Morphological, Functional and Texture Analysis Magnetic Resonance Imaging Features in the Assessment of Radiotherapy-Induced Xerostomia in Oropharyngeal Cancer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Selection
- -
- Patients aged over 18 years.
- -
- Histological diagnosis of OPC confirmed with biopsy.
- -
- RT to defeat OPC.
- -
- No disease of the salivary glands.
- -
- MRI for both tumor staging and 4-month follow-up after ending RT.
- -
- DWI and DCE-PWI MRI sequences.
- -
- Previous head and neck radiation or surgical treatments.
- -
- No MRI carried out in our institute.
- -
- MRI not performed for both tumor staging and follow-up.
- -
- No DWI and DCE-PWI sequences.
- -
- No clinically confirmed xerostomia with CTCAE.
- -
- No sialometric data available.
2.2. Patients’ Differentiations into Groups Based on Clinical Evaluation
- Group 1 (mild xerostomia): Feeling of dry or thick saliva with no significant dietary alteration; unstimulated saliva flow > 0.2 mL/min;
- Group 2 (moderate xerostomia): Moderate symptoms; oral intake alterations (e.g., copious water, other lubricants, diet limited to purees and/or soft, moist foods); unstimulated saliva flow 0.1 to 0.2 mL/min;
- Group 3 (severe xerostomia): Inability to adequately aliment orally; tube feeding or total parenteral nutrition indicated; unstimulated saliva flow < 0.1 mL/min.
2.3. Image Acquisition and Analysis
- T2 signal intensity (SI) hyper-, iso-, or hypointense with respect to the muscle signal of the parotid and submandibular glands before and after RT;
- SI hyper- or hypointense of the parotid and submandibular glands before and after RT on DWIb800 images;
- Mean ADC values of the parotid and submandibular glands before and after RT (ADC pre-post) on DWI sequences;
- Mean AUC and K(trans) values of the parotid and submandibular glands before RT (AUCpre, K(trans)pre) and after RT (AUCpost, K(trans)post) on DCE-PWI sequences;
- Ratio between AUC values of parotid and submandibular glands before and after RT (AUCpost/pre);
- Ratio between K(trans) values of the parotid and submandibular glands before and after RT (K(trans)post/pre).
2.4. Texture Analysis
2.5. Statistical Analysis
3. Results
3.1. Morphological and Functional MRI
3.2. Texture Analysis
- Informational measure of correlation 1 (IMC 1)—Gray level co-occurrence matrix class.
- Informational measure of correlation 2 (IMC 2)—Gray level co-occurrence matrix class.
- Informational measure of correlation 2 (IMC 2)—First-order class.
- Gray Level Non-uniformity Normalized (GLNN)—First-order class.
- Gray Level Non-uniformity Normalized (GLNN)—Gray Level Run Length Matrix class.
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Sequence | Contrast Agent | Repetition Time (ms) | Echo Time (ms) | Slice Thickness (mm) | Interslice Gap (mm) | Field of View (mm) | Matrix | Acceleration Factor | Number of Signal Averaged | Band Width (Hz/Px) | Acquisition Time (min:s) | Voxel Size |
---|---|---|---|---|---|---|---|---|---|---|---|---|
SPACE T1-w Sagittal | pre | 500 | 7.2 | 0.9 | - | 229 × 229 | 230 × 256 | 2 | 1.4 | 630 | 5:47 | 0.9 × 0.9 × 0.9 |
SPACE T2-w Sagittal Fat-Sat | pre | 3000 | 380 | 0.9 | - | 229 × 229 | 230 × 256 | 2 | 1.4 | 698 | 5:56 | 0.9 × 0.9 × 0.9 |
