Dietary Behavior of Spanish Schoolchildren in Relation to the Polygenic Risk of Obesity
Abstract
:1. Introduction
2. Methodology
2.1. Participants
2.2. Instruments
2.2.1. CEBQ Questionnaire
2.2.2. Genetic Analysis
Calculation of the Genetic Risk for Obesity
2.2.3. Anthropometric Study
2.3. Statistical Procedures
3. Results
3.1. Anthropometric and Genetic Description of the Sample
The Genetic Risk Score and Prevalence of Overweight and Adiposity
3.2. Genetic Risk Score for Obesity and Eating Behavior
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Chromosome | Associated Gene | SNP | Position | Alelles * |
---|---|---|---|---|
1 | LEPR | rs1137101 | 65.592.830 | A/G |
1 | SEC16B | rs543874 | 177.920.345 | A/G |
1 | GPR61 | rs7550711 | 110.082.886 | C/T |
2 | TMEM18 | rs6548238 | 634.905 | C/T |
2 | TMEM18 | rs4854349 | 647.861 | T/C |
2 | INSIG2 | rs7566605 | 118.836.025 | C/G |
2 | ADCY3 | rs11676272 | 24.918.669 | A/G |
2 | COBLL1 | rs6738627 | 164.687.940 | G/A |
3 | CASR | rs1801725 | 122.284.910 | G/T |
4 | GNPDA2 | rs10938397 | 45.182.530 | A/G |
4 | CLOCK | rs1801260 | 56.301.369 | A/G |
6 | TFAP2B | rs987237 | 50.835.337 | A/G |
7 | EXOC4 | rs7804463 | 133.762.898 | T/C |
8 | ELP3 | rs13253111 | 28.204.457 | A/G |
9 | FAM120AOS | rs944990 | 96.191.004 | C/T |
9 | LMX1B | rs3829849 | 126.628.521 | C/T |
10 | PAPSS2 | rs10887741 | 87.683.553 | T/C |
12 | FAI2M | rs7132908 | 49.869.365 | G/A |
12 | FAIM2 | rs7138803 | 50.242.468 | A/G |
13 | OLFM4 | rs12429545 | 54.102.206 | A/G |
13 | SPRY2z | rs693839 | 80.384.153 | T/C |
16 | FTO | rs1558902 | 53.803.547 | A/T |
16 | FTO | rs17817449 | 53.813.367 | G/T |
16 | FTO | rs9939609 | 53.820.527 | A/T |
16 | FTO | rs1421085 | 53.767.042 | T/C |
16 | IRX3 | rs3751723 | 54.286.285 | G/T |
16 | SH2B1 | rs4788099 | 28.844.406 | A/G |
18 | MC4R | rs6567160 | 60.161.902 | T/C |
18 | RAB27B | rs8092503 | 54.812.256 | A/G |
19 | NECTIN2 | rs6857 | 44.888.997 | T/C |
19 | CRTC1 | rs757318 | 18.709.498 | C/A |
22 | PLA2G6 | rs3761445 | 38.199.404 | G/A |
SNP | Genotype Frequency (%) | FAR | European FAR * | H-W Equilibrium | ||
---|---|---|---|---|---|---|
rs1137101 (LEPR) Risk allele: G | AA: 33.20 | AG: 48.00 | GG: 18.80 | 0.43 | 0.45 | p = 0.844 |
rs543874 (SEC16B) Risk allele: G | AA: 69.50 | AG: 27.70 | GG: 2.80 | 0.17 | 0.18 | p = 0.984 |
rs7550711 (GPR61) Risk allele: T | CC: 94.90 | CT: 0.00 | TT: 5.10 | 0.07 | 0.04 | p = 0.070 |
rs6548238(TMEM 18) Risk allele: T | CC: 70.80 | CT: 27.40 | TT: 1.80 | 0.16 | 0.15 | p = 0.646 |
rs4854349 (TMEM18) Risk allele: C | TT: 3.10 | TC: 33.20 | CC: 63.70 | 0.82 | 0.83 | p = 0.621 |
rs7566605 (INSIG2) Risk allele: C | GG: 43.80 | GC: 43.60 | CC: 12.60 | 0.34 | 0.32 | p = 0.734 |
