Exploring the Evolutionary Disparities: A Case Study on the Psychophysiological Response to Recreating the Hunter–Gatherer Lifestyle through Physical Activity and Caloric Restriction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Inclusion and Exclusion Criteria
- Age: Male participants aged between 18–50 years, reflecting an age range likely to engage in hunting-gathering activities during ancestral times.
- Physical Fitness: Participants with a moderate-to-high level of physical fitness, able to withstand the demands of a 4-day walking event.
- Medical History: Absence of chronic diseases, cardiovascular issues, or any other medical condition that might compromise the safety or results of the study.
- Dietary Habits: No strict dietary restrictions or conditions like veganism, vegetarianism, or specific allergies.
- Willingness: Consent to potential caloric restriction and the physical demands of the 4-day walking event.
- Previous Experience: No prior engagement in prolonged fasting or extreme physical activities similar to the one under study within the last three months.
- Medical Concerns: Individuals with any medical condition or on medication that might interfere with metabolic rates or the body’s physiological response to physical activity and caloric restriction.
- Recent Injuries: Any muscle, bone, or joint injury in the past six months.
- Dietary Conditions: Individuals on strict diets due to medical conditions or personal choices.
- Addictions: Active smokers or individuals with a history of drug or alcohol abuse.
- Psychological Constraints: Individuals with known psychological disorders or conditions that might influence stress responses or any other parameter being studied.
- Prior Engagements: Participation in any other related research study in the past three months.
2.3. Ultraendurance Race
2.4. Design and Procedure
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cordain, L.; Gotshall, R.W.; Eaton, S.B. Physical activity, energy expenditure and fitness: An evolutionary perspective. Int. J. Sports Med. 1998, 19, 328–335. [Google Scholar] [CrossRef] [PubMed]
- Booth, F.W.; Roberts, C.K.; Laye, M.J. Lack of exercise is a major cause of chronic diseases. Compr. Physiol. 2012, 2, 1143. [Google Scholar]
- Mattson, M.P. Evolutionary aspects of human exercise—Born to run purposefully. Ageing Res. Rev. 2012, 11, 347–352. [Google Scholar] [CrossRef] [PubMed]
- Mattson, M.P.; Wan, R. Beneficial effects of intermittent fasting and caloric restriction on the cardiovascular and cerebrovascular systems. J. Nutr. Biochem. 2005, 16, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Taylor, B.E.; McClave, S.A.; Martindale, R.G. American Society of Parenteral and Enteral Nutrition: Guidelines for the provision and assessment of nutrition support therapy in the adult critically ill patient: Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (ASPEN). Crit. Care Med. 2016, 44, 390–438. [Google Scholar] [PubMed]
- Cordain, L.; Eaton, S.B.; Sebastian, A.; Mann, N.; Lindeberg, S.; Watkins, B.A.; O’Keefe, J.H.; Brand-Miller, J. Origins and evolution of the Western diet: Health implications for the 21st century. Am. J. Clin. Nutr. 2005, 81, 341–354. [Google Scholar] [CrossRef]