TSE T2-w Axial | pre | 5050 | 117 | 3 | 0.9 | 210 × 190 | 261 × 484 | 2 | 3 | 191 | 2:23 | 0.5 × 0.5 × 3.0 |
SPAIR EPI-DWI Axial (b 50/800 s/mm2) | pre | 4100 | 55 | 3 | 0.9 | 240 × 240 | 102 × 128 | 3 | 1 | 1608 | 3:09 | 1.6 × 1.6 × 3.0 |
VIBE T1-w DCE-PWI Axial; FA 5°, 15° | pre | 4.65 | 1.66 | 3.5 | 0.7 | 250 × 226 | 139 × 132 | 3 | 1 | 390 | 1:04 | 1.3 × 1.3 × 3.5 |
TSE T1-w Axial | post | 440 | 17 | 3 | 0.9 | 200 × 181 | 384 × 384 | 3 | 3 | 200 | 2:31 | 0.5 × 0.5 × 3.0 |
VIBE Dixon Axial | post | 10 | 2.4 | 0.9 | 0.18 | 225 × 225 | 212 × 256 | - | 1 | 340 | 4:37 | 0.9 × 0.9 × 0.9 |
VIBE T1-w DCE-PWI Axial; FA 30° | post | 4.65 | 1.66 | 3.5 | 0.7 | 250 × 226 | 139 × 132 | 3 | 1 | 300 | 4:17 | 1.3 × 1.3 × 3.5 |
First-Order Statistics | Describes the distribution of voxel intensities within the image region defined by the mask through commonly used and basic metrics. |
Gray Level Co-occurrence Matrix (GLCM) | Describes the second-order joint probability function of an image region constrained by the mask. |
Gray Level Dependence Matrix (GLDM) | Quantifies gray level dependencies in an image. A gray level dependency is defined as the number of connected voxels within distance δ that are dependent on the center voxel. |
Gray Level Size Zone (GLSZM) | Quantifies gray level zones in an image. A gray level zone is defined as the number of connected voxels that share the same gray level intensity. |
Gray Level Run Length Matrix (GLRLM) | Quantifies gray level runs, which are defined as the length in number of pixels of consecutive pixels that have the same gray level value. |
Neighboring Gray Tone Difference Matrix (NGTDM) | Quantifies the difference between a gray value and the average gray value of its neighbors within distance δ. |
Patients | Dose to High Risk Volume (Gy) | Dose to Intermediate Risk Volume (Gy) | Dose to Low Risk Volume (Gy) | Overall RT Treatment Time(Days) |
Group 1 | ||||
Patient 1 | 69.9 | 60 | 54 | 49 |
Patient 2 | 69.9 | 60 | 54 | 53 |
Patient 3 | 70 | 50 | 50 | 86 |
Patient 4 | 69.9 | 60 | 54 | 46 |
Patient 5 | 70 | 60 | 50 | 55 |
Patient 6 | 69.9 | 60 | 54 | 50 |
Patient 7 | 69.9 | 60 | 54 | 56 |
Patient 8 | 699 | 60 | 54 | 49 |
Patient 9 | 69.9 | 60 | 54 | 55 |
Patient 10 | 69.9 | 60 | 54 | 46 |
Patient 11 | 69.9 | 59.4 | 54 | 47 |
Patient 12 | 69.9 | 59.4 | 54 | 52 |
Patient 13 | 69.9 | 60 | 54 | 67 |
Patient 14 | 69.9 | 60 | 54 | 53 |
Patient 15 | 69.9 | 60 | 54 | 46 |
Patient 16 | 69.9 | 59.4 | 52.8 | 47 |
Patient 17 | 66 | 60 | 54 | 46 |
Patient 18 | 70 | 60 | 52.8 | 48 |
Group 2 | ||||
Patient 19 | 69.9 | 60 | 54 | 58 |
Patient 20 | 69.9 | 60 | 54 | 43 |
Patient 21 | 69.9 | 60 | 54 | 51 |
Patient 22 | 69.9 | 59.4 | 54 | 54 |
Patient 23 | 70.5 | 60 | 54 | 42 |
Patient 24 | 69.9 | 59.4 | 52.8 | 44 |
Patient 25 | 69.9 | 59.4 | 52.8 | 47 |
Patient 26 | 69.9 | 59.4 | 54 | 45 |
Patient 27 | 69.9 | 59.4 | 52.8 | 58 |
References
- Vigneswaran, N.; Williams, M.D. Epidemiologic trends in head and neck cancer and aids in diagnosis. Oral Maxillofac. Surg. Clin. 2014, 26, 123–141. [Google Scholar]
- Virnig, B.A.; Warren, J.L.; Cooper, G.S.; Klabunde, C.N.; Schussler, N.; Freeman, J. Studying radiation therapy using SEER-Medicare-linked data. Med. Care 2002, 40 (Suppl. S8), IV-49–IV-54. [Google Scholar] [CrossRef]
