A Visual Fault Detection Algorithm of Substation Equipment Based on Improved YOLOv5
Abstract
:1. Introduction
2. Framework
2.1. YOLOv5 Algorithm Improvements
2.1.1. Fusion-Deformable Convolutional Modules
2.1.2. Feature Network Improvements
2.1.3. Add Prediction Layer
3. Experiments and Analysis
3.1. Datasets
3.2. Experimental Configuration and Model Training
3.3. Experimental Indicators
3.4. Ablation Experiments
4. Results and Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cong, S.; Pu, H.; Yao, F. Review on Application of Infrared Detection Technology in State Detection of Electrical Equipment. In Proceedings of the 16th Annual Conference of China Electrotechnical Society, Beijing, China, 24–26 September 2021; Springer: Singapore, 2022; Volume II, pp. 1254–1261. [Google Scholar]
- Dongxu, L.; Li, W.; Jinxuan, L.; Shaoyu, X.; Long, W.; Wenwang, X. Design and Research of Intelligent Operation Inspection and Monitoring System of Substation Based on Image Recognition Technology. In Proceedings of the 2022 2nd Asia-Pacific Conference on Communications Technology and Computer Science (ACCTCS), Shenyang, China, 25–27 February 2022; pp. 448–453. [Google Scholar]
- Bashkari, M.S.; Sami, A.; Rastegar, M. Outage cause detection in power distribution systems based on data mining. IEEE Trans. Ind. Inform. 2020, 17, 640–649. [Google Scholar]
- Jia, Y.; Ying, L.; Wang, D.; Zhang, J. Defect prediction of relay protection systems based on LSSVM-BNDT. IEEE Trans. Ind. Inform. 2020, 17, 710–719. [Google Scholar]
- Bin, C. Research on Intelligent Reconfiguration and Recognition Technology of Mobile Environment for Substation Operation. In Advancements in Mechatronics and Intelligent Robotics; Springer: Singapore, 2021; pp. 125–131. [Google Scholar]
- Le, N.; Rathour, V.S.; Yamazaki, K.; Luu, K.; Savvides, M. Deep reinforcement learning in computer vision: A comprehensive survey. Artif. Intell. Rev. 2022, 55, 2733–2819. [Google Scholar]
- Tian, H.; Wang, T.; Liu, Y.; Qiao, X.; Li, Y. Computer vision technology in agricultural automation—A review. Inf. Process. Agric. 2020, 7, 1–19. [Google Scholar]
- Li, Y.; Zhang, Y. Application research of computer vision technology in automation. In Proceedings of the 2020 International Conference on Computer Information and Big Data Applications (CIBDA), Guiyang, China, 17–19 April 2020; pp. 374–377. [Google Scholar]
- Chandra, M.A.; Bedi, S. Survey on SVM and their application in image classification. Int. J. Inf. Technol. 2021, 13, 1–11. [Google Scholar]
- Rao, Y.; Zhao, W.; Zhu, Z.; Lu, J.; Zhou, J. Global filter networks for image classification. Adv. Neural Inf. Process. Syst. 2021, 34, 980–993. [Google Scholar]
- Hernández, G.; Rodríguez, S.; González, A.; Corchado, J.M.; Prieto, J. Video analysis system using deep learning algorithms. In Ambient Intelligence—Software and Applications, Proceedings of the 11th International Symposium on Ambient Intelligence, Cham, Switzerland, L’Aquila, Italy, 17–19 June 2020; Springer: Cham, Switzerland, 2021; pp. 186–199. [Google Scholar]
- Wang, T.; Zhang, Z.; Tsui, K.L. A deep generative approach for rail foreign object detections via semisupervised learning. IEEE Trans. Ind. Inform. 2022, 19, 459–468. [Google Scholar]
- Ye, C.; Zhang, N.; Peng, L.; Tao, Y. Flexible array probe with in-plane differential multichannels for inspection of microdefects on curved surface. IEEE Trans. Ind. Electron. 2021, 69, 900–910. [Google Scholar]
- Chu, Y.; Feng, D.; Liu, Z.; Zhao, Z.; Wang, Z.; Xia, X.G.; Quek, T.Q. Hybrid-Learning-Based Operational Visual Quality Inspection for Edge-Computing-Enabled IoT System. IEEE Internet Things J. 2021, 9, 4958–4972. [Google Scholar]
- Shang, H.; Wu, J.; Sun, C.; Liu, J.; Chen, X.; Yan, R. Global prior transformer network in intelligent borescope inspection for surface damage detection of aero-engine blade. IEEE Trans. Ind. Inform. 2022, 19, 8865–8877. [Google Scholar]