- Church, T.S.; Thomas, D.M.; Tudor-Locke, C.; Katzmarzyk, P.T.; Earnest, C.P.; Rodarte, R.Q.; Martin, C.K.; Blair, S.N.; Bouchard, C. Trends over 5 decades in US occupation-related physical activity and their associations with obesity. PLoS ONE 2011, 6, e19657. [Google Scholar] [CrossRef]
- Lee, I.-M.; Shiroma, E.J.; Lobelo, F.; Puska, P.; Blair, S.N.; Katzmarzyk, P.T. Effect of physical inactivity on major non-communicable diseases worldwide: An analysis of burden of disease and life expectancy. Lancet 2012, 380, 219–229. [Google Scholar] [CrossRef]
- Liebenberg, L. The Art of Tracking Tbe Origin of Science; David Philip: Claremont, South Africa, 1990. [Google Scholar]
- LaMonte, M.J.; Ainsworth, B.E. Quantifying energy expenditure and physical activity in the context of dose response. Med. Sci. Sports Exerc. 2001, 33 (Suppl. 6), S370–S378. [Google Scholar] [CrossRef]
- Holliday, R. Food, reproduction and L’ongevity: Is the extended lifespan of calorie-restricted animals an evolutionary adaptation? Bioessays 1989, 10, 125–127. [Google Scholar] [CrossRef]
- Kajaia, T.; Maskhulia, L.; Chelidze, K.; Akhalkatsi, V.; Kakhabrishvili, Z. The effects of non-functional overreaching and overtraining on autonomic nervous system function in highly trained Georgian athletes. Georgian Med. Newa 2017, 3, 97–101. [Google Scholar]
- Arakawa, K.; Hosono, A.; Shibata, K.; Ghadimi, R.; Fuku, M.; Goto, C.; Imaeda, N.; Tokudome, Y.; Hoshino, H.; Marumoto, M.; et al. Changes in blood biochemical markers before, during, and after a 2-day ultramarathon. Open Access J. Sports Med. 2016, 7, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Korobeynikov, G.; Korobeynikova, L.; Iermakov, S.; Nosko, M. Reaction of heart rate regulation to extreme sport activity in elite athletes. J. Phys. Educ. Sport 2016, 16, 976–981. [Google Scholar]
- Fazackerley, L.A.; Fell, J.W.; Kitic, C.M. The effect of an ultra-endurance running race on heart rate variability. Eur. J. Appl. Physiol. 2019, 119, 2001–2009. [Google Scholar] [CrossRef]
- Saito, S. Does fatigue exist in a quantitative measurement of eye movements? Ergonomics 1992, 35, 607–615. [Google Scholar] [CrossRef]
- Doppelmayr, M.M.; Finkernagel, H.; Doppelmayr, H.I. Changes in cognitive performance during a 216 kilometer, extreme endurance footrace: A descriptive and prospective study. Percept. Mot. Ski. 2005, 100, 473–487. [Google Scholar] [CrossRef]
- Bachasson, D.; Temesi, J.; Gruet, M.; Yokoyama, K.; Rupp, T.; Millet, G.Y.; Verges, S. Transcranial magnetic stimulation intensity affects exercise-induced changes in corticomotoneuronal excitability and inhibition and voluntary activation. Neuroscience 2016, 314, 125–133. [Google Scholar] [CrossRef]
- Moore, R.D.; Romine, M.W.; O’connor, P.J.; Tomporowski, P.D. The influence of exercise-induced fatigue on cognitive function. J. Sports Sci. 2012, 30, 841–850. [Google Scholar] [CrossRef] [PubMed]
- Wollseiffen, P.; Schneider, S.; Martin, L.A.; Kerhervé, H.A.; Klein, T.; Solomon, C. The effect of 6 h of running on brain activity, mood, and cognitive performance. Exp. Brain Res. 2016, 234, 1829–1836. [Google Scholar] [CrossRef]
