The Arrangement of the Osteons and Kepler’s Conjecture
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Proposal of Identification of Subtypes of the Dense Haversian Tissue
3.2. The Interosteonal Area and Its Theoretical Calculation
3.3. Comparison between the Theoretical and Real Calculation of the Interosteonal Area
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Frost, H.M. Secondary osteon population densities: An algorithm for estimating the missing osteons. Yearb. Phys. Anthropol. 1987, 30, 239–254. [Google Scholar] [CrossRef]
- Ruffing, J.A.; Cosman, F.; Zion, M.; Tendy, S.; Garrett, P.; Lindsay, R.; Nieves, J.W. Determinants of bone mass and bone size in a large cohort of physically active young adult men. Nutr. Metab. 2006, 3, 14. [Google Scholar] [CrossRef] [PubMed]
- Brits, D.; Steyn, M.; L’Abbé, E.N. A histomorphological analysis of human and non-human femora. Int. J. Leg. Med. 2014, 128, 369–377. [Google Scholar] [CrossRef] [PubMed]
- Skedros, J.G.; Knight, A.N.; Clark, G.C.; Crowder, C.M.; Dominguez, V.M.; Qiu, S.; Mulhern, D.M.; Donahue, S.W.; Busse, B.; Hulsey, B.I.; et al. Scaling of Haversian canal surface area to secondary osteon bone volume in ribs and limb bones. Am. J. Phys. Anthropol. 2013, 151, 230–244. [Google Scholar] [CrossRef]
- Felder, A.A.; Phillips, C.; Cornish, H.; Cooke, M.; Hutchinson, J.R.; Doube, M. Secondary osteons scale allometrically in mammalian humerus and femur. R. Soc. Open Sci. 2017, 4, 170431. [Google Scholar] [CrossRef]
- Biewener, A.A. Biomechanical consequences of scaling. J. Exp. Biol. 2005, 208, 1665–1676. [Google Scholar] [CrossRef]
- Babosová, R.; Zedda, M.; Belica, A.; Golej, M.; Chovancová, G.; Kalaš, M.; Vondráková, M. The enrichment of knowledge about the microstructure of brown bear compact bone tissue. Eur. Zool. J. 2022, 89, 615–624. [Google Scholar] [CrossRef]
- Skerry, T.M. The response of bone to mechanical loading and disuse: Fundamental principles and influences on osteo-blast/osteocyte homeostasis. Arch. Biochem. Biophys. 2008, 473, 117–123. [Google Scholar] [CrossRef]
- Sabet, F.A.; Raeisi Najafi, A.; Hamed, E.; Jasiuk, I. Modelling of bone fracture and strength at different length scales: A review. Interface Focus 2016, 6, 20150055. [Google Scholar] [CrossRef]
- Enlow, D.H.; Brown, S.O. A comparative histological study of fossil and recent bone tissues Part III. Tex. J. Sci. 1958, 10, 187–230. [Google Scholar]
- Enlow, D.H.; Brown, S.O. A comparative Histological Study of fossil and Recent Bone Tissues. Part I. Tex. J. Sci. 1956, 8, 405–443. [Google Scholar]
- Francillon-Vieillot, H.; de Bufrénil, V.; Castanet, J.; Geraudie, J.; Meunier, F.J.; Sire, J.Y.; Zylberberg, L.; de Ricqles, A. Skeletal Biomineralization: Patterns, Processes and Evolutionary Trends. In Microstructure and Mineralization of Skeletal Vertebral Tissues; Carter, J.G., Ed.; Springer: Berlin, Germany, 1989; pp. 471–530. [Google Scholar]
- Morales, J.P.; Ignacio, R.H.; Daniela, Z.; Ivan, S.H. Determination of the species from skeletal remains through histomorphometric evaluation and discriminant analysis. Int. J. Morphol. 2012, 30, 1035–1041. [Google Scholar] [CrossRef]
- Zedda, M.; Lepore, G.; Manca, P.; Chisu, V.; Farina, V. Comparative bone histology of adult horses (Equus caballus) and cows (Bos taurus). Anat. Histol. Embryol. 2008, 37, 442–445. [Google Scholar] [CrossRef] [PubMed]
- Zedda, M.; Palombo, M.R.; Brits, D.; Carcupino, M.; Sathe, V.; Cacchioli, A.; Farina, V. Differences in femoral morphology between sheep (Ovis aries) and goat (Capra hircus): Macroscopic and microscopic observations. Zoomorphology 2017, 136, 145–158. [Google Scholar] [CrossRef]
- Gudea, A.I.; Stefan, A.C. Histomorphometric, fractal and lacunarity comparative analysis of sheep (Ovis aries), goat (Capra hircus) and roe deer (Capreolus capreolus) compact bone samples. Folia Morphol. 2013, 72, 239–248. [Google Scholar] [CrossRef]
