Influence of Selected Factors on Antioxidant Properties of Chlorogenic Acid and Kaempferol as Well as Their Binary Mixtures
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Impact of Temperature
2.3. Impact of the Solvent
2.4. Influence of the Addition of Water, Metals and Hydrogen Ions on the Antioxidant Properties of the Examined Antioxidants and Their Binary Mixtures
2.5. Preparation of the Radical Cation
2.6. Statistical Analysis
3. Results and Discussion
3.1. Influence of Temperature on the Resultant Effect of the Mixture’s Antioxidant Activity
3.2. Influence of Solvent on the Resultant Effect of the Mixture’s Antioxidant Activity
3.3. Influence of Water Addition on the Resultant Effect of the Mixture’s Antioxidant Activity
3.4. Influence of the Addition of Metal Ions and Hydrogen Ions on the Resultant Effect of the Mixture’s Antioxidant Activity
4. Conclusions
- -
- A mixture of the above-mentioned polyphenolic compounds has an antagonistic effect.
- -
- The magnitude of this antagonistic effect depends not only on the mutual quantitative relationships of individual antioxidants in the mixture, but also on the presence of other ingredients in the tested systems, which, although they do not show antioxidant properties, affect the assessment (such as those listed above).
- -
- It is difficult to clearly explain the cause of the observed effect of the mixture because it is the effect of the action of a specific factor on a given antioxidant and of antioxidants between themselves in the presence of this factor.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, C.; Wang, X.; Du, J.; Gu, Z.; Zhang, Y. Reactive oxygen species-regulating strategies based on nanomaterials for disease treatment. Adv. Sci. 2021, 8, 2002797. [Google Scholar] [CrossRef]
- Mirończuk-Chodakowska, I.; Witkowska, A.M.; Zujko, M.E. Endogenous non-enzymatic antioxidants in the human body. Adv. Med. Sci. 2018, 63, 68–78. [Google Scholar] [CrossRef]
- Kotha, R.R.; Tareq, F.S.; Yildiz, E.; Luthria, D.L. Oxidative stress and antioxidants—Acriticalreview on in vitro antioxidant assays. Antioxidants 2022, 11, 2388. [Google Scholar] [CrossRef]
- Zujko, M.E.; Witkowska, A.M. Dietary antioxidants and chronic diseases. Antioxidants 2023, 12, 362. [Google Scholar] [CrossRef]
- Hegazy, A.M.; El-Sayed, E.M.; Ibrahim, K.S.; Abdel-Azeem, A.S. Dietary antioxidant for disease prevention corroborated by the Nrf2 pathway. J. Complement. Integr. Med. 2019, 16, 20180161. [Google Scholar] [CrossRef]
- Kamal, N.; Ilowefah, M.A.; Hilles, A.R.; Anua, N.A.; Awin, T.; Alshwyeh, H.A.; Aldosary, S.K.; Jambocus, N.G.S.; Alosaimi, A.A.; Rahman, A.; et al. Genesis and mechanism of some cancer types and an overview on the role of diet and nutrition in cancer prevention. Molecules 2022, 27, 1794. [Google Scholar] [CrossRef]
- Chen, X.; Li, H.; Zhang, B.; Deng, Z. The synergistic and antagonistic antioxidant interactions of dietary phytochemical combinations. Crit. Rev. Food Sci. Nutr. 2022, 62, 5658–5677. [Google Scholar] [CrossRef]
- Joshi, T.; Deepa, P.R.; Sharma, P.K. Effect of Different Proportions of Phenolics on Antioxidant Potential: Pointers for Bioactive Synergy/Antagonism in Foods and Nutraceuticals. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2022, 92, 939–946. [Google Scholar] [CrossRef]
- Uduwana, S.; Abeynayake, N.; Wickramasinghe, I. Synergistic, antagonistic, and additive effects on the resultant antioxidant activity in infusions of green tea with bee honey and Citrus limonum extract as additives. J. Agric. Food Res. 2023, 12, 100571. [Google Scholar] [CrossRef]
- Dawidowicz, A.L.; Olszowy-Tomczyk, M.; Typek, R. Synergistic and antagonistic antioxidant effects in the binary cannabinoids mixtures. Fitoterapia 2021, 153, 104992. [Google Scholar] [CrossRef]
- Olszowy-Tomczyk, M.; Wianowska, D. Antioxidant properties of selected flavonoids in binary mixtures-considerations on myricetin, kaempferol and quercetin. Int. J. Mol. Sci. 2023, 24, 10070. [Google Scholar] [CrossRef]
- Zhang, L.; Virgous, C.; Si, H. Synergistic anti-inflammatory effects and mechanisms of combined phytochemicals. J. Nutr. Biochem. 2019, 69, 9–30. [Google Scholar] [CrossRef]
