Intelligent Monitoring and Compensation between EDM and ECM
Abstract
:1. Introduction
2. Materials and Methods
- Current estimate
- b.
- Average ignition delay time (AIDT)
- c.
- Average spark frequency (ASF)
- d.
- Heatmap
- e.
- Neural network
- f.
- Linear regression
3. Case Results
3.1. ECM
3.2. EDM
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jeevamalar, J.; Kumar, S.B.; Ramu, P.; Suresh, G.; Senthilnathan, K. Investigating the effects of copper cadmium electrode on Inconel 718 during EDM drilling. Mater. Today Proc. 2020, 45, 1451–1455. [Google Scholar] [CrossRef]
- Ozkavak, H.V.; Sofu, M.M.; Duman, B.; Bacak, S. Estimating surface roughness for different EDM processing parameters on Inconel 718 using GEP and ANN. CIRP J. Manuf. Sci. Technol. 2021, 33, 306–314. [Google Scholar] [CrossRef]
- Qu, N.; Zhang, Q.; Fang, X.; Ye, E.; Zhu, D. Experimental Investigation on Electrochemical Grinding of Inconel 718. Procedia CIRP 2015, 35, 16–19. [Google Scholar] [CrossRef] [Green Version]
- Klocke, F.; Zeis, M.; Klink, A.; Veselovac, D. Technological and economical comparison of roughing strategies via milling, sinking-EDM, wire-EDM and ECM for titanium- and nickel-based blisks. CIRP J. Manuf. Sci. Technol. 2013, 6, 198–203. [Google Scholar] [CrossRef]
- Sweeney, P.E.; Haessler, R.W. One-dimensional cutting stock decisions for rolls with multiple quality grades. Eur. J. Oper. Res. 1990, 44, 224–231. [Google Scholar] [CrossRef] [Green Version]
- Kozak, J.; Zybura-Skrabalak, M. Some Problems of Surface Roughness in Electrochemical Machining (ECM). Procedia CIRP 2016, 42, 101–106. [Google Scholar] [CrossRef]
- Jerin, A.; Karunakaran, K. Advances in simulation modeling and analysis of curvilinear electro chemical machining process. Mater. Today: Proc. 2020, 37, 1588–1591. [Google Scholar] [CrossRef]
- Asokan, P.; Kumar, R.R.; Jeyapaul, R.; Santhi, M. Development of multi-objective optimization models for electrochemical machining process. Int. J. Adv. Manuf. Technol. 2007, 39, 55–63. [Google Scholar] [CrossRef]
- Jegan, T.M.C.; Ravindran, D. Electrochemical machining process parameter optimization using particle swarm optimization: Electrochemical machining process. Comput. Intell. 2017, 33, 1019–1037. [Google Scholar] [CrossRef]
- Bhondwe, K.; Yadava, V.; Kathiresan, G. Finite element prediction of material removal rate due to electro-chemical spark machining. Int. J. Mach. Tools Manuf. 2006, 46, 1699–1706. [Google Scholar] [CrossRef]
- Sous, F.; Heidemanns, L.; Herrig, T.; Klink, A.; Bergs, T. Experimental analysis on the accuracy of two dimensional curved cuts in wire ECM. Procedia CIRP 2022, 113, 398–403. [Google Scholar] [CrossRef]
- Wu, M.; Arshad, M.H.; Saxena, K.K.; Qian, J.; Reynaerts, D. Profile prediction in ECM using machine learning. Procedia CIRP 2022, 113, 410–416. [Google Scholar] [CrossRef]
- da Silva Neto, J.C.; Da Silva, E.M.; Da Silva, M.B. Intervening variables in electrochemical machining. J. Mater. Process. Technol. 2006, 179, 92–96. [Google Scholar]
- Kasdekar, D.K.; Parashar, V.; Arya, C. Artificial neural network models for the prediction of MRR in Electro-chemical machining. Mater. Today Proc. 2018, 5, 772–779. [Google Scholar] [CrossRef]