- Vissink, A.; Jansma, J.; Spijkervet, F.K.L.; Burlage, F.R.; Coppes, R.P. Oral sequelae of head and neck radiotherapy. Crit. Rev. Oral Biol. Med. 2003, 14, 199–212. [Google Scholar] [CrossRef]
- Trotti, A.; A Bellm, L.; Epstein, J.B.; Frame, D.; Fuchs, H.J.; Gwede, C.K.; Komaroff, E.; Nalysnyk, L.; Zilberberg, M.D. Mucositis incidence, severity and associated outcomes in patients with head and neck cancer receiving radiotherapy with or without chemotherapy: A systematic literature review. Radiother. Oncol. 2003, 66, 253–262. [Google Scholar] [CrossRef]
- Tanasiewicz, M.; Hildebrandt, T.; Obersztyn, I. Xerostomia of Various Etiologies: A Review of the Literature. Adv. Clin. Exp. Med. 2016, 25, 199–206. [Google Scholar] [CrossRef] [Green Version]
- Wiener, R.C.; Wu, B.; Crout, R.; Wiener, M.; Plassman, B.; Kao, E.; McNeil, D. Hyposalivation and xerostomia in dentate older adults. J. Am. Dent. Assoc. 2010, 141, 279–284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vissink, A.; Burlage, F.; Spijkervet, F.; Jansma, J.; Coppes, R.P. Prevention and treatment of the consequences of head and neck radiotherapy. Crit. Rev. Oral Biol. Med. 2003, 14, 213–225. [Google Scholar] [CrossRef] [PubMed]
- Valdez, I.H. Radiation-induced salivary dysfunction: Clinical course and significance. Spec. Care Dent. 1991, 11, 252–255. [Google Scholar] [CrossRef] [PubMed]
- Sroussi, H.Y.; Epstein, J.B.; Bensadoun, R.-J.; Saunders, D.P.; Lalla, R.V.; Migliorati, C.A.; Heaivilin, N.; Zumsteg, Z.S. Common oral complications of head and neck cancer radiation therapy: Mucositis, infections, saliva change, fibrosis, sensory dysfunctions, dental caries, periodontal disease, and osteoradionecrosis. Cancer Med. 2017, 6, 2918–2931. [Google Scholar] [CrossRef]
- Turner, M.; Jahangiri, L.; Ship, J. Hyposalivation, xerostomia and the complete denture: A systematic review. J. Am. Dent. Assoc. 2008, 139, 146–150. [Google Scholar] [CrossRef]
- Dawes, C. Physiological factors affecting salivary flow rate, oral sugar clearance, and the sensation of dry mouth in man. J. Dent. Res. 1987, 66, 648–653. [Google Scholar] [CrossRef] [PubMed]
- Valdez, I.H.; Fox, P.C. Diagnosis and management of salivary dysfunction. Crit. Rev. Oral Biol. Med. 1993, 4, 271–277. [Google Scholar] [CrossRef] [PubMed]
- Al-Dwairi, Z.; Lynch, E. Xerostomia in complete denture wearers: Prevalence, clinical findings and impact on oral functions. Gerodontology 2014, 31, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Berti-Couto, S.D.A.; Couto-Souza, P.H.; Jacobs, R.; Nackaerts, O.; Rubira-Bullen, I.R.F.; Westphalen, F.H.; Moysés, S.J.; Ignácio, S.A.; Costa, M.B.D.; Tolazzi, A.L. Clinical diagnosis of hyposalivation in hospitalized patients. J. Appl. Oral Sci. 2012, 20, 157–161. [Google Scholar] [CrossRef] [Green Version]
- Stephen, T.S.; Linda, S.E.; Dorothy, K.; Douglas, E.P.; Mark, S.; Martin, H.J. Perspectives on cancer therapy-induced mucosal injury: Pathogenesis, measurement, epidemiology, and consequences for patients. Cancer 2004, 100 (Suppl. S9), 1995–2025. [Google Scholar]
- Widmann, G.; Henninger, B.; Kremser, C.; Jaschke, W. MRI Sequences in Head & Neck Radiology—State of the Art. Rofo 2017, 189, 413–422. [Google Scholar]
