Damping of Oscillations of a Rotary Pendulum System
Abstract
:Featured Application
Abstract
1. Introduction
2. Input Shaping
2.1. Shaper Constraints
2.2. Input Shaping for Multiple Vibration Modes
3. Problem Formulation and System Description
4. Shaper Design
5. Verification of the Method
5.1. Simulation Verification
5.2. Real-System Verification
6. Results
7. Discussion
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Calvert, J.F.; Gimpel, D.J. Method and Apparatus for Control of System Output in Response to System Input. U.S. Patent No. 2,801,351, 30 July 1957. [Google Scholar]
- Smith, O.J.M. Posicast control of damped oscillatory systems. Proc. IRE 1957, 45, 1249–1255. [Google Scholar] [CrossRef]
- Smith, O. Feedback Control Systems; McGrawHill Book Co., Inc.: New York, NY, USA, 1958. [Google Scholar]
- Drapeau, V.; Wang, D. Verification of a closed-loop shaped-input controller for a five-bar-linkage manipulator. In Proceedings of the IEEE International Conference on Robotics and Automation, Atlanta, GA, USA, 2–6 May 1993. [Google Scholar]
- Singer, N.C.; Seering, W.P. Preshaping Command Inputs to Reduce System Vibration. J. Dyn. Sys. Meas. Control 1990, 112, 76–82. [Google Scholar] [CrossRef]
- Singhose, W.; Seering, W.; Singer, N. Residual vibration reduction using vector diagrams to generate shaped inputs. J. Mech. Des. 1994, 116, 654–659. [Google Scholar] [CrossRef]
- Magee, D.P.; Book, W.J. Filtering Micro-Manipulator Wrist Commands to Prevent Flexible Base Motion. In Proceedings of the Proceedings of American Control Conference, Seattle, WA, USA, 21–23 June 1995. [Google Scholar]
- Fortgang, J.; Patrangenaru, V.; Singhose, W. Scheduling of input shaping and transient vibration absorbers for high-rise elevators. In Proceedings of the American Control Conference, Minneapolis, MN, USA, 14–16 June 2006; p. 6. [Google Scholar]
- Park, K.; Lee, J.; Park, J. Torque control of a vehicle with electronic throttle control using an input shaping method. Int. J. Automot. Technol. 2013, 14, 189–194. [Google Scholar] [CrossRef]
- Daqaq, M.F.; Reddy, C.K.; Nayfeh, A.H. Input-shaping control of nonlinear MEMS. Nonlinear Dyn. 2008, 54, 167–179. [Google Scholar] [CrossRef]
- Pospiech, T.; Hubinský, P. Input shaping for slosh-free moving containers with liquid. Int. J. Mech. Control 2009, 9, 13–20. [Google Scholar]
- Stergiopoulos, J.; Tzes, A. Adaptive input shaping for nonlinear systems: A case study. J. Dyn. Sys. Meas. Control 2007, 129, 219–223. [Google Scholar] [CrossRef]
- Bucolo, M.; Buscarino, A.; Fortuna, L.; Frasca, M. Forward Action to Stabilize multiple Time-Delays MIMO Systems. Int. J. Dyn. Control 2023, 1, 1–9. [Google Scholar] [CrossRef]
- Duong, Q.K.; Chovanec, L.; Hubinsky, P.; Vozak, D.; Matuga, M.; Varga, P. Comparison of input shaper based on genetic algorithms with analytical approach. Int. J. Artif. Intell. 2017, 15, 21–32. [Google Scholar]
- Duong, S.C.; Uezato, E.; Kinjo, H.; Yamamoto, T. A hybrid evolutionary algorithm for recurrent neural network control of a three-dimensional tower crane. Autom. Constr. 2012, 23, 55–63. [Google Scholar] [CrossRef]
- Ramli, L.; Mohamed, Z.; Jaafar, H.I. A neural network-based input shaping for swing suppression of an overhead crane under payload hoisting and mass variations. Mech. Syst. Signal Process. 2018, 107, 484–501. [Google Scholar] [CrossRef]
- Moreno, L.; Acosta, L.; Méndez, J.A.; Torres, S.; Hamilton, A.; Marichal, G.N. A self-tuning neuromorphic controller: Application to the crane problem. Control Eng. Pract. 1998, 6, 1475–1483. [Google Scholar] [CrossRef]
- Méndez, J.A.; Acosta, L.; Moreno, L.; Torres, S.; Marichal, G.N. An application of a neural self-tuning controller to an overhead crane. Neural Comput. Appl. 1999, 8, 143–150. [Google Scholar] [CrossRef]