- Minh, Q.N.; Nguyen, V.H.; Quy, V.K.; Ngoc, L.A.; Chehri, A.; Jeon, G. Edge Computing for IoT-Enabled Smart Grid: The Future of Energy. Energies 2022, 15, 6140. [Google Scholar] [CrossRef]
- Song, C.; Xu, W.; Han, G.; Zeng, P.; Wang, Z.; Yu, S. A cloud edge collaborative intelligence method of insulator string defect detection for power IIoT. IEEE Internet Things J. 2020, 8, 7510–7520. [Google Scholar]
- Zhou, X.; Wang, Y.; Zhu, Q.; Mao, J.; Xiao, C.; Lu, X.; Zhang, H. A surface defect detection framework for glass bottle bottom using visual attention model and wavelet transform. IEEE Trans. Ind. Inform. 2019, 16, 2189–2201. [Google Scholar]
- Ni, X.; Liu, H.; Ma, Z.; Wang, C.; Liu, J. Detection for rail surface defects via partitioned edge feature. IEEE Trans. Intell. Transp. Syst. 2021, 23, 5806–5822. [Google Scholar]
- Wen, L.; Wang, Y.; Li, X. A new cycle-consistent adversarial networks with attention mechanism for surface defect classification with small samples. IEEE Trans. Ind. Inform. 2022, 18, 8988–8998. [Google Scholar] [CrossRef]
- Kalchbrenner, N.; Grefenstette, E.; Blunsom, P. A convolutional neural network for modelling sentences. arXiv 2014, arXiv:1404.2188. [Google Scholar]
- Xu, Y.; Fu, M.; Wang, Q.; Wang, Y.; Chen, K.; Xia, G.S.; Bai, X. Gliding vertex on the horizontal bounding box for multi-oriented object detection. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 43, 1452–1459. [Google Scholar]
- Zheng, Z.; Wang, P.; Ren, D.; Liu, W.; Ye, R.; Hu, Q.; Zuo, W. Enhancing geometric factors in model learning and inference for object detection and instance segmentation. IEEE Trans. Cybern. 2021, 52, 8574–8586. [Google Scholar]
- Tian, Z.; Shen, C.; Chen, H.; He, T. FCOS: A simple and strong anchor-free object detector. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 44, 1922–1933. [Google Scholar]
- Lei, X.; Sui, Z. Intelligent fault detection of high voltage line based on the Faster R-CNN. Measurement 2019, 138, 379–385. [Google Scholar]
- Jiang, A.; Yan, N.; Wang, F.; Huang, H.; Zhu, H.; Wei, B. Visible image recognition of power transformer equipment based on mask R-CNN. In Proceedings of the 2019 IEEE Sustainable Power and Energy Conference (iSPEC), Beijing, China, 21–23 November 2019; pp. 657–661. [Google Scholar]
- Liu, Z.; Fu, H.; Li, Y.; Zhang, G.; Hu, C.; Zhang, G. Electrical Equipment Detection in Infrared Images Based on Transfer Learning of Mask-RCNN. J. Data Acquis. Process. 2021, 36, 176–183. [Google Scholar]
- Yin, Z.; Meng, R.; Fan, X.; Li, B.; Zhao, Z. Typical visual defect detection system of substation equipment based on edge computing and improved Faster R-CNN. China Sci. 2021, 16, 343–348. [Google Scholar]
- Ou, J.; Wang, J.; Xue, J.; Wang, J.; Zhou, X.; She, L.; Fan, Y. Infrared image target detection of substation electrical equipment using an improved faster R-CNN. IEEE Trans. Power Deliv. 2022, 38, 387–396. [Google Scholar] [CrossRef]
- Zhang, M.; Yin, L. Solar cell surface defect detection based on improved YOLO v5. IEEE Access 2022, 10, 80804–80815. [Google Scholar] [CrossRef]
- Guo, Z.; Wang, C.; Yang, G.; Huang, Z.; Li, G. Msft-yolo: Improved yolov5 based on transformer for detecting defects of steel surface. Sensors 2022, 22, 3467. [Google Scholar] [CrossRef]
- Yang, R.; Li, W.; Shang, X.; Zhu, D.; Man, X. KPE-YOLOv5: An Improved Small Target Detection Algorithm Based on YOLOv5. Electronics 2023, 12, 817. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, X.; Li, L.; Wang, L.; Zhou, Z.; Zhang, P. An Improved YOLOv7 Model Based on Visual Attention Fusion: Application to the Recognition of Bouncing Locks in Substation Power Cabinets. Appl. Sci. 2023, 13, 6817. [Google Scholar] [CrossRef]
- Hsu, W.Y.; Lin, W.Y. Ratio-and-scale-aware YOLO for pedestrian detection. IEEE Trans. Image Process. 2020, 30, 934–947. [Google Scholar] [CrossRef] [PubMed]