- Dawidowicz, A.L.; Olszowy, M. Influence of some experimental variables and matrix components in the determination of antioxidant properties by β-carotene bleaching assay: Experiments with BHT used as standard antioxidant. Eur. Food Res. Technol. 2010, 231, 835–840. [Google Scholar] [CrossRef]
- Dawidowicz, A.L.; Olszowy, M. Antioxidant properties of BHT estimated by ABTS assay in systems differing in pH or metal ion or water concentration. Eur. Food Res. Technol. 2011, 232, 837–842. [Google Scholar] [CrossRef]
- Olszowy-Tomczyk, M.; Paprotny, Ł.; Celejewska, A.; Szewczak, D.; Wianowska, D. Comparison of the antioxidant properties of serum and plasma samples as well as glutathione under environmental and pharmacological stress factors involving different classes of drugs. Environ. Toxicol. Pharmacol. 2022, 94, 103936. [Google Scholar] [CrossRef]
- Somerset, S.M.; Johannot, L. Dietary flavonoid sources in Australian adults. Nutr. Cancer 2008, 60, 442–449. [Google Scholar] [CrossRef]
- Wianowska, D.; Gil, M. Recent advances in extraction and analysis procedures of natural chlorogenic acids. Phytochem. Rev. 2019, 18, 273–302. [Google Scholar] [CrossRef]
- Mudge, E.; Applequist, W.L.; Finley, J.; Lister, P.; Townesmith, A.K.; Walker, K.M.; Brown, P.N. Variation of select flavonolsand chlorogenic acid content of elderberry collected throughout the eastern united states. J. Food Compost. Anal. 2016, 47, 52–59. [Google Scholar] [CrossRef] [PubMed]
- Średnicka-Tober, D.; Ponder, A.; Hallmann, E.; Głowacka, A.; Rozpara, E. The profile and kontent of polyphenols and carotenoids in local and commercial sweet cherry fruits (Prunusavium L.) and their antioxidant activity in vitro. Antioxidants 2019, 8, 534. [Google Scholar] [CrossRef]
- Amjad, L.; Sokouti, B.; Asnaashari, S. A systematic review of anticancer roles and mechanisms of kaempferol as a natural compound. Cancer Cell Int. 2022, 22, 260. [Google Scholar] [CrossRef]
- Nenadis, N.; Wang, L.-F.; Tsimidou, M.; Zhang, H.-Y. Estimation of scavenging activity of phenolic compounds using the ABTS•+ assay. J. Agric. Food Chem. 2004, 52, 4669–4674. [Google Scholar] [CrossRef] [PubMed]
- Réblová, Z. Effect of temperature on the antioxidant activityof phenolic acids. Czech J. Food Sci. 2012, 30, 171–177. [Google Scholar] [CrossRef]
- Yanishlieva, N.V. Inhibiting oxidation. In Antioxidants in Food—Practical Applications; Pokorný, J., Yanishlieva, N.V., Gordon, H., Eds.; Woodhead Publishing: Cambridge, UK, 2001; pp. 22–70. [Google Scholar]
- Christodoulou, M.C.; Orellana Palacios, J.C.; Hesami, G.; Jafarzadeh, S.; Lorenzo, J.M.; Domínguez, R.; Moreno, A.; Hadidi, M. Spectrophotometric methods for measurement of antioxidant activity in food and pharmaceuticals. Antioxidants 2022, 11, 2213. [Google Scholar] [CrossRef] [PubMed]
- Borowski, P.; Jaroniec, J.; Janowski, T.; Woliński, K. Quantum cluster equilibrium theory of hydrogen-bonded liquids: Water, methanol and ethanol. Mol. Phys. 2003, 101, 1413–1421. [Google Scholar] [CrossRef]
- Ludwig, R. Quantum clusters equilibrium theory of liquids: Molecular clusters and thermodynamics of liquid ethanol. Mol. Phys. 1999, 97, 465–477. [Google Scholar] [CrossRef]
- Milugo, T.K.; Omosa, L.K.; Ochanda, J.O.; Owuor, B.O.; Wamunyokoli, F.A.; Oyugi, J.O.; Ochieng, J.W. Antagonistic effect of alkaloids and saponins on bioactivity in the quinine tree (Rauvolfiacaffra sond): Further evidence to support biotechnology in traditional medicinal plants. BMC Complement. Altern. Med. 2013, 13, 285. Available online: http://www.biomedcentral.com/1472-6882/13/285 (accessed on 4 October 2023). [CrossRef]
- Phan, M.A.T.; Peterson, J.; Bucknall, M.; Arcot, J. Interactions between phytochemicals from fruits and vegetables: Effects on bioactivities and bioavailability. Crit. Rev. Food Sci. Nutr. 2017, 58, 1310–1329. [Google Scholar] [CrossRef]
- Bangar, S.P.; Chaudhary, V.; Sharma, N.; Bansal, V.; Ozogul, F.; Lorenzo, J.M. Kaempferol: A flavonoid with wider biological activities and its applications. Crit. Rev. Food Sci. Nutr. 2022, 62, 1–25. [Google Scholar] [CrossRef]
- Available online: https://fnkprddata.blob.core.windows.net/domestic/data/datasheet/CAY/70930.pdf (accessed on 4 August 2023).