- Bergs, T.; Rommes, B.; Smeets, G.; Gmelin, T.; Heidemanns, L.; Harst, S.; Klink, A. ECM roughing of profiled grooves in nickel-based alloys for turbomachinery applications. Procedia Manuf. 2019, 40, 22–26. [Google Scholar] [CrossRef]
- Skrabalak, G.; Stwora, A. Electrochemical, Electrodischarge and Electrochemical-discharge Hole Drilling and Surface Structuring Using Batch Electrodes. Procedia CIRP 2016, 42, 766–771. [Google Scholar] [CrossRef]
- Caggiano, A.; Napolitano, F.; Teti, R. Hierarchical cluster analysis for pattern recognition of process conditions in die sinking EDM process monitoring. Procedia CIRP 2021, 99, 514–519. [Google Scholar] [CrossRef]
- Abbas, N.M.; Solomon, D.G.; Bahari, F. A review on current research trends in electrical discharge machining (EDM). Int. J. Mach. Tools Manuf. 2007, 47, 1214–1228. [Google Scholar] [CrossRef]
- Fu, X.; Zhang, Y.; Zhang, Q. Research on Piezoelectric Self-Adaptive Micro-EDM. Procedia CIRP 2013, 6, 303–308. [Google Scholar] [CrossRef] [Green Version]
- Uhlmann, E.; Polte, M.; Yabroudi, S. Novel Advances in Machine Tools, Tool Electrodes and Processes for High-Performance and High-Precision EDM. Procedia CIRP 2022, 113, 611–635. [Google Scholar] [CrossRef]
- Klocke, F.; Lung, D.; Antonoglou, G.; Thomaidis, D. The effects of powder suspended dielectrics on the thermal influenced zone by electrodischarge machining with small discharge energies. J. Mater. Process. Technol. 2004, 149, 191–197. [Google Scholar] [CrossRef]
- Dhadda, G.; Hamed, M.; Koshy, P. Electrical discharge surface texturing for enhanced pool boiling heat transfer. J. Mater. Process. Technol. 2021, 293, 117083. [Google Scholar] [CrossRef]
- Peta, K.; Bartkowiak, T.; Galek, P.; Mendak, M. Contact angle analysis of surface topographies created by electric discharge machining. Tribol. Int. 2021, 163, 107139. [Google Scholar] [CrossRef]
- Chen, C.-C.; Hung, M.-H.; Suryajaya, B.; Lin, Y.-C.; Yang, H.-C.; Huang, H.-C.; Cheng, F.-T. A Novel Efficient Big Data Processing Scheme for Feature Extraction in Electrical Discharge Machining. IEEE Robot. Autom. Lett. 2019, 4, 910–917. [Google Scholar] [CrossRef]
- Caggiano, A.; Teti, R.; Perez, R.; Xirouchakis, P. Wire EDM Monitoring for Zero-defect Manufacturing based on Advanced Sensor Signal Processing. Procedia CIRP 2015, 33, 315–320. [Google Scholar] [CrossRef]
- Yang, H.-C.; Cheng, C.-H.; Su, T.-W.; Kung, L.-W.; Jan, C.-M.; Wu, W.-C. Intelligent Sensing Unit for Estimation Roughness of Electrical Discharge Machining. Int. J. Autom. Smart Technol. 2017, 7, 125–131. [Google Scholar] [CrossRef] [Green Version]
- Lyu, Y.-T.; Jan, C.-M.; Ay, H.; Lin, C.-F.; Yang, H.-C.; Chuang, M.-C.; Lin, H.-S.; Hung, T.-P. Development of an On-Line Defect Detection System for EDM Process. Appl. Sci. 2022, 12, 2230. [Google Scholar] [CrossRef]
- Skrabalak, G.; Zybura-Skrabalak, M.; Ruszaj, A. Building of rules base for fuzzy-logic control of the ECDM process. J. Mater. Process. Technol. 2004, 149, 530–535. [Google Scholar] [CrossRef]