- Bicci, E.; Nardi, C.; Calamandrei, L.; Pietragalla, M.; Cavigli, E.; Mungai, F.; Bonasera, L.; Miele, V. Role of Texture Analysis in Oropharyngeal Carcinoma: A Systematic Review of the Literature. Cancers 2022, 14, 2445. [Google Scholar] [CrossRef]
- Nardi, C.; Tomei, M.; Pietragalla, M.; Calistri, L.; Landini, N.; Bonomo, P.; Mannelli, G.; Mungai, F.; Bonasera, L.; Colagrande, S. Texture analysis in the characterization of parotid salivary gland lesions: A study on MR diffusion weighted imaging. Eur. J. Radiol. 2021, 136, 109529. [Google Scholar] [CrossRef]
- Maraghelli, D.; Pietragalla, M.; Cordopatri, C.; Nardi, C.; Peired, A.J.; Maggiore, G.; Colagrande, S. Magnetic resonance imaging of salivary gland tumours: Key findings for imaging characterisation. Eur. J. Radiol. 2021, 139, 109716. [Google Scholar] [CrossRef]
- Khoo, M.M.Y.; Tyler, P.A.; Saifuddin, A.; Padhani, A. Diffusion-weighted imaging (DWI) in musculoskeletal MRI: A critical review. Skelet. Radiol. 2011, 40, 665–681. [Google Scholar] [CrossRef]
- Zhang, Y.; Ou, D.; Gu, Y.; He, X.; Peng, W. Evaluation of Salivary Gland Function Using Diffusion-Weighted Magnetic Resonance Imaging for Follow-Up of Radiation-Induced Xerostomia. Korean J. Radiol. 2018, 19, 758–766. [Google Scholar] [CrossRef] [PubMed]
- Patel, P.; Baradaran, H.; Delgado, D.; Askin, G.; Christos, P.; Tsiouris, A.J.; Gupta, A. MR perfusion-weighted imaging in the evaluation of high-grade gliomas after treatment: A systematic review and meta-analysis. Neuro-Oncology 2017, 19, 118–127. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Wei, L.; Wang, J.; Li, N.; Gao, Y.; Ma, H.; Qu, X.; Zhang, M. Evaluation of perfusion MRI value for tumor progression assessment after glioma radiotherapy: A systematic review and meta-analysis. Medicine 2020, 99, e23766. [Google Scholar] [CrossRef] [PubMed]
- Sade, R.; Kantarci, M.; Karaca, L.; Okur, A.; Ogul, H.; Keles, M.; Çankaya, E.; Ayan, A.K. Value of dynamic MRI using the Ktrans technique for assessment of native kidneys in pre-emptive renal transplantation. Acta Radiol. 2017, 58, 1005–1011. [Google Scholar] [CrossRef] [PubMed]
- Mungai, F.; Verrone, G.B.; Pietragalla, M.; Berti, V.; Addeo, G.; Desideri, I.; Bonasera, L.; Miele, V. CT assessment of tumor heterogeneity and the potential for the prediction of human papillomavirus status in oropharyngeal squamous cell carcinoma. Radiol. Med. 2019, 124, 804–811. [Google Scholar] [CrossRef]
- Maraghelli, D.; Pietragalla, M.; Calistri, L.; Barbato, L.; Locatello, L.G.; Orlandi, M.; Landini, N.; Casto, A.L.; Nardi, C. Techniques, Tricks, and Stratagems of Oral Cavity Computed Tomography and Magnetic Resonance Imaging. Appl. Sci. 2022, 12, 1473. [Google Scholar] [CrossRef]
- Gardin, I.; Grégoire, V.; Gibon, D.; Kirisli, H.; Pasquier, D.; Thariat, J.; Vera, P. Radiomics: Principles and radiotherapy applications. Crit. Rev. Oncol. Hematol. 2019, 138, 44–50. [Google Scholar] [CrossRef]
- Soni, N.; Priya, S.; Bathla, G. Texture Analysis in Cerebral Gliomas: A Review of the Literature. AJNR Am. J. Neuroradiol. 2019, 40, 928–934. [Google Scholar] [CrossRef] [Green Version]
- Cozzi, D.; Bicci, E.; Cavigli, E.; Danti, G.; Bettarini, S.; Tortoli, P.; Mazzoni, L.N.; Busoni, S.; Pradella, S.; Miele, V. Radiomics in pulmonary neuroendocrine tumours (NETs). Radiol. Med. 2022, 127, 609–615. [Google Scholar] [CrossRef]
