Comparison of Automatic Classification Methods for Identification of Ice Surfaces from Unmanned-Aerial-Vehicle-Borne RGB Imagery
Abstract
:1. Introduction
1.1. Iso Cluster
1.2. Maximum Likelihood
1.3. Random Trees
1.4. Support Vector Machine
1.5. Deep Learning
2. State of Art
3. Data Collection, Preprocessing and Methodology
- Data collection:
- Flight planning
- Flight itself
- Data preprocessing—mosaics creation
- Data processing—classifications
- Results visualization
3.1. Used Hardware and Software
3.2. Area of Interest
4. Data Collection
5. Data Preprocessing and Processing
6. Results and Discussion
7. Conclusions and Future Work
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kamilaris, A.; Pitsillides, A. The impact of remote sensing on the everyday lives of mobile users in urban areas. In Proceedings of the 7th International Conference on Mobile Computing and Ubiquitous Networking (ICMU), Singapore, 6–8 January 2014; pp. 153–158. [Google Scholar]
- Gao, J.; Liu, Y. Applications of remote sensing, GIS and GPS in glaciology: A review. Prog. Phys. Geogr. 2001, 25, 520–540. [Google Scholar] [CrossRef]
- Weng, Q. A remote sensing? GIS evaluation of urban expansion and its impact on surface temperature in the Zhujiang Delta, China. Int. J. Remote Sens. 2001, 22, 1999–2014. [Google Scholar]
- Sedlák, P.; Komárková, J.; Jech, J.; Mašín, O. Low-cost UAV as a Source of Image Data for Detection of Land Cover Changes. J. Inf. Syst. Eng. Manag. 2019, 4, em0095. [Google Scholar] [CrossRef] [PubMed]
- Lillesand, T.; Kiefer, R.W.; Chipman, J. Remote Sensing and Image Interpretation; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Mushtaq, S. SMART AGRICULTURE SYSTEM+ AND IMAGE PROCESSING. Int. J. Adv. Res. Comput. Sci. 2018, 9, 351–353. [Google Scholar] [CrossRef]
- Foody, G.M. Harshness in image classification accuracy assessment. Int. J. Remote Sens. 2008, 29, 3137–3158. [Google Scholar] [CrossRef]
- Comber, A.; Fisher, P.; Brunsdon, C.; Khmag, A. Spatial analysis of remote sensing image classification accuracy. Remote Sens. Environ. 2012, 127, 237–246. [Google Scholar] [CrossRef]
- Aicardi, I.; Chiabrando, F.; Grasso, N.; Lingua, A.M.; Noardo, F.; Spanò, A. UAV photogrammetry with oblique images: First analysis on data acquisition and processing. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 41, 835–842. [Google Scholar] [CrossRef]
- Sedlák, P.; Komárková, J.; Mašín, O.; Jech, J. The Procedure for Processing Images from a Low-cost UAV. In Proceedings of the 14th Iberian Conference on Information Systems and Technologies (CISTI), Coimbra, Portugal, 19–22 June 2019; pp. 1–4. [Google Scholar]
- Fahlstrom, P.; Gleason, T. Introduction to UAV Systems; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- AltiGator. Drone, UAV, UAS, RPA or RPAS …. Available online: https://altigator.com/en/drone-uav-uas-rpa-or-rpas/ (accessed on 14 June 2022).
- Granshaw, S.I. RPV, UAV, UAS, RPAS… or just drone? Photogramm. Rec. 2018, 33, 160–170. [Google Scholar] [CrossRef]
- ICAO. Unmanned Aviation. Available online: https://www.icao.int/safety/UA/UASToolkit/Pages/FAQ.aspx (accessed on 14 June 2022).