- Available online: https://www.chembk.com/en/chem/Chlorogenic%20acid (accessed on 4 August 2023).
- Kim, J.; Lee, K.; Nam, J.S. Metal-polyphenol complexes as versatile building blocks for functional biomaterials. Biotechnol. Bioprocess. Eng. 2021, 26, 689–707. [Google Scholar] [CrossRef]
- Deng, W.; Tan, Y.; Fang, Z.; Xie, Q.; Li, Y.; Liang, X.; Yao, S. ABTS-multiwalled carbon nanotubes nanocomposite/Bi film electrode for sensitive determination of Cd and Pb by differential pulse stripping voltammetry. Electroanalysis 2009, 21, 2477–2485. [Google Scholar] [CrossRef]
- Jabeen, E.; Janjua, N.K.; Ahmed, S.; Ali, T.; Murtaza, I.; Ashraf, Z.; Masood, N.; Kalsoom, S. Antioxidant activity and hepatotoxicity of flavonoids and their metal complexes through co-administration of β-cyclodextrin. Chem. Sel. 2019, 4, 9420–9432. [Google Scholar] [CrossRef]
- Simunkova, M.; Barbierikova, Z.; Jomova, K.; Hudecova, L.; Lauro, P.; Alwasel, S.H.; Alhazza, I.; Rhodes, R.J.; Valko, M. Antioxidant vs. prooxidantproperties of the flavonoid, kaempferol, in the presence of Cu(II) ions: A ROS-scavenging activity, Fenton reaction and DNA damage study. Int. J. Mol. Sci. 2021, 22, 1619. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Xu, Y.; Liu, F.; Pan, X.; Miao, L.; Zhu, Q.; Tan, S. The feasibility of antioxidants avoiding oxidative damages from reactive oxygen species in cryopreservation. Front. Chem. 2021, 9, 648684. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Fasipe, B.; Laher, I. Potential harms of supplementation with high doses of antioxidants inathletes. J. Exerc. Sci. Fit. 2022, 20, 269–275. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publication. s are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
Components’ Volumes in μL | System Number | ||||||||
---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
Chlorogenic acid 1 | 20 | 50 | 80 | - | - | - | 20 | 50 | 80 |
Kaempferol 1 | - | - | - | 20 | 50 | 80 | 80 | 50 | 20 |
MeOH or EtOH or (MeOH + chosen factor 2) | 180 (80 + 100) | 150 (50 + 100) | 120 (20 + 100) | 180 (80 + 100) | 150 (50 + 100) | 120 (20 + 100) | 100 (0 + 100) | 100 (0 + 100) | 100 (0 + 100) |
ABTS+• 1 | 2800 | ||||||||
Total volume | 3000 |
Temperature (°C) | System Number | Volume Ratio (v/v) | F–Values | p-Values | (Ie-Ic)-Values | Observed Effect |
---|---|---|---|---|---|---|
15 | 7 | 20/80 | 34.91 | 0.0041 | negative | antagonism |
8 | 50/50 | 40.19 | 0.0032 | negative | antagonism | |
9 | 80/20 | 56.49 | 0.0002 | negative | antagonism | |
25 | 7 | 20/80 | 13.83 | 0.0205 | negative | antagonism/additivism |
8 | 50/50 | 11.03 | 0.0293 | negative | antagonism/additivism | |
9 | 80/20 | 21.07 | 0.0101 | negative | antagonism | |
35 | 7 | 20/80 | 34.47 | 0.0042 | negative | antagonism |
8 | 50/50 | 47.33 | 0.0023 | negative | antagonism | |
9 | 80/20 | 56.98 | 0.0016 | negative | antagonism |
Solvent Type | System Number | Volume Ratio (v/v) | F-Values | p-Values | (Ie-Ic)-Values | Observed Effect |