- Zhang, Q.; Wei, Y.-M.; Qi, Y.-G.; Li, B.-S. Early Changes in Apparent Diffusion Coefficient for Salivary Glands during Radiotherapy for Nasopharyngeal Carcinoma Associated with Xerostomia. Korean J. Radiol. 2018, 19, 328–333. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Ou, D.; Gu, Y.; He, X.; Peng, W.; Mao, J.; Yue, L.; Shen, X. Diffusion-weighted MR imaging of salivary glands with gustatory stimulation: Comparison before and after radiotherapy. Acta Radiol. 2013, 54, 928–933. [Google Scholar] [CrossRef] [PubMed]
- Zhou, N.; Chu, C.; Dou, X.; Li, M.; Liu, S.; Zhu, L.; Liu, B.; Guo, T.; Chen, W.; He, J.; et al. Early evaluation of irradiated parotid glands with intravoxel incoherent motion MR imaging: Correlation with dynamic contrast-enhanced MR imaging. BMC Cancer 2016, 16, 865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Juan, C.J.; Chen, C.-Y.; Jen, Y.-M.; Liu, H.-S.; Liu, Y.-J.; Hsueh, C.-J.; Wang, C.-Y.; Chou, Y.-C.; Chai, Y.-T.; Huang, G.-S.; et al. Perfusion characteristics of late radiation injury of parotid glands: Quantitative evaluation with dynamic contrast-enhanced MRI. Eur. Radiol. 2009, 19, 94–102. [Google Scholar] [CrossRef] [PubMed]
- Nardone, V.; Tini, P.; Nioche, C.; Mazzei, M.A.; Carfagno, T.; Battaglia, G.; Pastina, P.; Grassi, R.; Sebaste, L.; Pirtoli, L. Texture analysis as a predictor of radiation-induced xerostomia in head and neck patients undergoing IMRT. Radiol. Med. 2018, 123, 415–423. [Google Scholar] [CrossRef]
- van Dijk, L.V.; Langendijk, J.A.; Sijtsema, N.M.; Steenbakkers, R.J. Reply letter to “Texture analysis of parotid gland as a predictive factor of radiation induced xerostomia: A subset analysis”. Radiother. Oncol. 2017, 122, 322. [Google Scholar] [CrossRef]
- van Dijk, L.V.; Brouwer, C.L.; Van Der Schaaf, A.; Burgerhof, J.G.; Beukinga, R.J.; Langendijk, J.A.; Sijtsema, N.M.; Steenbakkers, R.J. CT image biomarkers to improve patient-specific prediction of radiation-induced xerostomia and sticky saliva. Radiother. Oncol. 2017, 122, 185–191. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Tridandapani, S.; Beitler, J.J.; Yu, D.S.; Yoshida, E.J.; Curran, W.J.; Liu, T. Ultrasound GLCM texture analysis of radiation-induced parotid-gland injury in head-and-neck cancer radiotherapy: An in vivo study of late toxicity. Med. Phys. 2012, 39, 5732–5739. [Google Scholar] [CrossRef] [Green Version]
- van Dijk, L.V.; Thor, M.; Steenbakkers, R.J.; Apte, A.; Zhai, T.T.; Borra, R.; Noordzij, W.; Estilo, C.; Lee, N.; Langendijk, J.A.; et al. Parotid gland fat related Magnetic Resonance image biomarkers improve prediction of late radiation-induced xerostomia. Radiother. Oncol. 2018, 128, 459–466. [Google Scholar] [CrossRef]
- Berger, T.; Noble, D.J.; Shelley, L.E.; McMullan, T.; Bates, A.; Thomas, S.; Carruthers, L.J.; Beckett, G.; Duffton, A.; Paterson, C.; et al. Predicting radiotherapy-induced xerostomia in head and neck cancer patients using day-to-day kinetics of radiomics features. Phys. Imaging Radiat. Oncol. 2022, 24, 95–101. [Google Scholar] [CrossRef]