- Zhao, Z.; Liu, H. Spectral feature selection for supervised and unsupervised learning. In Proceedings of the 24th International Conference on Machine Learning, Corvalis, OR, USA, 20–24 June 2007; pp. 1151–1157. [Google Scholar]
- Stigler, S.M. The epic story of maximum likelihood. Stat. Sci. 2007, 22, 598–620. [Google Scholar] [CrossRef]
- Nezami, S.; Khoramshahi, E.; Nevalainen, O.; Pölönen, I.; Honkavaara, E. Tree species classification of drone hyperspectral and RGB imagery with deep learning convolutional neural networks. Remote Sens. 2020, 12, 1070. [Google Scholar] [CrossRef]
- Carbonneau, P.E.; Dugdale, S.J.; Breckon, T.P.; Dietrich, J.T.; Fonstad, M.A.; Miyamoto, H.; Woodget, A.S. Adopting deep learning methods for airborne RGB fluvial scene classification. Remote Sens. Environ. 2020, 251, 112107. [Google Scholar] [CrossRef]
- Bothmann, L.; Wimmer, L.; Charrakh, O.; Weber, T.; Edelhoff, H.; Peters, W.; Nguyen, H.; Benjamin, C.; Menzel, A. Automated wildlife image classification: An active learning tool for ecological applications. Ecol. Inform. 2023, 77, 102231. [Google Scholar] [CrossRef]
- Alqahtani, Y.; Nawaz, M.; Nazir, T.; Javed, A.; Jeribi, F.; Tahir, A. An improved deep learning approach for localization and Recognition of plant leaf diseases. Expert Syst. Appl. 2023, 230, 120717. [Google Scholar] [CrossRef]
- Tempfli, K.; Huurneman, G.; Bakker, W.; Janssen, L.L.; Feringa, W.F.; Gieske, A.S.M.; Grabmaier, K.A.; Hecker, C.A.; Horn, J.A.; Kerle, N.; et al. Principles of Remote Sensing: An Introductory Textbook; International Institute for Geo-Information Science and Earth Observation: Enschede, The Netherlands, 2009. [Google Scholar]
- Powers, D.M.W. Evaluation: From precision, recall and F-measure to ROC, informedness, markedness and correlation. arXiv 2020, arXiv:2010.16061. [Google Scholar]
- Sim, J.; Wright, C.C. The kappa statistic in reliability studies: Use, interpretation, and sample size requirements. Phys. Ther. 2005, 85, 257–268. [Google Scholar] [CrossRef]
- Abbas, A.W.; Minallh, N.; Ahmad, N.; Abid, S.A.R.; Khan, M.A.A. K-Means and ISODATA clustering algorithms for landcover classification using remote sensing. Sindh Univ. Res. J. SURJ (Sci. Ser.) 2016, 48, 315–318. [Google Scholar]
- Norzaki, N.; Tahar, K.N. A comparative study of template matching, ISO cluster segmentation, and tree canopy segmentation for homogeneous tree counting. Int. J. Remote Sens. 2019, 40, 7477–7499. [Google Scholar] [CrossRef]
- Pal, M. Random forest classifier for remote sensing classification. Int. J. Remote Sens. 2005, 26, 217–222. [Google Scholar] [CrossRef]
- Breiman, L. Classification and Regression Trees; CRC Press: Boca Raton, FL, USA, 1984. [Google Scholar]
- Chen, W.; Zhang, S.; Li, R.; Shahabi, H. Performance evaluation of the GIS-based data mining techniques of best-first decision tree, random forest, and naïve Bayes tree for landslide susceptibility modeling. Sci. Total Environ. 2018, 644, 1006–1018. [Google Scholar] [CrossRef]
- ArcGIS PRO. Train Random Trees Classifier. Available online: https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-analyst/train-random-trees-classifier.htm (accessed on 14 June 2022).
- Lazar, A.; Shellito, B.A. Classification in GIS using support vector machines. In Handbook of Research on Geoinformatics; IGI Global: Hershey, PA, USA, 2009; pp. 106–112. [Google Scholar]
- ArcGIS PRO. Train Support Vector Machine Classifier. Available online: https://desktop.arcgis.com/en/arcmap/10.3/tools/spatial-analyst-toolbox/train-support-vector-machine-classifier.htm (accessed on 14 June 2022).
- Kentsch, S.; Cabezas, M.; Tomhave, L.; Groß, J.; Burkhard, B.; Lopez Caceres, M.L.; Waki, K.; Diez, Y. Analysis of UAV-Acquired Wetland Orthomosaics Using GIS, Computer Vision, Computational Topology and Deep Learning. Sensors 2021, 21, 471. [Google Scholar] [CrossRef]
- ArcGIS PRO. What Is Deep Learning. Available online: https://pro.arcgis.com/en/pro-app/latest/help/analysis/deep-learning/what-is-deep-learning-.htm (accessed on 14 June 2022).