---|---|---|---|---|---|---|
methanol | 7 | 20/80 | 13.83 | 0.0205 | negative | antagonism/additivism |
8 | 50/50 | 11.03 | 0.0293 | negative | antagonism/additivism | |
9 | 80/20 | 21.07 | 0.0101 | negative | antagonism | |
ethanol | 7 | 20/80 | 39.89 | 0.0032 | negative | antagonism |
8 | 50/50 | 30.02 | 0.0054 | negative | antagonism | |
9 | 80/20 | 55.99 | 0.0017 | negative | antagonism |
Solvent | System Number | Volume Ratio (v/v) | F-Values | p-Values | (Ie-Ic)-Values | Observed Effect |
---|---|---|---|---|---|---|
methanol | 7 | 20/80 | 13.83 | 0.0205 | negative | antagonism/additivism |
8 | 50/50 | 11.03 | 0.0293 | negative | antagonism/additivism | |
9 | 80/20 | 21.07 | 0.0101 | negative | antagonism | |
methanol with water (100 μL) | 7 | 20/80 | 29.21 | 0.0056 | negative | antagonism |
8 | 50/50 | 33.96 | 0.0043 | negative | antagonism | |
9 | 80/20 | 35.19 | 0.0040 | negative | antagonism |
Factors | Volume Ratio (v/v) | F-Values | p-Values | (Ie-Ic)-Values | Observed Effect |
---|---|---|---|---|---|
water | 20/80 | 29.21 | 0.0056 | negative | antagonism |
50/50 | 33.96 | 0.0043 | negative | antagonism | |
80/20 | 35.19 | 0.0040 | negative | antagonism | |
metal ions | |||||
Fe3+ | 20/80 | 27.03 | 0.0065 | negative | antagonism |
50/50 | 58.64 | 0.0015 | negative | antagonism | |
80/20 | 60.97 | 0.0014 | negative | antagonism | |
Cu2+ | 20/80 | 28.80 | 0.0058 | negative | antagonism |
50/50 | 18.05 | 0.0132 | negative | antagonism | |
80/20 | 17.89 | 0.0134 | negative | antagonism | |
hydrogen ions | |||||
pH = 1 | 20/80 | 27.07 | 0.0065 | negative | antagonism |
50/50 | 54.67 | 0.0018 | negative | antagonism | |
80/20 | 142.53 | 0.0002 | negative | antagonism | |
pH = 3 | 20/80 | 35.68 | 0.0039 | negative | antagonism |
50/50 | 37.63 | 0.0036 | negative | antagonism | |
80/20 | 60.08 | 0.0015 | negative | antagonism |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olszowy-Tomczyk, M.; Wianowska, D. Influence of Selected Factors on Antioxidant Properties of Chlorogenic Acid and Kaempferol as Well as Their Binary Mixtures. Appl. Sci. 2023, 13, 11138. https://doi.org/10.3390/app132011138
Olszowy-Tomczyk M, Wianowska D. Influence of Selected Factors on Antioxidant Properties of Chlorogenic Acid and Kaempferol as Well as Their Binary Mixtures. Applied Sciences. 2023; 13(20):11138. https://doi.org/10.3390/app132011138
Chicago/Turabian StyleOlszowy-Tomczyk, Małgorzata, and Dorota Wianowska. 2023. "Influence of Selected Factors on Antioxidant Properties of Chlorogenic Acid and Kaempferol as Well as Their Binary Mixtures" Applied Sciences 13, no. 20: 11138. https://doi.org/10.3390/app132011138
APA StyleOlszowy-Tomczyk, M., & Wianowska, D. (2023). Influence of Selected Factors on Antioxidant Properties of Chlorogenic Acid and Kaempferol as Well as Their Binary Mixtures. Applied Sciences, 13(20), 11138. https://doi.org/10.3390/app132011138