- Jowsey, J. Studies of Haversian systems in man and some animals. J. Anat. 1966, 100, 857–864. [Google Scholar]
- Cuijpers, A.G.F.M. Histological identification of bone fragments in archaeology: Telling humans apart from horses and cattle. Int. J. Osteoarchaeol. 2006, 16, 165–480. [Google Scholar] [CrossRef]
- Hillier, M.L.; Bell, L.S. Differentiating human bone from animal bone: A review of histological methods. J. Forensic Sci. 2007, 52, 249–263. [Google Scholar] [CrossRef]
- Crescimanno, A.; Stout, S.D. Differentiating fragmented human and nonhuman long bone using osteon circularity. J. Forensic Sci. 2012, 57, 287–294. [Google Scholar] [CrossRef]
- Dominguez, V.M.; Crowder, C.M. The utility of osteon shape and circularity for differentiating human and non-human haversian bone. Am. J. Phys. Anthropol. 2012, 149, 84–91. [Google Scholar] [CrossRef]
- Nacarino-Meneses, C.; Jordana, X.; Köhler, M. First approach to bone histology and skeletochronology of Equus hemionus. C. R. Palevol. 2016, 15, 277–287. [Google Scholar] [CrossRef]
- Giua, S.; Farina, V.; Cacchioli, A.; Ravanetti, F.; Carcupino, M.; Mohadero Novas, M.; Zedda, M. Comparative histology of the femur between moufon (Ovis aries musimon) and sheep (Ovis aries aries). J. Biol. Res. 2014, 87, 74–77. [Google Scholar] [CrossRef]
- Zedda, M.; Brits, D.; Giua, S.; Farina, V. Distinguishing domestic pig femora and tibiae from wild boar through microscopic analyses. Zoomorphology 2019, 138, 159–170. [Google Scholar] [CrossRef]
- Mason, M.W.; Skedros, J.G.; Bloebaum, R.D. Evidence of strain-mode-related cortical adaptation in the diaphysis of the horse radius. Bone 1995, 17, 229–237. [Google Scholar] [CrossRef] [PubMed]
- Matsuo, H.; Tsurumoto, T.; Maeda, J.; Saiki, K.; Okamoto, K.; Ogami-Takamura, K.; Kondo, H.; Tomita, M.; Yonekura, A.; Osaki, M. Investigating interindividual variations in cortical bone quality: Analysis of the morphotypes of secondary osteons and their population densities in the human femoral diaphysis. Anat. Sci. Int. 2019, 94, 75–85. [Google Scholar] [CrossRef]
- Bigley, R.F.; Griffin, L.V.; Christensen, L.; Vandenbosch, R. Osteon interfacial strength and histomorphometry of equine cortical bone. J. Biomech. 2006, 39, 1629–1640. [Google Scholar] [CrossRef] [PubMed]
- Pfeifer, S.; Crowder, C.; Harrington, L.; Brown, M. Secondary osteon and Haversian canal dimensions as behavioral indicators. Am. J. Phys. Anthropol. 2006, 131, 460–468. [Google Scholar] [CrossRef]
- Mayya, A.; Banerjee, A.; Rajesh, R. Mammalian cortical bone in tension is non-Haversian. Sci. Rep. 2013, 3, 2533. [Google Scholar] [CrossRef]
- Zedda, M.; Lepore, G.; Biggio, G.P.; Gadau, S.; Mura, E.; Farina, V. Morphology, morphometry and spatial distribution of secondary osteons in equine femur. Anat. Histol. Embryol. 2015, 44, 328–332. [Google Scholar] [CrossRef]
- Frongia, G.N.; Muzzeddu, M.; Mereu, P.; Leoni, G.; Berlinguer, F.; Zedda, M.; Farina, V.; Satta, V.; Di Stefano, M.; Naitana, S. Structural features of cross-sectional wing bones in the griffon vulture (Gyps fulvus) as a prediction of flight style. J. Morphol. 2018, 279, 1753–1763. [Google Scholar] [CrossRef]
- Frongia, G.N.; Naitana, S.; Farina, V.; Gadau, S.D.; Di Stefano, M.; Muzzeddu, M.; Leoni, G.; Zedda, M. Correlation between wing bone microstructure and different flight styles: The case of the griffon vulture (Gyps fulvus) and greater flamingo (Phoenicopterus roseus). J. Anat. 2021, 239, 59–69. [Google Scholar] [CrossRef] [PubMed]
- Kolb, C.; Scheyer, T.M.; Lister, A.M.; Azorit, C.; de Vos, J.; Schlingemann, M.A.J.; Rössner, G.E.; Monaghan, N.T.; Sanchez-Villagra, M.R. Growth in fossil and extant deer and implications for body size and life history evolution. BMC Evol. Biol. 2015, 15, 19. [Google Scholar] [CrossRef] [PubMed]