rs11676272 (ADCY3) Risk allele: G | AA: 27.70 | AG: 53.50 | GG: 18.80 | 0.46 | 0.48 | p = 0.432 |
rs6738627 (COBLL1) Risk allele: A | GG: 39.80 | GA: 50.40 | AA: 9.80 | 0.35 | 0.36 | p = 0.281 |
rs1801725 (CASR) Risk allele: T | GG: 73.40 | GT: 25.00 | TT: 1.60 | 0.14 | 0.15 | p = 0.748 |
rs10938397(GNPDA2) Risk allele: G | AA: 32.20 | AG: 50.00 | GG: 17.80 | 0.43 | 0.37 | p = 0.838 |
rs1801260 (CLOCK) Risk allele: G | AA: 53.40 | AG: 37.00 | GG: 9.60 | 0.28 | 0.29 | p = 0.399 |
rs987237 (TFAP2B) Risk allele: G | AA: 70.30 | AG: 27.30 | GG: 2.30 | 0.16 | 0.19 | p = 0.854 |
rs7804463 (EXOC4) Risk allele: C | TT: 25.80 | TC: 53.10 | CC: 21.10 | 0.48 | 0.46 | p = 0.519 |
rs13253111 (ELP3) Risk allele: G | AA: 23.80 | AG: 50.00 | GG: 26.20 | 0.51 | 0.44 | p = 0.995 |
rs944990 (FAM120AOS) Risk allele: T | CC: 50.50 | CT: 42.70 | TT: 6.80 | 0.28 | 0.28 | p = 0.578 |
rs3829849 (LMX1B) Risk allele: T | CC: 39.50 | CT: 48.40 | TT: 12.10 | 0.36 | 0.36 | p = 0.217 |
rs10887741 (PAPSS2) Risk allele: C | TT: 46.10 | TC: 40.20 | CC: 13.70 | 0.34 | 0.39 | p = 0.984 |
rs7132908 (FAI2M) Risk allele: A | GG: 35.90 | GA: 49.60 | AA: 14.50 | 0.34 | 0.39 | p = 0.309 |
rs7138803 (FAIM2) Risk allele: A | GG: 42.20 | GA: 42.90 | AA: 14.08 | 0.36 | 0.38 | p = 0.555 |
rs12429545 (OLFM4) Risk allele: A | GG: 74.00 | GA: 23.50 | AA: 2.50 | 0.14 | 0.07 | p = 0.701 |
rs693839 (SPRY2z) Risk allele: C | TT: 45.70 | TC: 42.60 | CC: 11.70 | 0.33 | 0.31 | p = 0.714 |
rs1558902 (FTO) Risk allele: A | TT: 34.50 | TA: 44.70 | AA: 20.80 | 0.43 | 0.42 | p = 0.374 |
rs17817449 (FTO) Risk allele: G | TT: 36.10 | GT: 44.30 | GG: 19.60 | 0.42 | 0.41 | p = 0.374 |
rs9939609 (FTO) Risk allele: A | TT: 36.10 | TA: 44.10 | AA: 19.90 | 0.42 | 0.41 | p = 0.984 |
SNP | Genotype frequency (%) | FAR | European FAR * | Balance H-W | ||
rs1421085 (FTO) Risk allele: C | TT: 35.20 | TC: 46.10 | CC: 18.80 | 0.42 | 0.42 | p = 0.372 |
rs3751723 (IRX3) Risk allele: T | GG: 41.40 | GT: 45.70 | TT: 12.90 | 0.36 | 0.39 | p = 0.959 |
rs4788099 (SH2B1) Risk allele: G | AA: 43.00 | AG: 43.70 | GG: 13.30 | 0.35 | 0.38 | p = 0.678 |
rs6567160 (MC4R) Risk allele: C | TT: 59.80 | TC: 35.90 | CC: 4.30 | 0.22 | 0.22 | p = 0.706 |
rs8092503 (RAB27B) Risk allele: G | AA: 66.80 | AG: 28.90 | GG: 4.30 | 0.19 | 0.23 | p = 0.607 |
rs6857 (NECTIN2) Risk allele: T | CC: 85.20 | CT: 14.10 | TT: 0.80 | 0.08 | 0.16 | p = 0.798 |
rs757318 (CRTC1) Risk allele: A | CC: 27.30 | CA: 52.00 | AA: 20.70 | 0.47 | 0.48 | p = 0.656 |
rs3761445 (PLA2G6) Risk allele: G | AA: 34.00 | AG: 52.70 | GG: 13.30 | 0.40 | 0.42 | p = 0.311 |
References
- Liberali, R.; Kupek, E.; Assis, M.A.A. Dietary Patterns and Childhood Obesity Risk: A Systematic Review. Child Obes. 2020, 16, 70–85. [Google Scholar] [CrossRef]