- Schöpf, M.; Beltrami, I.; Boccadoro, M.; Kramer, D.; Schumacher, B. ECDM (Electro Chemical Discharge Machining), a New Method for Trueing and Dressing of Metal Bonded Diamond Grinding Tools. CIRP Ann. 2001, 50, 125–128. [Google Scholar] [CrossRef]
- Hinduja, S.; Kunieda, M. Modelling of ECM and EDM processes. CIRP Ann. 2013, 62, 775–797. [Google Scholar] [CrossRef]
- Kunieda, M.; Overmeyer, L.; Klink, A. Visualization of electro-physical and chemical machining processes. CIRP Ann. 2019, 68, 751–774. [Google Scholar] [CrossRef]
- Rahman, M.Z.; Das, A.K.; Chattopadhyaya, S. Comparative studies in electro-physical processes (ECM & EDM) for circular micro-holes drilling. Mater. Today Proc. 2018, 5, 27690–27699. [Google Scholar]
No. | Voltage (V) | Machining Depth (mm) | Feed Rate (µm/s) |
---|---|---|---|
1 | 18 | 10 | 7 |
2 | 18 | 10 | 9 |
3 | 18 | 10 | 11 |
4 | 18 | 10 | 13 |
5 | 18 | 10 | 16 |
No.1 | No.2 | No.3 | No.4 | No.5 | |
---|---|---|---|---|---|
Level 1 | 186.737 | 184.648 | 182.246 | 182.633 | 179.452 |
Level 2 | 174.828 | 170.764 | 167.566 | 167.369 | 163.481 |
Level 3 | 173.274 | 169.486 | 166.121 | 166.293 | 162.794 |
Level 4 | 167.916 | 168.147 | 165.297 | 165.208 | 161.791 |
Level 5 | 165.757 | 169.146 | 167.441 | 167.067 | 164.066 |
Level 6 | 171.004 | 168.132 | 164.518 | 164.154 | 161.284 |
No.1 | No.2 | No.3 | No.4 | No.5 | |
---|---|---|---|---|---|
Level 1 | 1.653 | 4.096 | 9.974 | 4.769 | 8.97 |
Level 2 | 2.576 | 0.284 | 1.119 | 0.66 | 2.696 |
Level 3 | 2.272 | 1.22 | 1.352 | 0.225 | 2.058 |
Level 4 | 2.561 | 1.351 | 0.954 | 0.192 | 1.66 |
Level 5 | 3.943 | 0.704 | 2.121 | 2.301 | 1.911 |
Level 6 | 1.514 | 0.124 | 0.638 | 0.104 | 0.02 |
Feature | ASF | ||||
---|---|---|---|---|---|
No.1 | No.2 | No.3 | No.4 | No.5 | |
Average value | 240.273 | 255.679 | 126.244 | 103.03 | 67.898 |
Feature | AIDT | ||||
No.1 | No.2 | No.3 | No.4 | No.5 | |
Average value | 1.258 | 1.156 | 1.321 | 1.558 | 1.828 |
No.1 | No.2 | No.3 | No.4 | No.5 | |
---|---|---|---|---|---|
Level 1 | 11.318 | 29. 237 | 28.181 | 24.714 | 19.499 |
Level 2 | 1.879 | 5.174 | 0.1 | 1.573 | 0.481 |
Level 3 | 3.765 | 1.582 | 2.316 | 0.3 | 1.473 |
Level 4 | 1.485 | 1.015 | 0.584 | 2.578 | 1.059 |
Level 5 | 5.34 | 1.1995 | 0.788 | 4.646 | 2.687 |
Level 6 | 2.388 | 1.134 | 1.117 | 6.44 | 0.288 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chuang, M.-C.; Jan, C.-M.; Wang, Y.-J.; Hsu, Y.-L. Intelligent Monitoring and Compensation between EDM and ECM. Appl. Sci. 2023, 13, 927. https://doi.org/10.3390/app13020927
Chuang M-C, Jan C-M, Wang Y-J, Hsu Y-L. Intelligent Monitoring and Compensation between EDM and ECM. Applied Sciences. 2023; 13(2):927. https://doi.org/10.3390/app13020927
Chicago/Turabian StyleChuang, Min-Chun, Chia-Ming Jan, Yu-Jen Wang, and Yu-Liang Hsu. 2023. "Intelligent Monitoring and Compensation between EDM and ECM" Applied Sciences 13, no. 2: 927. https://doi.org/10.3390/app13020927
APA StyleChuang, M. -C., Jan, C. -M., Wang, Y. -J., & Hsu, Y. -L. (2023). Intelligent Monitoring and Compensation between EDM and ECM. Applied Sciences, 13(2), 927. https://doi.org/10.3390/app13020927