- Komarkova, J.; Jech, J. Processing UAV Based RGB Data to Identify Land Cover with Focus on Small Water Body Comparison of Methods. In Proceedings of the 15th Iberian Conference on Information Systems and Technologies (CISTI), Seville, Spain, 24–27 June 2020; pp. 1–6. [Google Scholar]
- Som-Ard, J.; Hossain, M.D.; Ninsawat, S.; Veerachitt, V. Pre-harvest sugarcane yield estimation using UAV-based RGB images and ground observation. Sugar Tech 2018, 20, 645–657. [Google Scholar] [CrossRef]
- Mondal, A.; Kundu, S.; Chandniha, S.K.; Shukla, R.; Mishra, P.K. Comparison of support vector machine and maximum likelihood classification technique using satellite imagery. Int. J. Remote Sens. GIS 2012, 1, 116–123. [Google Scholar]
- Zhang, Y.; Shen, H.; Xia, C. Automatic identification of soil and water conservation measures from centimeter-resolution unmanned aerial vehicle imagery. J. Soil Water Conserv. 2020, 75, 472–480. [Google Scholar] [CrossRef]
- Buckley, E.M.; Farrell, S.L.; Duncan, K.; Connor, L.N.; Kuhn, J.M.; Dominguez, R.T. Classification of sea ice summer melt features in high-resolution IceBridge imagery. J. Geophys. Res. Ocean. 2020, 125, e2019JC015738. [Google Scholar] [CrossRef]
- Sun, Y.; Carlström, A.; Askne, J. SAR image classification of ice in the Gulf of Bothnia. Int. J. Remote Sens. 1992, 13, 2489–2514. [Google Scholar] [CrossRef]
- Han, Y.; Gao, Y.; Zhang, Y.; Wang, J.; Yang, S. Hyperspectral sea ice image classification based on the spectral-spatial-joint feature with deep learning. Remote Sens. 2019, 11, 2170. [Google Scholar] [CrossRef]
- Burton-Johnson, A.; Wyniawskyj, N.S. Rock and snow differentiation from colour (RGB) images. Cryosphere Discuss 2020. preprint. [Google Scholar] [CrossRef]
- ESRI. HERE, Garmin, Intermap, Increment P. Corp., GEBCO, USGS, FAO, NPS, NRCAN, GeoBase, IGN, Kadaster NL, Ordnance Survey; ESRI: Tokyo, Japan, 2022. [Google Scholar]
- DJI. Available online: https://www.dji.com/ (accessed on 14 June 2022).
- Unmanned Aircraft. Civil Aviation Authority Czech Republic. Available online: https://www.caa.cz/en/flight-operations/unmanned-aircraft (accessed on 14 June 2022).
Searched Phrases in WOS and SCOPUS (2000–2022) | WOS | SCOPUS |
---|---|---|
image classification AND drone AND RGB | 56 | 1878 |
deep learning AND drone AND RGB | 56 | 4885 |
maximum likelihood AND drone AND RGB | 25 | 254 |
random trees * AND drone AND RGB | 6 | 99 |
iso cluster ** AND drone AND RGB | 1 | 27 |
SVM *** AND drone AND RGB | 91 | 1873 |
Key Word | WOS | SCOPUS |
---|---|---|
UAV | 28,423 | 57,575 |
drone | 8308 | 19,923 |
UAS | 6673 | 9839 |
Unmanned aerial vehicle | 15,480 | 53,445 |
Unmanned aerial system | 942 | 3391 |
RPAS | 657 | 937 |
MAV | 2476 | 6692 |
Method | Parameters |
---|---|
Manual Identification | Manual vectorization of areas into 2 classes |
Iso Cluster | Classification into 2 classes; 20 iterations |
Maximum Likelihood | Train set based on manual selection of each class; 5 samples per class |
Random Trees | Same train set as Maximum Likelihood; number of trees: 50; tree depth: 30; maximum number of samples per class 1000 |
SVM | Same train set as Maximum Likelihood; number of samples per class: 500 |
Deep Learning | Same train set as Maximum Likelihood; U-net (convolutional neural network) pixel classification; ResNet-34 (convolutional neural network with 34 layers) as Backbone model; 10 epochs |
Method | Pond Skříň | Pond Baroch |
---|---|---|
Manual identification—reference data | 1 | 1 |
Iso Cluster | 0.6946 | 0.8842 |
Maximum Likelihood | 0.8464 | 0.9312 |
Random Trees | 0.8175 | 0.9175 |
Support Vector Machine | 0.8940 | 0.9225 |
Deep Learning | 0.9212 | 0.8889 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jech, J.; Komárková, J.; Bhattacharya, D. Comparison of Automatic Classification Methods for Identification of Ice Surfaces from Unmanned-Aerial-Vehicle-Borne RGB Imagery. Appl. Sci. 2023, 13, 11400. https://doi.org/10.3390/app132011400
Jech J, Komárková J, Bhattacharya D. Comparison of Automatic Classification Methods for Identification of Ice Surfaces from Unmanned-Aerial-Vehicle-Borne RGB Imagery. Applied Sciences. 2023; 13(20):11400. https://doi.org/10.3390/app132011400
Chicago/Turabian StyleJech, Jakub, Jitka Komárková, and Devanjan Bhattacharya. 2023. "Comparison of Automatic Classification Methods for Identification of Ice Surfaces from Unmanned-Aerial-Vehicle-Borne RGB Imagery" Applied Sciences 13, no. 20: 11400. https://doi.org/10.3390/app132011400
APA StyleJech, J., Komárková, J., & Bhattacharya, D. (2023). Comparison of Automatic Classification Methods for Identification of Ice Surfaces from Unmanned-Aerial-Vehicle-Borne RGB Imagery. Applied Sciences, 13(20), 11400. https://doi.org/10.3390/app132011400