- Vesnina, A.; Prosekov, A.; Kozlova, O.; Atuchin, V. Genes and Eating Preferences, Their Roles in Personalized Nutrition. Genes 2020, 11, 357. [Google Scholar] [CrossRef]
- Comuzzie, A.G.; Cole, S.A.; Laston, S.L.; Voruganti, V.S.; Haack, K.; Gibbs, R.A.; Butte, N.F. Novel genetic loci identified for the pathophysiology of childhood obesity in the Hispanic population. PLoS ONE 2012, 12, e51954. [Google Scholar] [CrossRef]
- Jääskeläinen, A.; Schwab, U.; Kolehmainen, M.; Kaakinen, M.; Savolainen, M.J.; Froguel, P.; Cauchi, S.; Järvelin, M.-R.; Laitinen, J. Meal frequencies modify the effect of common genetic variants on body mass index in adolescents of the northern Finland birth cohort 1986. PLoS ONE 2013, 8, e73802. [Google Scholar] [CrossRef]
- Llewellyn, C.H.; Fildes, A. Behavioral Susceptibility Theory: Professor Jane Wardle and the role of appetite in the genetic risk of obesity. Curr. Obes. Rep. 2017, 6, 38–45. [Google Scholar] [CrossRef]
- Steinsbekk, S.; Belsky, D.; Guzey, I.C.; Wardle, J.; Wichstrøm, L. Polygenic Risk, Appetite Traits, and Weight Gain in Middle Childhood: A Longitudinal Study. JAMA Pediatr. 2016, 170, e154472. [Google Scholar] [CrossRef]
- Monnereau, C.; Jansen, P.W.; Tiemeier, H.; Jaddoe, V.W.V.; Felix, J.F. Influence of genetic variants associated with body mass index on eating behavior in childhood. Obesity 2017, 25, 765–772. [Google Scholar] [CrossRef]
- Faith, M.S.; Carnell, S.; Kral, T.V. Genetics of food intake self-regulation in childhood: Literature review and research opportunities. Hum. Hered. 2013, 75, 80–89. [Google Scholar] [CrossRef]
- Hughes, S.O.; Frazier-Wood, A.C. Satiety and the Self-Regulation of Food Take in Children: A Potential Role for Gene-Environment Interplay. Curr. Obes. Rep. 2016, 5, 81–87. [Google Scholar] [CrossRef]
- Herle, M.; Smith, A.D.; Kininmonth, A.; Llewellyn, C. The Role of Eating Behaviours in Genetic Susceptibility to Obesity. Curr. Obes. Rep. 2020, 9, 512–521. [Google Scholar] [CrossRef]
- Wardle, J.; Carnell, S.; Haworth, C.M.; Farooqi, I.S.; O’Rahilly, S.; Plomin, R. Obesity Associated Genetic Variation in FTO Is Associated with Diminished Satiety. J. Clin. Endocrinol. Metab. 2008, 93, 3640–3643. [Google Scholar] [CrossRef] [PubMed]
- Brytek-Matera, A.; Czepczor-Bernat, K.; Olejniczak, D. Food-related behaviours among individuals with overweight/obesity and normal body weight. Nutr. J. 2018, 17, 93. [Google Scholar] [CrossRef] [PubMed]
- WMA—World Medical Association. Helsinki Declaration—Ethical Principles for Medical Research Involving Human Subjects. 64ª Asamblea General, Fortaleza, Brasil. 2013. Available online: https://www.wma.net/policies-post/wma-declaration-ofhelsinki-ethical-principles-for-medical-research-involving-human-subjects/ (accessed on 12 June 2023).