- Xuhong, W.; Hao, L.; Shaosheng, F.; Zhipeng, J. Infrared image anomaly automatic detection method for power equipment based on improved single shot multi box detection. Trans. China Electrotech. Soc. 2020, 35, 302–310. [Google Scholar]
- Cheng, Y. Detection of power line insulator based on enhanced Yolo Model. In Proceedings of the 2022 IEEE Asia-Pacific Conference on Image Processing, Electronics and Computers (IPEC), Dalian, China, 14–16 April 2022; pp. 626–632. [Google Scholar]
- Hu, X.; Zhou, Y. Insulator defect detection in power inspection image using focal loss based on YOLO v4. In Proceedings of the International Conference on Artificial Intelligence, Virtual Reality, and Visualization (AIVRV 2021), Sanya, China, 19–21 November 2021; Volume 12153, pp. 90–95. [Google Scholar]
- Zheng, H.; Li, J.; Liu, Y.; Cui, Y.; Ping, Y. Infrared Target Detection Model for Power Equipment Based on Improved YOLOv3. Trans. China Electrotech. Soc. 2021, 36, 1389–1398. [Google Scholar]
- Zhu, X.; Lyu, S.; Wang, X.; Zhao, Q. TPH-YOLOv5: Improved YOLOv5 based on transformer prediction head for object detection on drone-captured scenarios. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 2778–2788. [Google Scholar]
- Dai, J.; Qi, H.; Xiong, Y.; Li, Y.; Zhang, G.; Hu, H.; Wei, Y. Deformable convolutional networks. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–27 October 2017; pp. 764–773. [Google Scholar]
- Heda, L.; Sahare, P. Performance Evaluation of YOLOv3, YOLOv4 and YOLOv5 for Real-Time Human Detection. In Proceedings of the 2023 2nd International Conference on Paradigm Shifts in Communications Embedded Systems, Machine Learning and Signal Processing (PCEMS), Nagpur, India, 5–6 April 2023; pp. 1–6. [Google Scholar]
- Saxena, A. Optimized fractional overhead power term polynomial grey model (OFOPGM) for market clearing price prediction. Electr. Power Syst. Res. 2023, 214, 108800. [Google Scholar] [CrossRef]
Name | Parameter |
---|---|
learning rate | 0.001 |
batch size | 16 |
decay | 0.0005 |
momentum | 0.9 |
CSP | BiFPN | Head | Precision (%) | Recall (%) | [email protected] (%) | |
---|---|---|---|---|---|---|
YOLOv5 | - | - | - | 70.5% | 65.2% | 68.5% |
√ | - | - | 74.4% | 69.9% | 70.1% | |
- | √ | - | 75.3% | 70.8% | 71.5% | |
- | - | √ | 74.1% | 68.2% | 70.6% | |
pro-YOLOv5 | √ | √ | √ | 76.8% | 72.9% | 73.1% |
Algorithm | Precision (%) | Recall (%) | [email protected] (%) | [email protected]:0.95 (%) |
---|---|---|---|---|
Faster R-CNN | 72.16 | 62.25 | 61.85 | 39.23 |
RetinaNet | 68.43 | 60.26 | 61.85 | 39.23 |
YOLOv3 | 61.63 | 59.43 | 61.85 | 39.23 |
YOLOv4 | 66.28 | 60.45 | 58.56 | 37.12 |
YOLOv5 | 70.5 | 65.2 | 68.5 | 39.85 |
YOLOv8 | 77.5 | 66.1 | 72.3 | 40.21 |
pro-YOLOv5 | 76.8 | 72.9 | 73.1 | 42.97 |
Algorithm | Average Precision (%) | Average FPS (%) |
---|---|---|
YOLOv4 | 65.4 | 53 |
YOLOv5 | 69.8 | 49 |
YOLOv8 | 76.5 | 46 |
pro-YOLOv5 | 76.9 | 48 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Xiao, F.; Liu, F.; Sun, Y.; Deng, X.; Lin, L.; Zhu, C. A Visual Fault Detection Algorithm of Substation Equipment Based on Improved YOLOv5. Appl. Sci. 2023, 13, 11785. https://doi.org/10.3390/app132111785
Wu Y, Xiao F, Liu F, Sun Y, Deng X, Lin L, Zhu C. A Visual Fault Detection Algorithm of Substation Equipment Based on Improved YOLOv5. Applied Sciences. 2023; 13(21):11785. https://doi.org/10.3390/app132111785
Chicago/Turabian StyleWu, Yuezhong, Falong Xiao, Fumin Liu, Yuxuan Sun, Xiaoheng Deng, Lixin Lin, and Congxu Zhu. 2023. "A Visual Fault Detection Algorithm of Substation Equipment Based on Improved YOLOv5" Applied Sciences 13, no. 21: 11785. https://doi.org/10.3390/app132111785
APA StyleWu, Y., Xiao, F., Liu, F., Sun, Y., Deng, X., Lin, L., & Zhu, C. (2023). A Visual Fault Detection Algorithm of Substation Equipment Based on Improved YOLOv5. Applied Sciences, 13(21), 11785. https://doi.org/10.3390/app132111785