Research on Pure Hydrogen Production Using a Fuel-Processing System Combined with a PSA System
Abstract
:1. Introduction
- (1)
- Efficiency analysis according to the temperature and pressure of the fuel-processing system.
- (2)
- Purification efficiency analysis according to PSA injection gas composition.
- (3)
- Selection of optimal operating conditions through efficiency analysis according to the operating conditions of the fuel-processing and PSA combined system.
2. Theoretical Background
- I.
- The steam-reforming reaction and the water–gas shift reaction in the reformer are considered to have reached chemical equilibrium at the reactor outlet.
- II.
- The water–gas shift reaction in the water–gas shift reactor reaches chemical equilibrium at the outlet of the reactor.
3. Methane Steam-Reforming Reaction/WGS Reaction
4. PSA (Pressure Swing Adsorption) System
- (1)
- Radial gradients for flow velocity, concentration, and temperature can be ignored, and the flow of fluid is a one-dimensional plug flow.
- (2)
- There is no pressure drop due to friction between the fluid and the adsorbent in the chamber.
- (3)
- The temperature of the adsorbent is constant at any point, and there is always a thermal equilibrium between the fluid and the adsorbent.
- (4)
- The main resistance of material transfer exists in the adsorbent, and the external epidural material transfer resistance is ignored.
5. Simulation Results
- (1)
- The fuel-processing system consists of a reformer, a water–gas shift reactor and three heat exchangers and is simulated with an Aspen Plus® simulator using a chemical equilibrium model.
- (2)
- The hydrogen-purification system employs a PSA system, which is simulated by an Aspen Adsorption® simulator, where kinetic models are employed.
6. Reformer, WGS Reactor Simulation
7. Reformer Heat Duty
8. Calculation of Reformer Efficiency According to S/C Ratio
9. Calculation of the Reformer Yield
10. PSA Simulation
- I.
- Bed 1 is filled with the inlet stream of PSA while bed 2 is blown down.
- II.
- Impurities are adsorbed by bed 1 due to inlet gas continuously supplied to bed 1, while adsorbed impurities in bed 2 are desorbed and released from bed 2. After impurities are adsorbed, the hydrogen concentration at the outlet stream of bed 1 would be 99.97%.
- III.
- After bed 1 is completely filled with impurities, the outlet stream of bed 1 is introduced to bed 2 to make the pressures of both beds equal.
- IV.
- Bed 2 is filled with the inlet stream of PSA, while bed 1 is blown out.
- V.
- Go to (i) and repeat the process after swinging bed 1 with 2.
- VI.
- The cycle of the whole process is summarized in Table 5.
11. Overall Yield
12. Analysis of Results
13. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Adamson, K.-A. Stationary Fuel Cells: An Overview; Elsevier: Amsterdam, The Netherlands, 2010. [Google Scholar]
- Pérez-Lombard, L.; Ortiz, J.; Pout, C. A review on buildings energy consumption information. Energy Build. 2008, 40, 394–398. [Google Scholar] [CrossRef]
- Environmental Sciences Division ORNL. Global, Regional, and National Fossil-Fuel CO2 Emissions; Environmental Sciences Division ORNL: Oak Ridge, TN, USA, 2010. [Google Scholar] [CrossRef]
- Labis, P.E.; Visande, R.G.; Pallugna, R.C.; Caliao, N.D. The contribution of renewable distributed generation in mitigating carbon dioxide emissions. Renew. Sustain. Energy Rev. 2011, 15, 4891–4896. [Google Scholar] [CrossRef]