- Toxqui, R.; Yu, W.; Li, X. Anti-swing control for overhead crane with neural compensation. In Proceedings of the IEEE International Joint Conference on Neural Network, Vancouver, BC, Canada, 16–21 July 2006. [Google Scholar]
- Maghsoudi, M.J.; Mohamed, Z.; Sudin, S.; Buyamin, S.; Jaafar, H.I.; Ahmad, S.M. An improved input shaping design for an efficient sway control of a nonlinear 3D overhead crane with friction. Mech. Syst. Signal Process. 2017, 92, 364–378. [Google Scholar] [CrossRef]
- de Moura Oliveira, P.B.; Solteiro Pires, E.J.; Boaventura Cunha, J. Particle swarm optimization for gantry control: A teaching experiment. In Proceedings of the 15th Portuguese Conference on Artificial Intelligence—EPIA 2011, Lisbon, Portugal, 10–13 October 2011; Springer: Berlin/Heidelberg, Germany, 2011; Volume 15. [Google Scholar]
- Smoczek, J. Fuzzy crane control with sensorless payload deflection feedback for vibration reduction. Mech. Syst. Signal Process. 2014, 46, 70–81. [Google Scholar] [CrossRef]
- Chang, C.-Y. Adaptive fuzzy controller of the overhead cranes with nonlinear disturbance. IEEE Trans. Ind. Inform. 2007, 3, 164–172. [Google Scholar] [CrossRef]
- Solihin, M.; Iwan, M.; Wahyudi; Legowo, A. Fuzzy-tuned PID anti-swing control of automatic gantry crane. J. Vib. Control 2010, 16, 127–145. [Google Scholar] [CrossRef]
- Giacomelli, M.; Faroni, M.; Gorni, D.; Marini, A.; Simoni, L.; Visioli, A. Model predictive control for operator-in-the-loop overhead cranes. In Proceedings of the IEEE 23rd International Conference on Emerging Technologies and Factory Automation (ETFA), Turin, Italy, 4–7 September 2018; Volume 1. [Google Scholar]
- Schaper, U.; Arnold, E.; Sawodny, O.; Schneider, K. Constrained real-time model-predictive reference trajectory planning for rotary cranes. In Proceedings of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Wollongong, Australia, 9–12 July 2013. [Google Scholar]
- Murphy, B.R.; Watanabe, I. Digital shaping filters for reducing machine vibration. IEEE Trans. Robot. Autom. 1992, 8, 285–289. [Google Scholar] [CrossRef]
- Pereira, E.; Trapero, J.R.; Díaz, I.M.; Feliu, V. Adaptive input shaping for manoeuvring flexible structures using an algebraic identification technique. Automatica 2009, 45, 1046–1051. [Google Scholar] [CrossRef]
- Pereira, E.; Trapero, J.; Diaz, I.; Feliu, V.; Robertson, M.; Kozak, K.; Singhose, W. Computational framework for digital input shapers using linear optimisation. IET Control Theory Appl. 2006, 153, 314–322. [Google Scholar]
- Singer, N.C. Residual Vibration Reduction in Computer Controlled Machines; Technical Report Number AITR-1030; MIT Artificial Intelligence Lab: Cambridge, MA, USA, 1989. [Google Scholar]
- Mavroidis, C.; Antoniadis, I.; Lee, C. Maximally robust input preconditioning for residual vibration suppression using low-pass fir digital filters. J. Dynam. Syst. Meas. Control 2002, 124, 85–97. [Google Scholar]
- Tallman, G.; Smith, O. Analog study of dead-beat posicast control. IRE Trans. Autom. Control 1958, 4, 14–21. [Google Scholar] [CrossRef]
- Singhose, W.E.; Seering, W.P.; Singer, N.C. Shaping inputs to reduce vibration: A vector diagram approach. In Proceedings of the IEEE International Conference on Robotics and Automation, Cincinnati, OH, USA, 13–18 May 1990; pp. 922–927. [Google Scholar]
- Vaughan, J.; Yano, A.; Singhose, W. Comparison of robust input shapers. J. Sound Vib. 2008, 315, 797–815. [Google Scholar] [CrossRef]
- Singhose, W.E.; Seering, W.P.; Singer, N.C. Input shaping for vibration reduction with specified insensitivity to modeling errors. In Proceedings of the Japan-USA Symposium on Flexible Automation, Boston, MA, USA, 7–10 July 1996; Volume 1, pp. 307–313. [Google Scholar]