- Clemente-Suárez, V.J. Psychophysiological response and energy balance during a 14-h ultraendurance mountain running event. Appl. Physiol. Nutr. Metab. 2015, 40, 269–273. [Google Scholar] [CrossRef]
- Fashi, M.; Ahmadizad, S.; Nobari, H.; Pérez-Gómez, J.; Oliveira, R.; Carlos-Vivas, J.; Ardigò, L.P. Effect of acute Ramadan fasting on muscle function and buffering system of male athletes. Healthcare 2021, 9, 397. [Google Scholar] [CrossRef]
- Hamlin, M.J.; Wilkes, D.; Elliot, C.A.; Lizamore, C.A.; Kathiravel, Y. Monitoring training loads and perceived stress in young elite university athletes. Front. Physiol. 2019, 10, 34. [Google Scholar] [CrossRef]
- Nicolas, M.; Banizette, M.; Millet, G.Y. Stress and recovery states after a 24 h ultra-marathon race: A one-month follow-up study. Psychol. Sport Exerc. 2011, 12, 368–374. [Google Scholar] [CrossRef]
- Zouhal, H.; Saeidi, A.; Salhi, A.; Li, H.; Essop, M.F.; Laher, I.; Rhibi, F.; Amani-Shalamzari, S.; Ben Abderrahman, A. Exercise training and fasting: Current insights. Open Access J. Sports Med. 2020, 11, 1–28. [Google Scholar] [CrossRef] [PubMed]
- Pettersen, S.D.; Aslaksen, P.M.; Pettersen, S.A. Pain processing in elite and high-level athletes compared to non-athletes. Front. Psychol. 2020, 11, 1908. [Google Scholar] [CrossRef]
- Caron, J.P.; Kreher, M.A.; Mickle, A.M.; Wu, S.; Przkora, R.; Estores, I.M.; Sibille, K.T. Intermittent fasting: Potential utility in the treatment of chronic pain across the clinical spectrum. Nutrients 2022, 14, 2536. [Google Scholar] [CrossRef] [PubMed]
- Lis, D.M.; Kings, D.; Larson-Meyer, D.E. Dietary practices adopted by track-and-field athletes: Gluten-free, low FODMAP, vegetarian, and fasting. Int. J. Sport Nutr. Exerc. Metab. 2019, 29, 236–245. [Google Scholar] [CrossRef]
- Best, R.; Barwick, B.; Best, A.; Berger, N.; Harrison, C.; Wright, M.; Sparrow, J. Changes in pain and nutritional intake modulate ultra-running performance: A case report. Sports 2018, 6, 111. [Google Scholar] [CrossRef]
- Kisiolek, J.N.; Smith, K.A.; Baur, D.A.; Willingham, B.D.; Morrissey, M.C.; Leyh, S.M.; Saracino, P.G.; Mah, C.D.; Ormsbee, M.J. Sleep duration correlates with performance in ultra-endurance triathlon. Int. J. Sports Physiol. Perform. 2021, 17, 226–233. [Google Scholar] [CrossRef]
- Dos Santos, N.E.; Daniel, N.V.S.; Franco, B.; Bastos, A.M.; Belli, T.; Esteves, A.M. Sleep and nutritional profile of endurance and ultra-endurance running athletes. Sleep Sci. 2022, 15, 441. [Google Scholar] [CrossRef]
- Vicente-Salar, N.; Otegui, A.U.; Collado, E.R. Endurance training in fasting conditions: Biological adaptations and body weight management. Nutr. Hosp. 2015, 32, 2409–2420. [Google Scholar] [PubMed]
- Volek, J.S.; Freidenreich, D.J.; Saenz, C.; Kunces, L.J.; Creighton, B.C.; Bartley, J.M.; Davitt, P.M.; Munoz, C.X.; Anderson, J.M.; Maresh, C.M. Metabolic characteristics of keto-adapted ultra-endurance runners. Metabolism 2016, 65, 100–110. [Google Scholar] [CrossRef]
