoparticle sorbent for the clean-up step in post-harvest pesticide residue analysis. Talanta 2015, 144, 51–61. [Google Scholar] [CrossRef]
- Li, Y.F.; Qiao, L.Q.; Li, F.W.; Ding, Y.; Yang, Z.J.; Wang, M.L. Determination of multiple pesticides in fruits and vegetables using a modified quick, easy, cheap, effective, rugged and safe method with magnetic nanoparticles and gas chromatography tandem mass spectrometry. J. Chromatogr. A 2014, 1361, 77–87. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.B.; Ding, J.; Zheng, S.J.; Yu, Q.W.; Yuan, B.F.; Feng, Y.Q. Magnetic “one-step” quick, easy, cheap, effective, rugged and safe method for the fast determination of pesticide residues in freshly squeezed juice. J. Chromatogr. A 2015, 1398, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Urban, M.; Lesueur, C. Comparing d-SPE sorbents of the QuEChERS extraction method and EMR-lipid for the determination of polycyclic aromatic hydrocarbons (PAH4) in food of animal and plant origin. Food Anal. Methods 2017, 10, 2111–2124. [Google Scholar] [CrossRef]
- Omar, M.M.A.; Ibrahim, W.A.W.; Elbashir, A.A. Sol–gel hybrid methyltrimethoxysilane–tetraethoxysilane as a new dispersive solid-phase extraction material for acrylamide determination in food with direct gas chromatography–mass spectrometry analysis. Food Chem. 2014, 158, 302–309. [Google Scholar] [CrossRef] [PubMed]
- Casado, N.; Pérez-Quintanilla, D.; Morante-Zarcero, S.; Sierra, I. Current development and applications of ordered mesoporous silicas and other sol gel silica-based materials in food sample preparation for xenobiotics analysis. Trends Anal. Chem. 2017, 88, 167–184. [Google Scholar] [CrossRef]
- Casado, N.; Morante-Zarcero, S.; Pérez-Quintanilla, D.; Câmara, J.S.; Sierra, I. Two novel strategies in food sample preparation for the analysis of dietary polyphenols: Micro-extraction techniques and new silica-based sorbent materials. Trends Food Sci. Technol. 2020, 98, 167–180. [Google Scholar] [CrossRef]
- Casado, N.; Gañán, J.; Morante-Zarcero, S.; Sierra, I. New advanced materials and sorbent-based microextraction techniques as strategies in sample preparation to improve the determination of natural toxins in food samples. Molecules 2020, 25, 702. [Google Scholar] [CrossRef] [Green Version]
- Pereira, J.A.M.; Casado, N.; Porto-Figueira, P.; Câmara, J.S. The Potential of microextraction techniques for the analysis of bioactive compounds. Food Front. Nutr. 2022, 9, 825519. [Google Scholar] [CrossRef]
- Płotka-Wasylka, J.; Szczepańska, N.; Owczarek, K.; Namieśnik, J. Miniaturized solid phase extraction. In Green Extraction Techniques: Principles, Advances and Applications; Ibañez, E., Cifuentes, A., Eds.; Comprehensive Analytical Chemistry Elsevier: Amsterdam, The Netherlands, 2017; Volume 76, pp. 279–318. [Google Scholar]
- Filippou, O.; Bitas, D.; Samanidou, V. Green approaches in sample preparation of bioanalytical samples prior to chromatographic analysis. J. Chromatogr. B 2017, 1043, 44–62. [Google Scholar] [CrossRef]
