Geographical Information System Enhancement Using Active Learning-Enhanced Semantic Segmentation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Methods for Geographical Information System Refinement
2.2. Semantic Segmentation Algorithms for Roof
2.3. Geographic Image Processing and Latitude and Longitude Determination
3. Results and Discussion
3.1. Selection of the Optimal Algorithm
3.2. Refinement of the GIS-Labeled Dataset
3.3. Inference of Test Images and Validation of GIS Application Implementation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Farooq, M.S.; Riaz, S.; Abid, A.; Abid, K.; Naeem, M.A. A Survey on the Role of IoT in Agriculture for the Implementation of Smart Farming. IEEE Access 2022, 10, 53374–53397. [Google Scholar] [CrossRef]
- Sun, Y.; Zhi, X.; Han, H.; Jiang, S.; Shi, T.; Gong, J.; Zhang, W. Enhancing UAV Detection in Surveillance Camera Videos through Spatiotemporal Information and Optical Flow. Sensors 2023, 23, 6037. [Google Scholar] [CrossRef] [PubMed]
- Kentsch, S.; Lopez Caceres, M.L.; Serrano, D.; Roure, F.; Diez, Y. Computer Vision and Deep Learning Techniques for the Analysis of Drone-Acquired Forest Images, a Transfer Learning Study. Remote Sens. 2020, 12, 1287. [Google Scholar] [CrossRef]
- Nevavuori, P.; Narra, N.; Linna, P.; Lipping, T. Crop Yield Prediction Using Multitemporal UAV Data and Spatio-Temporal Deep Learning Models. Remote Sens. 2020, 12, 4000. [Google Scholar] [CrossRef]
- Onishi, M.; Ise, T. Explainable identification and mapping of trees using UAV RGB image and deep learning. Sci. Rep. 2021, 11, 903. [Google Scholar] [CrossRef]
- Ecke, S.; Dempewolf, J.; Frey, J.; Schwaller, A.; Endres, E.; Klemmt, H.-J.; Tiede, D.; Seifert, T. UAV-Based Forest Health Monitoring: A Systematic Review. Remote Sens. 2022, 14, 3205. [Google Scholar] [CrossRef]
- Oh, S.; Ham, S.; Lee, S. Drone-Assisted Image Processing Scheme using Frame-Based Location Identification for Crack and Energy Loss Detection in Building Envelopes. Energies 2021, 14, 6359. [Google Scholar] [CrossRef]
- He, Y.; Ma, W.; Ma, Z.; Fu, W.; Chen, C.; Yang, C.-F.; Liu, Z. Using Unmanned Aerial Vehicle Remote Sensing and a Monitoring Information System to Enhance the Management of Unauthorized Structures. Appl. Sci. 2019, 9, 4954. [Google Scholar] [CrossRef]
- Diez, Y.; Kentsch, S.; Fukuda, M.; Caceres, M.L.L.; Moritake, K.; Cabezas, M. Deep Learning in Forestry Using UAV-Acquired RGB Data: A Practical Review. Remote Sens. 2021, 13, 2837. [Google Scholar] [CrossRef]
- Lin, X.; Zhang, J. Object-based morphological building index for building extraction from high resolution remote sensing imagery. Acta Geod. Cartogr. Sin. 2017, 46, 724–733. [Google Scholar]
- Gundu, S.; Syed, H. Vision-Based HAR in UAV Videos Using Histograms and Deep Learning Techniques. Sensors 2023, 23, 2569. [Google Scholar] [CrossRef]
- Munawar, H.S.; Ullah, F.; Heravi, A.; Thaheem, M.J.; Maqsoom, A. Inspecting Buildings Using Drones and Computer Vision: A Machine Learning Approach to Detect Cracks and Damages. Drones 2022, 6, 5. [Google Scholar] [CrossRef]
- Xu, H.; Song, J.; Zhu, Y. Evaluation and Comparison of Semantic Segmentation Networks for Rice Identification Based on Sentinel-2 Imagery. Remote Sens. 2023, 15, 1499. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015; Navab, N., Hornegger, J., Wells, W., Frangi, A., Eds.; Springer: Munich, Germany, 2015; pp. 234–241. [Google Scholar]
- Badrinarayanan, V.; Kendall, A.; Cipolla, R. Segnet: A deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [Google Scholar] [CrossRef]
- Tharwat, A.; Schenck, W. A Survey on Active Learning: State-of-the-Art, Practical Challenges and Research Directions. Mathematics 2023, 11, 820. [Google Scholar] [CrossRef]
- Chen, L.-C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs. arXiv 2014, arXiv:1412.7062. Available online: https://arxiv.org/abs/1412.7062 (accessed on 1 August 2023).