- Bilgen, S. Structure and environmental impact of global energy consumption. Renew. Sustain. Energy Rev. 2014, 38, 890–902. [Google Scholar] [CrossRef]
- Abdmouleh, Z.; Gastli, A.; Ben-Brahim, L.; Haouari, M.; Al-Emadi, N.A. Review of optimization techniques applied for the integration of distributed generation from renewable energy sources. Renew. Energy 2017, 113, 266–280. [Google Scholar] [CrossRef]
- Ackermann, T. Distributed generation: A definition. Electr. Power Syst. Res. 2001, 57, 195–204. [Google Scholar] [CrossRef]
- Sun, L.; Jin, Y.; Pan, L.; Shen, J.; Lee, K.Y. Efficiency analysis and control of a grid-connected PEM fuel cell in distributed generation. Energy Convers. Manag. 2019, 195, 587–596. [Google Scholar] [CrossRef]
- Dorer, V.; Weber, R.; Weber, A. Performance assessment of fuel cell micro-cogeneration systems for residential buildings. Energy Build. 2005, 37, 1132–1146. [Google Scholar] [CrossRef]
- Willis, H.L. Distributed Power Generation: Planning and Evaluation; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Pepermans, G.; Driesen, J.; Haeseldonckx, D.; Belmans, R.; D’haeseleer, W. Distributed generation: Definition, benefits and issues. Energy Policy 2005, 33, 787–798. [Google Scholar] [CrossRef]
- Soltani, R.; Rosen, M.A.; Dincer, I. Assessment of CO2 capture options from various points in steam methane reforming for hydrogen production. Int. J. Hydrogen Energy 2014, 39, 20266–20275. [Google Scholar] [CrossRef]
- Sorensen, B.; Spazzafumo, G. Hydrogen and Fuel Cells: Emerging Technologies and Applications; Academic Press: Cambridge, MA, USA, 2018. [Google Scholar]
- Haseli, Y. Maximum conversion efficiency of hydrogen fuel cells. Int. J. Hydrogen Energy 2018, 43, 9015–9021. [Google Scholar] [CrossRef]
- Rosli, R.E.; Sulong, A.B.; Daud, W.R.W.; Zulkifley, M.A.; Husaini, T.; Rosli, M.I.; Majlan, E.H.; Haque, M.A. A review of high-temperature proton exchange membrane fuel cell (HT-PEMFC) system. Int. J. Hydrogen Energy 2017, 42, 9293–9314. [Google Scholar] [CrossRef]
- Braga, L.B.; Silveira, J.L.; da Silva, M.E.; Tuna, C.E.; Machin, E.B.; Pedroso, D.T. Hydrogen production by biogas steam reforming: A technical, economic and ecological analysis. Renew. Sustain. Energy Rev. 2013, 28, 166–173. [Google Scholar] [CrossRef]
- Sharaf, O.Z.; Orhan, M.F. An overview of fuel cell technology: Fundamentals and applications. Renew. Sustain. Energy Rev. 2014, 32, 810–853. [Google Scholar] [CrossRef]
- Larminie, J.; Dicks, A.; McDonald, M.S. Fuel Cell Systems Explained, 2nd ed.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2003; ISBN 047084857X. [Google Scholar]
- Pen, A.; Gómez, M.; Fierro, J. New catalytic routes for syngas and hydrogen production. Appl. Catal. A Gen. 1996, 144, 7–57. [Google Scholar] [CrossRef]
- Kolb, G. Fuel Processing: For Fuel Cells; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Yang, S.-I.; Choi, D.-Y.; Jang, S.-C.; Kim, S.-H.; Choi, D.-K. Hydrogen separation by multi-bed pressure swing adsorption of synthesis gas. Adsorption 2008, 14, 583–590. [Google Scholar] [CrossRef]
- Izquierdo, U.; Barrio, V.; Cambra, J.; Requies, J.; Güemez, M.; Arias, P.; Kolb, G.; Zapf, R.; Gutiérrez, A.; Arraibi, J. Hydrogen production from methane and natural gas steam reforming in conventional and microreactor reaction systems. Int. J. Hydrogen Energy 2012, 37, 7026–7033. [Google Scholar] [CrossRef]