- Dong, H.; Xiao, K.; Xian, Y.; Wu, Y.; Zhu, L. A novel approach for simultaneous analysis of perchlorate (ClO4−) and bromate (BrO3−) in fruits and vegetables using modified QuEChERS combined with ultrahigh performance liquid chromatography-tandem mass spectrometry. Food Chem. 2019, 270, 196–203. [Google Scholar] [CrossRef]
- Muhammad, N.; Rahman, A.; Younis, M.A.; Subhani, Q.; Shehzad, K.; Cui, H.; Zhu, Y. Porous SnO2 nanoparticles based ion chromatographic determination of non-fluorescent antibiotic (chloramphenicol) in complex samples. Sci. Rep. 2018, 8, 12327. [Google Scholar] [CrossRef] [PubMed]
- Porto-Figueira, P.; Camacho, I.; Câmara, J.S. Exploring the potentialities of an improved ultrasound-assisted quick, easy, cheap, effective, rugged, and safe-based extraction technique combined with ultrahigh pressure liquid chromatography fluorescence detection for determination of Zearalenone in cereals. J. Chromatogr. A 2015, 1408, 187–196. [Google Scholar] [PubMed]
- Casado, N.; Perestrelo, R.; Silva, C.L.; Sierra, I.; Câmara, J.S. An improved and miniaturized analytical strategy based on μ-QuEChERS for isolation of polyphenols. A powerful approach for quality control of baby foods. Microchem. J. 2018, 139, 110–118. [Google Scholar] [CrossRef]
- Pouliopoulos, A.; Tsakelidou, E.; Krokos, A.; Gika, H.G.; Theodoridis, G.; Raikos, N. Quantification of 15 psychotropic drugs in serum and postmortem blood samples after a modified mini-QuEChERS by UHPLC–MS-MS. J. Anal. Toxicol. 2018, 42, 337–345. [Google Scholar] [CrossRef] [PubMed]
- Shin, Y.; Lee, J.; Lee, J.; Lee, J.; Kim, E.; Liu, K.H.; Lee, H.S.; Kim, J.H. Validation of a multiresidue analysis method for 379 pesticides in human serum using liquid chromatography–tandem mass spectrometry. J. Agric. Food Chem. 2018, 66, 3550–3560. [Google Scholar] [CrossRef]
- Jesús, F.; Hladki, R.; Gérez, N.; Besil, N.; Niell, S.; Fernández, G.; Heinzen, H.; Cesio, M.V. Miniaturized QuEChERS based methodology for multiresidue determination of pesticides in odonate nymphs as ecosystem biomonitors. Talanta 2018, 178, 410–418. [Google Scholar] [CrossRef] [PubMed]
- Correia-Sá, L.; Norberto, S.; Delerue-Matos, C.; Calhau, C.; Domingues, V.F. Micro-QuEChERS extraction coupled to GC–MS for a fast determination of Bisphenol A in human urine. J. Chromatogr. B 2018, 1072, 9–16. [Google Scholar] [CrossRef] [Green Version]
Sample (Amount) | Analytes | QuEChERs | Analysis | Recovery (%) | LOQ | Ref. | ||
---|---|---|---|---|---|---|---|---|
Extraction Solvent | Partition Salts | Clean-Up | ||||||
Honey (1.5 g) | 9 PAs | LLE with 10 mL H2SO4 (0.1 M), addition of zinc dust. Supernatant with 10 mL ACN | 4 g MgSO4 1 g TSCDH 0.5 g DSHCSH 1 g NaCl | 150 mg PSA 900 mg MgSO4 | HPLC-Q-Orbitrap-MS/MS ESI positive ion mode HRMS mode Column: C8 at 35 °C | 92–115 | 0.1–0.7 μg/Kg | [19] |
Honey (2.5 g) | 9 PAs | LLE with 10 mL H2SO4 (0.05 M), addition of zinc dust. Supernatant with 10 mL ACN | 4 g MgSO4 1 g TSCDH 0.5 g DSHCSH 1 g NaCl | 150 mg PSA 45 mg C18 900 mg MgSO4 | UHPLC-Q-MS ESI positive ion mode SIM mode Column: C8 at 34 °C | 67–122 | 0.081–4.35 μg/Kg | [20] |