- Wardle, J.; Guthrie, C.A.; Sanderson, S.; Rapoport, L. Development of the Children’s Eating Behaviour Questionnaire. J. Child Psychol. Psychiatry 2001, 42, 963–970. [Google Scholar] [CrossRef] [PubMed]
- Jimeno-Martínez, A.; Maneschy, I.; Moreno, L.A.; Bueno-Lozano, G.; De Miguel-Etayo, P.; Flores-Rojas, K.; Jurado-Castro, J.M.; de Lamas, C.; Vázquez-Cobela, R.; Martinez-Lacruz, R.; et al. Reliability and Validation of the Child Eating Behavior Questionnaire in 3- to 6-Year-Old Spanish Children. Front. Psychol. 2022, 13, 705912. [Google Scholar] [CrossRef]
- Zhu, J.; Loos, R.J.F.; Lu, L.; Zong, G.; Gan, W.; Ye, X.; Sun, L.; Li, H.; Lin, X. Associations of genetic risk score with obesity and related traits and the modifying effect of physical activity in a Chinese Han population. PLoS ONE 2014, 9, e91442. [Google Scholar] [CrossRef]
- Warrington, N.M.; Howe, L.D.; Paternoster, L.; Kaakinen, M.; Herrala, S.; Huikari, V.; Wu, Y.Y.; Kemp, J.P.; Timpson, N.J.; Pourcain, B.S.; et al. A genome-wide association study of body mass index across early life and childhood. Int. J. Epidemiol. 2015, 44, 700–712. [Google Scholar] [CrossRef]
- Martos-Moreno, G.A.; Serra-Juhé, C.; Pérez- Juraod, L.A.; Argente, J. Aspectos genéticos de la obesidad. Rev. Esp. Endocrinol. Pediatr. 2017, 8 (Suppl. S1), 21–32. [Google Scholar] [CrossRef]
- BioTools, B.M.; Labs, S.A. Speedtools Tissue DNA Extraction Kit. Kit Para la Extracción y Purificación de ADN Genómico a Partir de Tejidos, Células, Bacterias, Hongos y Fluidos Orgánicos. Instrucciones de Uso. (Ref. 21.136/7). 7ª Ed. 2015. Available online: http://www.biotools.eu/documentospdf/Speedtools_Tissue_DNA_Extraction_Kit.esp.ed07.Mayo15.pdf (accessed on 12 June 2023).
- Oeth, P.; Beaulieu, M.; Park, C.; Kosman, D.; del Mistro, G.; van deen Boom, D.; Jurinke, C. Sequenom Application Note. iPLEX® Assay: Increased Pleaxing Efficiency and Flexibility for MassARRAY® System through Single Base Primer Extensión with Mass-Modified Terminators. 2005. Available online: http://www.usc.es/cegen/wp-content/uploads/2016/03/Sequenom-iplex-assay.pdf (accessed on 14 June 2023).