- Singer, N.C.; Seering, W.P. An Extension of Command Shaping Methods for Controlling Residual Vibration Using Frequency Sampling. In Proceedings of the IEEE International Conference on Robotics and Automation, Nice, France, 12–14 May 1992; Volume 1, pp. 800–805. [Google Scholar]
- Vyhlídal, T.; Kučera, V.; Hromčík, M. Signal shaper with a distributed delay: Spectral analysis and design. Automatica 2013, 49, 3484–3489. [Google Scholar] [CrossRef]
- Maghsoudi, M.J.; Mohamed, Z.; Tokhi, M.O.; Husain, A.R.; Abidin, M.S.Z. Control of a gantry crane using input-shaping schemes with distributed delay. Trans. Inst. Meas. Control 2017, 39, 361–370. [Google Scholar] [CrossRef]
- Eloundou, R.; Singhose, W. Justification for using step-function reference commands: Comparison to S-curves. IFAC Proc. Vol. 2002, 35, 25–30. [Google Scholar] [CrossRef]
- Hubinský, P. Riadenie Mechatronických Systémov s Nízkym Tlmením, 1st ed.; STU: Bratislava, Slovakia, 2010; ISBN 9788022733106. [Google Scholar]
- Hyde, J.M.; Seering, W.P. Using Input Command Pre-Shaping to Suppress Multiple Mode Vibration; MIT Space Engineering Research Center: Cambridge, MA, USA, 1990. [Google Scholar]
- Singhose, W.E.; Seering, W.P.; Singer, N.C. Time-optimal negative input shapers. J. Dyn. Sys. Meas. Control 1997, 119, 198–205. [Google Scholar] [CrossRef]
- Singhose, W.; Kim, D.; Kenison, M. Input shaping control of double-pendulum bridge crane oscillations. J. Dyn. Sys. Meas. Control 2008, 130, 034504. [Google Scholar] [CrossRef]
- Hyde, J.M.; Seering, W.P. Inhibiting multiple mode vibration in controlled flexible systems. In Proceedings of the American Control Conference, Boston, MA, USA, 26–28 June 1991. [Google Scholar]
- Cutforth, C.F.; Pao, L.Y. Adaptive input shaping for maneuvering flexible structures. Automatica 2004, 40, 685–693. [Google Scholar] [CrossRef]
- Zhang, P.; Li, Y. Vibration control of flexible structure with multiple modes using input shaping. In Proceedings of the 2009 International Conference on Mechatronics and Automation, Changchun, China, 9–12 August 2009. [Google Scholar]
- Sorensen, K.L.; Singhose, W.; Dickerson, S. A controller enabling precise positioning and sway reduction in bridge and gantry cranes. Control Eng. Pract. 2007, 15, 825–837. [Google Scholar] [CrossRef]
- Goubej, M.; Martin, R.; Škarda, R.; Schlegel, M. Input Shaping Filters for the Control of Electrical Drive with Flexible Load. Website Name. 2009. Available online: https://dspace5.zcu.cz/handle/11025/17198 (accessed on 31 October 2023).
- Savitzky–Golay Filter. Available online: https://en.wikipedia.org/wiki/Savitzky%E2%80%93Golay_filter (accessed on 31 October 2023).
- Blackburn, D.; Singhose, W.; Kitchen, J.; Patrangenaru, V.; Lawrence, J.; Kamoi, T.; Taura, A. Command shaping for nonlinear crane dynamics. J. Vib. Control 2010, 16, 477–501. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gavula, A.; Hubinský, P.; Babinec, A. Damping of Oscillations of a Rotary Pendulum System. Appl. Sci. 2023, 13, 11946. https://doi.org/10.3390/app132111946
Gavula A, Hubinský P, Babinec A. Damping of Oscillations of a Rotary Pendulum System. Applied Sciences. 2023; 13(21):11946. https://doi.org/10.3390/app132111946
Chicago/Turabian StyleGavula, Adam, Peter Hubinský, and Andrej Babinec. 2023. "Damping of Oscillations of a Rotary Pendulum System" Applied Sciences 13, no. 21: 11946. https://doi.org/10.3390/app132111946
APA StyleGavula, A., Hubinský, P., & Babinec, A. (2023). Damping of Oscillations of a Rotary Pendulum System. Applied Sciences, 13(21), 11946. https://doi.org/10.3390/app132111946