Honey (1 g) | 16 PAs/PANOs | Dilution with 4 mL water, followed by 4 mL ACN | 0.8 g MgSO4 0.2 g TSCDH 0.1 g DSHCSH 0.2 g NaCl | dSPE (500 mg MgSO4) | HPLC-TQ-MS/MS ESI positive ion mode Column: C18 | 97–105 | 1–50 μg/Kg | [21] |
Honey (5 g) | 7 PAs/PANOs | 10 mL water followed by 10 mL ACN | 4 g MgSO4 1 g NaCl | - | HPLC-QTRAP-MS/MS ESI Positive ion mode and MRM mode Column: C18 | 50–100 | - | [22] |
Honey and herbal beverage (1 g) | 7 PAs | 1 mL water followed by 5 mL ACN | 1 g NaCl | 50 mg PSA | UPLC-IM-QTOF-MS/MS ESI Positive ion mode HDMSE mode Column: C18 at 50 °C | 61–120 | 1–20 μg/Kg | [23] |
Bottled tea (4 mL) and tea leaves (2 g) | 27 PAs/PANOs | Bottle tea: 4 mL of ACN with 1% formic acid Tea leaves: 12.5 mL water followed by 10 mL of ACN with 1% formic acid | Bottle tea: approximately 2.2 g MgSO4, 0.6 g TSCDH, 0.2 g DSHCSH, 0.6 g NaCl Tea leaves: 4 g MgSO4, 1 g TSCDH, 0.5 g DSHCSH, 1 g NaCl | Bottle tea: - Tea leaves: 150 mg PSA, 45 mg C18, 900 mg MgSO4 | UHPLC-TQ-MS/MS ESI Positive ion mode MRM mode Column: C18 at 40 °C | 88–107 | 2–88 ng/L 0.10–1.61 μg/Kg | [24] |
Teas and herbs (1 g) | 28 PAs/PANOs | 30 mL ACN:water (75:25, v/v) with 0.5% formic acid | 6 g MgSO4 1.5 g CH3COONa | 400 mg PSA 400 mg C18 400 mg GCB 1200 mg MgSO4 | HPLC-Q-Orbitrap-MS/MS ESI positive ion mode HRMS mode Column: C18 at 40 °C | 87–111 | 5 μg/Kg | [25] |
Herbs (5 g) | 30 PAs/PANOs | Addition of 10 mL water, followed by 10 mL ACN with 1% formic acid | 4 g MgSO4 1 g TSCDH 0.5 g DSHCSH 1 g NaCl | 200 mg graphene | HPLC-QTRAP-MS/MS ESI Positive ion mode and MRM mode Column: C18 at 40 °C | 61–128 | 1 μg/Kg | [26] |
Oregano (0.2 g) | 21 PAs/PANOs | 1 mL water followed by 1 mL ACN | 0.4 g MgSO4 0.1 g TSCDH 0.05 g DSHCSH 0.1 g NaCl | 25 mg PSA 150 mg MgSO4 | UHPLC-IT-MS/MS ESI positive ion mode MRM mode Column: Polar C18 at 25 °C | 77–96 | 0.5–25.0 μg/Kg | [27] |
Aromatic herbs (0.2 g) | 21 PAs/PANOs | 1 mL water followed by 1 mL ACN. Re-extraction with 0.5 mL of ACN prior to clean-up step | 0.4 g MgSO4 0.1 g TSCDH 0.05 g DSHCSH 0.1 g NaCl | 25 mg LP-MS-NH2 150 mg MgSO4 | UHPLC-IT-MS/MS ESI positive ion mode MRM mode Column: Polar C18 at 25 °C | 73–105 | 1.2-9.9 μg/Kg | [28] |
Herbal dietary supplements (1 g tablets, capsules and softgels, 10 g for liquids) | 11 PAs/PANOs | Tablets and capsules: 10 mL deionized water with 2% formic acid, afterward 10 mL ACN. Softgels: defatted with 4 mL hexane, addition of 10 mL deionized water with 2% formic acid, afterward 10 mL ACN. Liquids: 10 mL ACN with 2% formic acid | 4 g MgSO4 1 g NaCl | Softgels: 100 mg C18 and 300 mg MgSO4 | UHPLC-Q-Orbitrap-MS/MS ESI positive ion mode HRMS mode Column: HSS T3 at 40 °C | 70–120 | ≤50–2500 μg/Kg | [29] |
Food supplements, feed and honey (2.5 g) | 14 PAs/PANOs | 10 mL water followed by 10 mL ACN with 1% acetic acid | 4 g MgSO4 1 g CH3COONa | - | HPLC-Orbitrap-MS ESI both positive and negative ion mode Column: C18 at 35 °C | - | - | [30] |