- Martinez-Navarro, I.; Sanchez-Gómez, J.M.; Aparicio, I.; Priego-Quesada, J.I.; Pérez-Soriano, P.; Collado, E.; Hernando, B.; Hernando, C. Effect of mountain ultramarathon distance competition on biochemical variables, respiratory and lower-limb fatigue. PLoS ONE 2020, 15, e0238846. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Suzuki, K. Keto-adaptation and endurance exercise capacity, fatigue recovery, and exercise-induced muscle and organ damage prevention: A narrative review. Sports 2019, 7, 40. [Google Scholar] [CrossRef]
- Koch, A.J.; Pereira, R.; Machado, M. The creatine kinase response to resistance exercise. J. Musculoskelet. Neuronal Interact. 2014, 14, 68–77. [Google Scholar] [PubMed]
- Nikolaidis, P.T.; Veniamakis, E.; Rosemann, T.; Knechtle, B. Nutrition in ultra-endurance: State of the art. Nutrients 2018, 10, 1995. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, M.D. Proper hydration during ultra-endurance activities. Sports Med. Arthrosc. Rev. 2019, 27, 8–14. [Google Scholar] [CrossRef]
- Hodgson, L.E.; Walter, E.; Venn, R.M.; Galloway, R.; Pitsiladis, Y.; Sardat, F.; Forni, L.G. Acute kidney injury associated with endurance events—Is it a cause for concern? A systematic review. BMJ Open Sport Exerc. Med. 2017, 3, e000093. [Google Scholar] [CrossRef]
- Boutcher, S.H. High-intensity intermittent exercise and fat loss. J. Obes. 2011, 2011, 868305. [Google Scholar] [CrossRef]
- Mattson, M.P.; Longo, V.D.; Harvie, M. Impact of intermittent fasting on health and disease processes. Ageing Res. Rev. 2017, 39, 46–58. [Google Scholar] [CrossRef]
- Rennie, K.L.; Jebb, S.A. Prevalence of obesity in Great Britain. Obes. Rev. 2005, 6, 11–12. [Google Scholar] [CrossRef] [PubMed]
- Hormeño-Holgado, A.J.; Nikolaidis, P.T.; Clemente-Suárez, V.J. Psychophysiological patterns related to success in a special operation selection course. Front. Physiol. 2019, 10, 867. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Oliva, E.; Robles-Pérez, J.J.; Ruiz-Barquín, R.; Hidalgo-Bellota, F.; de la Vega, R. Psychophysiological response to the use of nuclear, biological and chemical equipment with military tasks. Physiol. Behav. 2019, 204, 186–190. [Google Scholar] [CrossRef] [PubMed]
Pre 1st Stage | Post 1st Stage | Pre 2nd Stage | Post 2nd Stage | Pre 3rd Stage | Post 3rd Stage | Pre 4th Stage | Post 4th Stage | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Participants | Unit | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 |
Flicker fusion | Hz | 40.9 | 46.0 | 40.3 | 38.4 | 40.6 | 41.3 | 40.4 | 39.4 | 42.0 | 41.2 | 38.0 | 38.0 | 42.3 | 41.5 | 41.9 | 39.6 |
Handgrip | kg | 49.0 | 49.0 | 50.0 | 44.0 | 51.0 | 49.5 | 51.0 | 43.0 | 52.0 | 41.0 | 51.5 | 42.0 | 55.0 | 39.5 | 53.0 | 40.0 |
Horizontal Jump | cm | 160.0 | 162.0 | 70.0 | 151.0 | 116.0 | 130.0 | 79.0 | 109.0 | 100.0 | 155.0 | 90.0 | 140.0 | 77.0 | 90.0 | 55.0 | 135.0 |
Weight | kg | 70.1 | 71.3 | 67.9 | 68.3 | 69.6 | 70.6 | 68.0 | 69.3 | 68.2 | 71.6 | 67.8 | 69.9 | 67.4 | 70.6 | 67.1 | 69.0 |
Glucose | mmol/L | 6.2 | 6.6 | 7.1 | 8.3 | 7.6 | 5.7 | 7.3 | 7.2 | ||||||||
Lactate | mmol/L | 3.7 | 11.5 | 9.4 | 3.1 | 1.6 | .8 | 2.2 | 2.1 | ||||||||
pH Orine | 5.0 | 6.0 | 5.0 | 6.0 | 6.0 | 6.0 | 6.0 | 6.0 | |||||||||