- Belsky, D.W.; Moffitt, T.E.; Sugden, K.; Williams, B.; Houts, R.; McCarthy, J.; Caspi, A. Development and evaluation of a genetic risk score for obesity. Biodemogr. Soc. Biol. 2013, 59, 85–100. [Google Scholar] [CrossRef]
- Cole, T.J.; Bellizzi, M.C.; Flegal, K.M.; Dietz, W.H. Establishing a standard definition for child overweight and obesity worldwide international survey. BMJ 2000, 320, 1240–1243. [Google Scholar] [CrossRef]
- Marrodán, M.D.; Martínez, J.R.; González-Montero, M.; López-Ejeda, N.; Cabañas, M.D.; Prado, C. Precisión diagnóstica del índice cintura-talla para la identificación del sobrepeso y de la obesidad infantil. Med. Clin. 2012, 140, 296–301. [Google Scholar] [CrossRef]
- Brook, C.G. Determination of body composition of children from skinfold measurements. Arch. Dis. Child. 1971, 46, 182–184. [Google Scholar] [CrossRef] [PubMed]
- Siri, W.E. Body composition from fluid spaces and density; analysis of methods. In Techniques for Measuring Body Composition; Brozek, J., Henschel, A., Eds.; National Academy of Sciences: Washington, DC, USA, 1961; pp. 223–244. [Google Scholar]
- Durnin, J.V.; Rahaman, M.M. The assessment of the amount of fat in the human body from measurements of skinfold thickness. Br. J. Nutr. 1967, 21, 681–689. [Google Scholar] [CrossRef] [PubMed]
- Serrano, M.M.; Santurino, M.M.; Díaz, J.A.; Soblechero, B.A.; Caballero, P.B.; Hernández, L.D.; Yepes, M.G.; Castelar, J.L.; Rosa, J.R.; de Espinosa, M.G.-M. Diagnosis de la obesidad: Actualización de criterios y su validez clínica y poblacional. An. Pediatría 2006, 65, 5–14. [Google Scholar] [CrossRef] [PubMed]
- Cecil, J.; Dalton, M.; Finlayson, G.; Blundell, J.; Hetherington, M.; Palmer, C. Obesity and eating behaviour in children and adolescents: Contribution of common gene polymorphisms. Int. Rev. Psychiatry 2012, 24, 200–210. [Google Scholar] [CrossRef]
- Llewellyn, C.H.; Trzaskowski, M.; van Jaarsveld, C.H.M.; Plomin, R.; Wardle, J. Satiety mechanisms in genetic risk of obesity. JAMA Pediatr. 2014, 168, 338–344. [Google Scholar] [CrossRef]
- Steinsbekk, S.; Wichstrøm, L. Predictors of Change in BMI from the Age of 4 to 8. J. Pediatr. Psychol. 2015, 40, 1056–1064. [Google Scholar] [CrossRef]
- Fildes, A.; Mallan, K.M.; Cooke, L.; van Jaarsveld, C.H.; Llewellyn, C.H.; Fisher, A.; Daniels, L. The relationship between appetite and food preferences in British and Australian children. Int. J. Behav. Nutr. Phys. Act. 2015, 12, 116. [Google Scholar] [CrossRef]
- Rudy, E.; Bauer, K.W.; Hughes, S.O.; O’Connor, T.M.; Vollrath, K.; Davey, A.; Correa, N.E.M.; Chen, T.; Fisher, J.O. Interrelationships of child appetite, weight and snacking among Hispanic preschoolers. Pediatr. Obes. 2018, 13, 38–45. [Google Scholar] [CrossRef]
- Panichsillaphakit, E.; Chongpison, Y.; Saengpanit, P.; Kwanbunbumpen, T.; Uaariyapanichkul, J.; Chomtho, S.; Pancharoen, C.; Visuthranukul, C. Cuestionario de comportamiento alimentario infantil correlacionado con composiciones corporales de niños y adolescentes tailandeses con obesidad: Un estudio piloto. J. Nutr. Metab. 2021, 2021, 6496134. [Google Scholar] [CrossRef]