- Zedda, M.; Sathe, V.; Chakraborty, P.; Palombo, M.R.; Farina, V. A first comparison of bone histomorphometry in extant domestic horses (Equus caballus Linnaeus, 1758) and a Pleistocene Indian wild horse (Equus namadicus Falconer & Cautley, 1849). Integr. Zool. 2020, 15, 448–460. [Google Scholar] [CrossRef]
- Palombo, M.R.; Zedda, M. The intriguing giant deer from the Bate cave (Crete): Could paleohistological evidence question its taxonomy and nomenclature? Integr. Zool. 2022, 17, 54–77. [Google Scholar] [CrossRef] [PubMed]
- Parfitt, A.M.; Drezner, M.K.; Glorieux, F.H.; Kanis, J.A.; Malluche, H.; Meunier, P.; Ott, S.M.; Recker, R.R. Bone histomorphometry: Standardization of nomenclature, symbols, and units: Report of the ASBMR Histomorphometry Nomenclature Committee. J. Bone Min. Res. 1987, 2, 595–610. [Google Scholar] [CrossRef]
- Zedda, M.; Babosovà, R. Does the osteon morphology depend on the body mass? A scaling study on macroscopic and histomorphometric diferences between cow (Bos taurus) and sheep (Ovis aries). Zoomorphology 2021, 140, 169–181. [Google Scholar] [CrossRef]
- Lakes, R. On the torsional properties of single osteons. J. Biomech. 1995, 28, 1409–1410. [Google Scholar] [CrossRef]
- Miszkiewicz, J. Investigating histomorphometric relationships at the human femoral midshaft in a biomechanical context. J. Bone Min. Metab. 2016, 34, 179–192. [Google Scholar] [CrossRef]
- Wu, X.; Li, C.; Chen, K.; Sun, Y.; Yu, W.; Zhang, M.; Whang, Y.; Qin, Y.; Chen, W. Multi-scale mechanotransduction of the poroelastic signals from osteon to osteocyte in bone tissue. Acta Mech. Sin. 2020, 36, 964–980. [Google Scholar] [CrossRef]
- Kepler, J. Strena Seu de Nive Sexangula (The Six-Cornered Snowflake), 1st ed.; Gottfried Tampach: Frankfurt, Germany, 1611. [Google Scholar]
- Hales, T.C. Historical overview of the Kepler conjecture. Discret. Comput. Geom. 2006, 36, 5–20. [Google Scholar] [CrossRef]
- Hales, T.C.; Ferguson, S.P. A formulation of the Kepler conjecture. Discret. Comput. Geom. 2006, 36, 21–69. [Google Scholar] [CrossRef]
- Marchal, C. Study of Kepler’s conjecture: The problem of the closest packing. Math. Z. 2011, 267, 737–765. [Google Scholar] [CrossRef]
Osteon Measurements | Haversian Bone Tissue | |||||
---|---|---|---|---|---|---|
n | On.Dm | On.Ar | On.Dn | Irregular | Dense | |
Horse (Equus caballus) | 147 | 198.4 ± 32.9 | 31,582.5 ± 4386.2 | 5.1 | + | ++++ |
Cow (Bos taurus) | 134 | 164.7 ± 27.3 | 19,538.0 ± 2708.5 | 4.4 | ++ | +++ |
Deer (Cervus elaphus) | 43 | 135.9 ± 18.1 | 13,613.3 ± 2144.6 | 4.8 | ++ | +++ |
Pig (Sus scrofa domestica) | 103 | 138.6 ± 41.6 | 14,721.4 ± 1928.4 | 2.9 | +++ | ++ |
Wild boar (Sus scrofa) | 98 | 179.3 ± 25.8 | 22,167.1 ± 3319.7 | 3.9 | ++ | +++ |
Sheep (Ovis aries) | 170 | 128.2 ± 33.2 | 15,182.4 ± 2361.5 | 3.2 | ++++ | + |
Goat (Capra hircus) | 162 | 124.7 ± 24.5 | 14,601.3 ± 2173.8 | 3.8 | +++ | + |
Mouflon (Ovis musimon) | 109 | 156.6 ± 26.4 | 18,039.2 ± 2549.3 | 4.1 | +++ | ++ |
Fox (Vulpes vulpes) | 56 | 139.4 ± 37.0 | 15,496.7 ± 1838.2 | 2.9 | +++ | ++ |
Dog (Canis familiaris) | 74 | 125.2 ± 22.8 | 14,083.2 ± 2071.6 | 2.4 | ++++ | + |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zedda, M. The Arrangement of the Osteons and Kepler’s Conjecture. Appl. Sci. 2023, 13, 5170. https://doi.org/10.3390/app13085170
Zedda M. The Arrangement of the Osteons and Kepler’s Conjecture. Applied Sciences. 2023; 13(8):5170. https://doi.org/10.3390/app13085170
Chicago/Turabian StyleZedda, Marco. 2023. "The Arrangement of the Osteons and Kepler’s Conjecture" Applied Sciences 13, no. 8: 5170. https://doi.org/10.3390/app13085170
APA StyleZedda, M. (2023). The Arrangement of the Osteons and Kepler’s Conjecture. Applied Sciences, 13(8), 5170. https://doi.org/10.3390/app13085170