Leek, wheat, and tea (10 g, 2 g and 1 g, respectively) | 11 PAs/PANOs | Acidification with 10 mL Milli-Q water with 0.2% formic acid, followed by 10 mL ACN | 4 g MgSO4 1 g NaCl | 100 mg C18 300 mg MgSO4 | HPLC-Q-Orbitrap-MS/MS ESI both positive and negative ion mode HRMS mode Column: polar-reversed phase at 25 °C | 71–93 | ≤1–100 μg/Kg | [31] |
Pea, soy, wheat flour and quinoa (1 g) | 56 PAs/PANOs | 10 mL water, followed by 10 mL ACN | 4 g MgSO4 1 g TSCDH 0.5 g DSHCSH 1 g NaCl | - | UHPLC-Q-Orbitrap-MS/MS ESI both positive and negative ion mode HRMS mode Column: C18 at 50 °C | 31–132 | 1 μg/Kg | [32] |
Sorghum, oregano, and mixed herbal tea (1 g) | 33 PAs/PANOs | 10 mL MeOH:water:formic acid (60:39.6:0.4, v/v/v) | - | 100 mg PSA C18 or zirconia-coated silica | UHPLC-QTRAP-MS/MS ESI Positive ion mode MRM mode Column: C18 at 50 °C | 78–117 | 0.5–10 μg/Kg | [33] |
Pollen (1 g) | 20 PAs | SLE with 10 mL H2SO4 (0.1 M), addition of zinc dust. Supernatant with 10 mL ACN | 4 g MgSO4 1 g TSCDH 0.5 g DSHCSH 1 g NaCl | 150 mg PSA 900 mg MgSO4 | UHPLC-TQ-MS/MS ESI positive ion mode MRM mode Column: RP-MS at 40 °C | 73–106 | 4.0-9.0 μg/Kg | [34] |
Forage grass (1 g) | 5 PAs | 10 mL of ACN/ammonium carbonate (200 mg/L), 84:16 (v/v, pH 8.5) solution. | - | 50 mg PSA | HPLC-TQ-MS/MS ESI positive ion mode MRM mode Column: C8 at 30 °C | 63–98 | 10 μg/Kg | [35] |
Feed (2.5 g) | 5 PAs | 10 mL ACN followed by 10 mL 0.1% formic acid in water | 4 g MgSO41 g NaCl | - | UHPLC-TQ-MS/MS ESI Positive ion mode MRM mode Column: C18 at 40 °C | 72–98 | 5 μg/Kg | [36] |
Sample Type | Sample Amount (g) | Water Addition (g) |
---|---|---|
Fruit, vegetables and other products with >80% water content | 10 g | - |
Fruit, vegetables and other products with 25–80% water content | 10 g | X g * |
Cereals | 5 g | 10 g |
Dried fruits | 5 g | 7.5 g |
Honey | 5 g | 10 g |
Spices | 2 g | 10 g |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Casado, N.; Morante-Zarcero, S.; Sierra, I. Application of the QuEChERS Strategy as a Useful Sample Preparation Tool for the Multiresidue Determination of Pyrrolizidine Alkaloids in Food and Feed Samples: A Critical Overview. Appl. Sci. 2022, 12, 4325. https://doi.org/10.3390/app12094325
Casado N, Morante-Zarcero S, Sierra I. Application of the QuEChERS Strategy as a Useful Sample Preparation Tool for the Multiresidue Determination of Pyrrolizidine Alkaloids in Food and Feed Samples: A Critical Overview. Applied Sciences. 2022; 12(9):4325. https://doi.org/10.3390/app12094325
Chicago/Turabian StyleCasado, Natalia, Sonia Morante-Zarcero, and Isabel Sierra. 2022. "Application of the QuEChERS Strategy as a Useful Sample Preparation Tool for the Multiresidue Determination of Pyrrolizidine Alkaloids in Food and Feed Samples: A Critical Overview" Applied Sciences 12, no. 9: 4325. https://doi.org/10.3390/app12094325
APA StyleCasado, N., Morante-Zarcero, S., & Sierra, I. (2022). Application of the QuEChERS Strategy as a Useful Sample Preparation Tool for the Multiresidue Determination of Pyrrolizidine Alkaloids in Food and Feed Samples: A Critical Overview. Applied Sciences, 12(9), 4325. https://doi.org/10.3390/app12094325