Nitrites orine | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |||||||||
Protein orine | 0 | 0 | 0 | 0 | 500.0 | 30.0 | 100.0 | 30.0 | |||||||||
Glucose orine | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |||||||||
Colorimetry orine | 7.0 | 7.0 | 6.0 | 1.0 | 5.0 | 1.0 | 7.0 | 2.0 | |||||||||
Creatin Kinase | μmol/L | 514.0 | 447.0 | 376.0 | 310.0 | 283.0 | 157.0 |
Pre 1st Stage | Post 1st Stage | Pre 2nd Stage | Post 2nd Stage | Pre 3rd Stage | Post 3rd Stage | Pre 4th Stage | Post 4th Stage | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Participants | Unit | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 |
Sleep hours last night | ≤5 | ≤5 | ≤5 | ≤5 | ≤5 | 6 | ≤5 | 6 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | |
Sleep quality last night | (0–10) | 3 | 9 | 4 | 9 | 5 | 7 | 4 | 7 | 7 | 9 | 7 | 9 | 8 | 8 | 8 | 8 |
Perceived muscular pain | (0–100) | 0 | 5 | 100 | 40 | 50 | 15 | 90 | 60 | 30 | 15 | 90 | 35 | 60 | 20 | 100 | 30 |
Perceived stress | (0–100) | 0 | 5 | 60 | 5 | 50 | 5 | 60 | 5 | 30 | 5 | 50 | 5 | 40 | 5 | 50 | 5 |
RPE | (6–20) | 6 | 10 | 19 | 15 | 6 | 10 | 19 | 15 | 7 | 9 | 19 | 15 | 7 | 10 | 20 | 13 |
Reaction time | (ms) | 437 | 278 | 379 | 301 | 368 | 286 | 362 | 298 | 395 | 333 | 341 | 229 | 320 | 271 | 290 | 245 |
Evaluation Moment | Pre Event | Day 1 | Day 2 | Day 3 | Day 4 | |||||
---|---|---|---|---|---|---|---|---|---|---|
Participant | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 |
Mean HR (bpm) | 65 | 64 | 95 | 92 | 96 | 95 | 94 | 91 | 97 | 92 |
RMSSD (ms) | 68 | 66 | 18 | 17 | 17 | 18 | 14 | 16 | 15 | 17.5 |
pNN50 (ms) | 29 | 27 | 2 | 2 | 1.8 | 1.7 | 1.6 | 1.9 | 1.5 | 1.8 |
Kcal consumed | 7311.1 | 7215.3 | 7343.8 | 7311.1 | 7278.4 | 7187.6 | 7376.5 | 7215.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Belinchón-deMiguel, P.; Ramos-Campo, D.J.; Clemente-Suárez, V.J. Exploring the Evolutionary Disparities: A Case Study on the Psychophysiological Response to Recreating the Hunter–Gatherer Lifestyle through Physical Activity and Caloric Restriction. Appl. Sci. 2023, 13, 11140. https://doi.org/10.3390/app132011140
Belinchón-deMiguel P, Ramos-Campo DJ, Clemente-Suárez VJ. Exploring the Evolutionary Disparities: A Case Study on the Psychophysiological Response to Recreating the Hunter–Gatherer Lifestyle through Physical Activity and Caloric Restriction. Applied Sciences. 2023; 13(20):11140. https://doi.org/10.3390/app132011140
Chicago/Turabian StyleBelinchón-deMiguel, Pedro, Domingo Jesús Ramos-Campo, and Vicente Javier Clemente-Suárez. 2023. "Exploring the Evolutionary Disparities: A Case Study on the Psychophysiological Response to Recreating the Hunter–Gatherer Lifestyle through Physical Activity and Caloric Restriction" Applied Sciences 13, no. 20: 11140. https://doi.org/10.3390/app132011140
APA StyleBelinchón-deMiguel, P., Ramos-Campo, D. J., & Clemente-Suárez, V. J. (2023). Exploring the Evolutionary Disparities: A Case Study on the Psychophysiological Response to Recreating the Hunter–Gatherer Lifestyle through Physical Activity and Caloric Restriction. Applied Sciences, 13(20), 11140. https://doi.org/10.3390/app132011140