- Shi, D.; Qian, J.-J.; Fan, G.-H.; Shen, J.-K.; Tian, Y.; Xu, L. Salivary gland function in nasopharyngeal carcinoma before and late after intensity-modulated radiotherapy evaluated by dynamic diffusion-weighted MR imaging with gustatory stimulation. BMC Oral Health 2019, 19, 288. [Google Scholar] [CrossRef]
- Zhou, N.; Chu, C.; Dou, X.; Li, M.; Liu, S.; Guo, T.; Zhu, L.; Liu, B.; Chen, W.; He, J.; et al. Early Changes of Irradiated Parotid Glands Evaluated by T1rho-Weighted Imaging: A Pilot Study. J. Comput. Assist. Tomogr. 2017, 41, 472–476. [Google Scholar] [CrossRef] [PubMed]
- Scalco, E.; Moriconi, S.; Rizzo, G. Texture analysis to assess structural modifications induced by radiotherapy. In Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy, 25–29 August 2015; 2015; 2015, pp. 5219–5222. [Google Scholar]
- Litvin, A.; Burkin, D.; Kropinov, A.; Paramzin, F. Radiomics and Digital Image Texture Analysis in Oncology (Review). Sovrem. Technol. Med. 2021, 13, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Wahid, K.A.; He, R.; McDonald, B.A.; Anderson, B.M.; Salzillo, T.; Mulder, S.; Wang, J.; Sharafi, C.S.; McCoy, L.A.; Naser, M.A.; et al. Intensity standardization methods in magnetic resonance imaging of head and neck cancer. Phys. Imaging Radiat. Oncol. 2021, 20, 88–93. [Google Scholar] [CrossRef] [PubMed]
- Beetz, I.; Steenbakkers, R.J.H.M.; Chouvalova, O.; Leemans, C.R.; Doornaert, P.; van der Laan, B.F.A.M.; Christianen, M.E.M.C.; Vissink, A.; Bijl, H.P.; van Luijk, P.; et al. The QUANTEC criteria for parotid gland dose and their efficacy to prevent moderate to severe patient-rated xerostomia. Acta Oncol. 2014, 53, 597–604. [Google Scholar] [CrossRef] [Green Version]
- Tribius, S.; Prosch, C.; Tennstedt, P.; Bajrovic, A.; Kruell, A.; Petersen, C.; Rapp, W.; Muenscher, A.; Goy, Y. Xerostomia after radiotherapy: What matters—Mean total dose or dose to each parotid gland? Strahlenther. Onkol. 2013, 189, 216–222. [Google Scholar] [CrossRef]
- Teshima, K.; Murakami, R.; Yoshida, R.; Nakayama, H.; Hiraki, A.; Hirai, T.; Nakaguchi, Y.; Tsujita, N.; Tomitaka, E.; Furusawa, M.; et al. Histopathological changes in parotid and submandibular glands of patients treated with preoperative chemoradiation therapy for oral cancer. J. Radiat. Res. 2012, 53, 492–496. [Google Scholar] [CrossRef] [Green Version]
- Burke, C.J.; Thomas, R.; Howlett, D. Imaging the major salivary glands. Br. J. Oral Maxillofac. Surg. 2011, 49, 261–269. [Google Scholar] [CrossRef]
- Bloem, J.L.; Reijnierse, M.; Huizinga, T.W.J.; van der Helm-van Mil, A.H.M. MR signal intensity: Staying on the bright side in MR image interpretation. RMD Open 2018, 4, e000728. [Google Scholar] [CrossRef] [Green Version]
- van Timmeren, J.E.; Cester, D.; Tanadini-Lang, S.; Alkadhi, H.; Baessler, B. Radiomics in medical imaging-”how-to” guide and critical reflection. Insights Imaging 2020, 11, 91. [Google Scholar] [CrossRef]
Patients | Stage | |
---|---|---|
T | N | |
Group 1 | ||
Patient 1 | 3 | 2c |
Patient 2 | 3 | 3 |
Patient 3 | 2 | 1 |
Patient 4 | 3 | 2b |
Patient 5 | 4a | 2b |
Patient 6 | 3 | 0 |
Patient 7 | 2 | 0 |
Patient 8 | 4b | 0 |
Patient 9 | 2 | 2b |
Patient 10 | 4a | 2b |
Patient 11 | 2 | 2c |
Patient 12 | 4a | 2a |
Patient 13 | 4a | 1 |
Patient 14 | 3 | 0 |
Patient 15 | 2 | 0 |
Patient 16 | 2 | 2a |
Patient 17 | 2 | 1 |
Patient 18 | 3 | 2c |
Group 2 | ||