- Herle, M.; Fildes, A.; Llewellyn, C.H. Emotional eating is learned not inherited in children, regardless of obesity risk. Pediatr. Obes. 2018, 13, 628–631. [Google Scholar] [CrossRef]
- Herle, M.; Fildes, A.; Steinsbekk, S.; Rijsdijk, F.; Llewellyn, C.H. Emotional over- and under-eating in early childhood are learned not inherited. Sci. Rep. 2017, 7, 9092. [Google Scholar] [CrossRef] [PubMed]
- Gibson, E.L.; Cooke, L. Understanding Food Fussiness and Its Implications for Food Choice, Health, Weight and Interventions in Young Children: The Impact of Professor Jane Wardle. Curr. Obes. Rep. 2017, 6, 46–56. [Google Scholar] [CrossRef] [PubMed]
- Jackson, R.; Haszard, J.J.; Morrison, S.; Galland, B.C.; McIntosh, D.; Ward, A.L.; Meredith-Jones, K.A.; Taylor, R.W. Measuring short-term eating behaviour and desire to eat: Validation of the child eating behaviour questionnaire and a computerized ‘desire to eat’ computerized questionnaire. Appetite 2021, 167, 105661. [Google Scholar] [CrossRef]
- Tanofsky-Kraff, M.; Han, J.C.; Anandalingam, K.; Shomaker, L.B.; Columbo, K.M.; Wolkoff, L.E.; Kozlosky, M.; Elliott, C.; Ranzenhofer, L.M.; Roza, C.A.; et al. The FTO gene rs9939609 obesity-risk allele and loss of control over eating. Am. J. Clin. Nutr. 2009, 90, 1483–1488. [Google Scholar] [CrossRef] [PubMed]
- Housni, F.E.; Sáenz-Pardo-Reyes, E.; López-Espinoza, A.; Moreno, A.G.M.; Galindo, M.d.R.P.; Saucedo, G.V. Efecto de las técnicas y estrategias de modificación de la velocidad al comer sobre la ingesta de alimentos o energía: Revisión sistemática y metaanálisis. Nutr. Hosp. 2021, 38, 631–644. [Google Scholar] [CrossRef]
- Phan, L.; Jin, Y.; Zhang, H.; Qiang, W.; Shekhtman, E.; Shao, D.; Revoe, D.; Villamarin, R.; Ivanchenko, E.; Kimura, M.; et al. ALFA: Allele Frequency Aggregator. National Center for Biotechnology Information, U.S. National Library of Medicine, 10 March 2020. Available online: https://www.ncbi.nlm.nih.gov/snp/docs/gsr/alfa/ (accessed on 23 March 2023).
6–10 Years (Mean ± SD) | 11–16 Years (Mean ± SD) | |||||
---|---|---|---|---|---|---|
Male | Female | p | Male | Female | p | |
Weight (kg) | 33.54 ± 10.50 | 34.46 ± 8.18 | 0.440 | 51.28 ± 13.30 | 50.53 ± 12.52 | 0.939 |
Height (cm) | 134.42 ± 10.15 | 136.23 ± 9.42 | 0.161 | 155.48 ± 11.46 | 155.92 ± 8.30 | 0.179 |
Waist circumference (cm) | 65.10 ± 10.54 | 63.91 ± 8.12 | 0.323 | 75.45 ± 11.31 | 70.61 ± 8.70 | <0.001 * |
Tricipital skinfold (mm) | 12.64 ± 6.17 | 13.82 ± 4.94 | 0.100 | 14.70 ± 9.60 | 15.76 ± 6.12 | 0.179 |
Bicipital skinfold (mm) | 8.06 ± 4.83 | 8.76 ± 3.75 | 0.202 | 9.66 ± 5.34 | 9.61 ± 4.25 | 0.838 |
Subescapular skinfold (mm) | 9.14 ± 6.37 | 10.00 ± 4.87 | 0.235 | 12.01 ± 7.50 | 12.52 ± 6.50 | 0.548 |
Suprailiac skinfold (mm) | 10.57 ± 7.84 | 11.24 ± 6.57 | 0.477 | 15.16 ± 8.77 | 14.30 ± 6.92 | 0.372 |
GRS ≤ Q2 (≤22 Points) | GRS ≥ Q3 (≥23 Points) | Comparison | ||