- Wang, S.; Ding, L.; Chen, Z.; Dou, A. A Rapid UAV Image Georeference Algorithm Developed for Emergency Response. J. Sens. 2018, 2018, 8617843. [Google Scholar] [CrossRef]
- Ballesteros, J.R.; Sanchez-Torres, G.; Branch-Bedoya, J.W. A GIS Pipeline to Produce GeoAI Datasets from Drone Overhead Imagery. ISPRS Int. J. Geo-Inf. 2022, 11, 508. [Google Scholar] [CrossRef]
- Liu, X.; Li, R.; Wang, Y.; Nielsen, P.S. SEGSys: A mapping system for segmentation analysis in energy. arXiv 2012, arXiv:2012.06446. [Google Scholar]
- Dong, R.; Li, W.; Fu, H.; Gan, L.; Yu, L.; Zheng, J.; Xia, M. Oil palm plantation mapping from high-resolution remote sensing images using deep learning. Int. J. Remote Sens. 2020, 41, 2022–2046. [Google Scholar] [CrossRef]
- Ballesteros, J.R.; Sanchez-Torres, G.; Branch-Bedoya, J.W. HAGDAVS: Height-Augmented Geo-Located Dataset for Detection and Semantic Segmentation of Vehicles in Drone Aerial Orthomosaics. Data 2022, 7, 50. [Google Scholar] [CrossRef]
- Audebert, N.; Le Saux, B.; Lefèvre, S. Joint Learning from Earth Observation and OpenStreetMap Data to Get Faster Better Semantic Maps. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Honolulu, HI, USA, 21–26 July 2017; pp. 1552–1560. [Google Scholar]
- Krapf, S.; Bogenrieder, L.; Netzler, F.; Balke, G.; Lienkamp, M. RID—Roof Information Dataset for Computer Vision-Based Photovoltaic Potential Assessment. Remote Sens. 2022, 14, 2299. [Google Scholar] [CrossRef]
- Xia, L.; Zhang, X.; Zhang, J.; Yang, H.; Chen, T. Building Extraction from Very-High-Resolution Remote Sensing Images Using Semi-Supervised Semantic Edge Detection. Remote Sens. 2021, 13, 2187. [Google Scholar] [CrossRef]
- Lu, T.; Ming, D.; Lin, X.; Hong, Z.; Bai, X.; Fang, J. Detecting Building Edges from High Spatial Resolution Remote Sensing Imagery Using Richer Convolution Features Network. Remote Sens. 2018, 10, 1496. [Google Scholar] [CrossRef]
UNet | SegNet | ResNet18 | ResNet50 | |
---|---|---|---|---|
Training time | 220.9 | 170.3 | 85.3 | 174.5 |
Global Accuracy | Mean Accuracy | Mean IoU | Weighted IoU | |
---|---|---|---|---|
UNet | 0.77065 | 0.75067 | 0.60549 | 0.63206 |
SegNet | 0.75993 | 0.70205 | 0.56705 | 0.60776 |
ResNet18 | 0.78701 | 0.75992 | 0.62369 | 0.65181 |
ResNet50 | 0.82275 | 0.80698 | 0.67971 | 0.70237 |
Confusion Matrix | Expected | ||
---|---|---|---|
Roof | Background | ||
Labeled | Roof | 0.8615 | 0.1385 |
Background | 0.24754 | 0.75246 |
Global Accuracy | Mean Accuracy | MeanIoU | WeightedIoU | |
---|---|---|---|---|
Before refinement | 0.7841 | 0.77669 | 0.6392 | 0.64405 |
After refinement | 0.78896 | 0.78383 | 0.64729 | 0.6514 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Youm, S.; Go, S. Geographical Information System Enhancement Using Active Learning-Enhanced Semantic Segmentation. Appl. Sci. 2023, 13, 11254. https://doi.org/10.3390/app132011254
Youm S, Go S. Geographical Information System Enhancement Using Active Learning-Enhanced Semantic Segmentation. Applied Sciences. 2023; 13(20):11254. https://doi.org/10.3390/app132011254
Chicago/Turabian StyleYoum, Sungkwan, and Sunghyun Go. 2023. "Geographical Information System Enhancement Using Active Learning-Enhanced Semantic Segmentation" Applied Sciences 13, no. 20: 11254. https://doi.org/10.3390/app132011254
APA StyleYoum, S., & Go, S. (2023). Geographical Information System Enhancement Using Active Learning-Enhanced Semantic Segmentation. Applied Sciences, 13(20), 11254. https://doi.org/10.3390/app132011254