Patient 19 | 3 | 2c |
Patient 20 | 3 | 1 |
Patient 21 | 2 | 2b |
Patient 22 | 4a | 2c |
Patient 23 | 1 | 2b |
Patient 24 | 1 | 2b |
Patient 25 | 3 | 2a |
Patient 26 | 4a | 2c |
Patient 27 | 1 | 2b |
Parameter | p-Value | |
---|---|---|
Group 1 | Group 2 | |
DWI MRI | ||
ADC Parotid | 0.82 | 0.18 |
ADC Submandibular | 0.60 | 0.54 |
DCE-PWI MRI | ||
AUC PAROTID | 0.07 | 0.03 |
AUC SUBMANDIBULAR | 0.26 | 0.21 |
KTRANS PAROTID | 0.18 | 0.13 |
KTRANS SUBMANDIBULAR | 0.65 | 0.82 |
ADC P Pre RT | ADC P Post RT | ADC S Pre RT | ADC S Post RT | AUC P Pre RT | AUC P Post RT | AUC S Pre RT | AUC S Post RT | Ktrans P Pre RT | Ktrans P Post RT | Ktrans S Pre RT | Ktrans S Post RT | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Group 1 | ||||||||||||
Mean | 0.84 | 0.90 | 1.16 | 1.26 | 88.40 | 152.45 | 12. 62 | 176.65 | 123.80 | 229.31 | 169.44 | 233.20 |
Standard deviation | 0.08 | 0.25 | 0.28 | 0.23 | 30.83 | 70.80 | 55.19 | 91.40 | 46.81 | 131.29 | 71.71 | 133.59 |
Group 2 | ||||||||||||
Mean | 0.80 | 0.90 | 1.19 | 1.32 | 94.28 | 146.35 | 88.77 | 154.92 | 158.76 | 203.08 | 149.22 | 211.09 |
Standard deviation | 0.13 | 0.51 | 0.16 | 0.24 | 22.22 | 82.03 | 26.01 | 89.34 | 61.82 | 87.80 | 68.78 | 87.75 |
Feature Name | p-Value |
---|---|
Parotid | |
Informational measure of correlation 1 (Gray Level Run Length Matrix) | 0.002 |
Informational measure of correlation 2 (Gray Level Run Length Matrix) | 0.003 |
Submandibular | |
Gray Level Non-Uniformity Normalized (First Order) | 0.002 |
Informational measure of correlation 2 (First Order) | 0.006 |
Gray Level Non-Uniformity Normalized (Gray Level Run Length Matrix) | 0.006 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Calamandrei, L.; Mariotti, L.; Bicci, E.; Calistri, L.; Barcali, E.; Orlandi, M.; Landini, N.; Mungai, F.; Bonasera, L.; Bonomo, P.; et al. Morphological, Functional and Texture Analysis Magnetic Resonance Imaging Features in the Assessment of Radiotherapy-Induced Xerostomia in Oropharyngeal Cancer. Appl. Sci. 2023, 13, 810. https://doi.org/10.3390/app13020810
Calamandrei L, Mariotti L, Bicci E, Calistri L, Barcali E, Orlandi M, Landini N, Mungai F, Bonasera L, Bonomo P, et al. Morphological, Functional and Texture Analysis Magnetic Resonance Imaging Features in the Assessment of Radiotherapy-Induced Xerostomia in Oropharyngeal Cancer. Applied Sciences. 2023; 13(2):810. https://doi.org/10.3390/app13020810
Chicago/Turabian StyleCalamandrei, Leonardo, Luca Mariotti, Eleonora Bicci, Linda Calistri, Eleonora Barcali, Martina Orlandi, Nicholas Landini, Francesco Mungai, Luigi Bonasera, Pierluigi Bonomo, and et al. 2023. "Morphological, Functional and Texture Analysis Magnetic Resonance Imaging Features in the Assessment of Radiotherapy-Induced Xerostomia in Oropharyngeal Cancer" Applied Sciences 13, no. 2: 810. https://doi.org/10.3390/app13020810
APA StyleCalamandrei, L., Mariotti, L., Bicci, E., Calistri, L., Barcali, E., Orlandi, M., Landini, N., Mungai, F., Bonasera, L., Bonomo, P., Desideri, I., Bocchi, L., & Nardi, C. (2023). Morphological, Functional and Texture Analysis Magnetic Resonance Imaging Features in the Assessment of Radiotherapy-Induced Xerostomia in Oropharyngeal Cancer. Applied Sciences, 13(2), 810. https://doi.org/10.3390/app13020810