---|---|---|---|---|
BMI 1 | Normal weight | 69.60% | 74.30% | X2 = 6.245 p = 0.040 * |
Overweight | 24.10% | 14.60% | ||
Obesity | 6.30% | 11.10% | ||
WHR 2 | Normal weight | 58.90% | 52.80% | X2 = 1.235 p = 0.556 |
Abdominal overweight | 14.60% | 16.70% | ||
Abdominal obesity | 26.60% | 30.60% | ||
%BF 3 | Medium (p < 90) | 54.90% | 52.10% | X2 = 2.679 p = 0.220 |
High (p90–p97) | 18.20% | 20.80% | ||
Very High (>p97) | 26.90% | 27.10% |
Dimension | Subscale | GRS (Q1: ≤19 Points) | GRS (Q2: 20–22 Points) | GRS (Q3: 23–25 Points) | GRS (Q4: >25 Points) | Comparison |
---|---|---|---|---|---|---|
Pro-intake | 1. Enjoyment of food (EF) (X ± SD) | 3.84 ± 0.68 | 3.92 ± 0.67 | 3.90 ± 0.64 | 3.92 ± 0.63 | F = 0.513 p = 0.916 |
2. Food responsiveness (FR) (X ± SD) | 2.29 ± 0.91 | 2.13 ± 0.92 | 2.53 ± 0.90 | 2.51 ± 1.21 | F = 7.118 p = 0.048 * | |
3. Emotional overeating (EOE) (X ± SD) | 2.19 ± 0.79 | 1.91 ± 0.92 | 2.30 ± 0.95 | 2.18 ± 0.92 | F = 7.334 p = 0.042 * | |
4. Desire to drink (DD) (X ± SD) | 2.44 ± 0.93 | 2.18 ± 0.87 | 2.45 ± 0.92 | 2.40 ± 0.92 | F = 4.372 p = 0.224 | |
Anti-intake | 5. Satiety responsiveness (SR) (X ± SD) | 2.46 ± 0.65 | 2.46 ± 0.48 | 2.45 ± 0.71 | 2.38 ± 0.70 | F = 0.736 p = 0.865 |
6. Slowness in eating (SE) (X ± SD) | 2.53 ± 1.05 | 2.49 ± 0.83 | 2.55 ± 0.90 | 2.28 ± 1.02 | F = 2.810 p = 0.122 | |
7. Emotional undereating (EUE) (X ± SD) | 2.50 ± 0.83 | 2.65 ± 0.97 | 2.19 ± 0.86 | 2.41 ± 0.90 | F = 8.561 p = 0.036 * | |
8. Food fussiness (FF) (X ± SD) | 2.63 ± 0.86 | 2.76 ± 0.98 | 2.87 ± 0.97 | 2.55 ± 0.79 | F = 3.452 p = 0.327 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Calderón García, A.; Pedrero Tomé, R.; Alaminos-Torres, A.; Prado Martínez, C.; Martínez Álvarez, J.R.; López Ejeda, N.; Cabañas Armesilla, M.D.; Marrodán Serrano, M.D. Dietary Behavior of Spanish Schoolchildren in Relation to the Polygenic Risk of Obesity. Appl. Sci. 2023, 13, 11169. https://doi.org/10.3390/app132011169
Calderón García A, Pedrero Tomé R, Alaminos-Torres A, Prado Martínez C, Martínez Álvarez JR, López Ejeda N, Cabañas Armesilla MD, Marrodán Serrano MD. Dietary Behavior of Spanish Schoolchildren in Relation to the Polygenic Risk of Obesity. Applied Sciences. 2023; 13(20):11169. https://doi.org/10.3390/app132011169
Chicago/Turabian StyleCalderón García, Andrea, Roberto Pedrero Tomé, Ana Alaminos-Torres, Consuelo Prado Martínez, Jesús Román Martínez Álvarez, Noemí López Ejeda, María Dolores Cabañas Armesilla, and María Dolores Marrodán Serrano. 2023. "Dietary Behavior of Spanish Schoolchildren in Relation to the Polygenic Risk of Obesity" Applied Sciences 13, no. 20: 11169. https://doi.org/10.3390/app132011169
APA StyleCalderón García, A., Pedrero Tomé, R., Alaminos-Torres, A., Prado Martínez, C., Martínez Álvarez, J. R., López Ejeda, N., Cabañas Armesilla, M. D., & Marrodán Serrano, M. D. (2023). Dietary Behavior of Spanish Schoolchildren in Relation to the Polygenic Risk of Obesity. Applied Sciences, 13(20), 11169. https://doi.org/10.3390/app132011169