- LeValley, T.L.; Richard, A.R.; Fan, M. The progress in water gas shift and steam reforming hydrogen production technologies—A review. Int. J. Hydrogen Energy 2014, 39, 16983–17000. [Google Scholar] [CrossRef]
- Seo, Y.T.; Seo, D.J.; Jeong, J.H.; Yoon, W.L. Design of an integrated fuel processor for residential PEMFCs applications. J. Power Sources 2006, 160, 505–509. [Google Scholar] [CrossRef]
- Qi, Z.; He, C.; Kaufman, A. Effect of CO in the anode fuel on the performance of PEM fuel cell cathode. J. Power Sources 2002, 111, 239–247. [Google Scholar] [CrossRef]
- Rasheed, R.K.A.; Chan, S.H. Transient carbon monoxide poisoning kinetics during warm-up period of a high-temperature PEMFC—Physical model and parametric study. Appl. Energy 2014, 140, 44–51. [Google Scholar] [CrossRef]
- Yang, R. Gas Separation by Adsorption Processes. Chem. Eng. Sci. 1988, 43, 985. [Google Scholar] [CrossRef]
- Jiménez, S.; Soler, J.; Valenzuela, R.; Daza, L. Assessment of the performance of a PEMFC in the presence of CO. J. Power Sources 2005, 151, 69–73. [Google Scholar] [CrossRef]
- Díaz, M.A.; Iranzo, A.; Rosa, F.; Isorna, F.; López, E.; Bolivar, J.P. Effect of carbon dioxide on the contamination of low temperature and high temperature PEM (polymer electrolyte membrane) fuel cells. Influence of temperature, relative humidity and analysis of regeneration processes. Energy 2015, 90, 299–309. [Google Scholar] [CrossRef]
- Amphlett, J.C.; Mann, R.F.; Pepplely, B.A. On board hydrogen purification for steam reformatton/pem fuel cell vehicle power plants. Int. J. Hydrogen Energy 1996, 21, 673–678. [Google Scholar] [CrossRef]
- You, Y.-W.; Lee, D.-G.; Yoon, K.-Y.; Moon, D.-K.; Kim, S.M.; Lee, C.-H. H2 PSA purifier for CO removal from hydrogen mixtures. Int. J. Hydrogen Energy 2012, 37, 18175–18186. [Google Scholar] [CrossRef]
- Riboldi, L.; Bolland, O. Overview on Pressure Swing Adsorption (PSA) as CO2 Capture Technology: State-of-the-Art, Limits and Potentials. Energy Procedia 2017, 114, 2390–2400. [Google Scholar] [CrossRef]
- Du, Z.; Liu, C.; Zhai, J.; Guo, X.; Xiong, Y.; Su, W.; He, G. A Review of Hydrogen Purification Technologies for Fuel Cell Vehicles. Catalysts 2021, 11, 393. [Google Scholar] [CrossRef]
- Pasdag, O.; Kvasnicka, A.; Steffen, M.; Heinzel, A. Highly Integrated Steam Reforming Fuel Processor with Condensing Burner Technology for Maximised Electrical Efficiency of CHP-PEMFC Systems. Energy Procedia 2012, 28, 57–65. [Google Scholar] [CrossRef]
- Chen, S.; Pei, C.; Gong, J. Insights into interface engineering in steam reforming reactions for hydrogen production. Energy Environ. Sci. 2019, 12, 3473–3495. [Google Scholar] [CrossRef]
- Patel, K.S.; Sunol, A.K. Modeling and simulation of methane steam reforming in a thermally coupled membrane reactor. Int. J. Hydrogen Energy 2007, 32, 2344–2358. [Google Scholar] [CrossRef]
- Amran, U.I.; Ahmad, A.; Othman, M.R. Kinetic based simulation of methane steam reforming and water gas shift for hydro-gen production using aspen plus. Chem. Eng. Trans. 2017, 56, 1681–1686. [Google Scholar] [CrossRef]
- Xu, J.; Froment, G.F. Methane steam reforming, methanation and water-gas shift: I. Intrinsic kinetics. AIChE J. 1989, 35, 88–96. [Google Scholar] [CrossRef]
- Twigg, M.V. Catalyst Handbook, 2nd ed.; Taylor & Francis: Abingdon, UK, 1989. [Google Scholar]
- Newsome, D.S. The Water-Gas Shift Reaction. Catal. Rev. 1980, 21, 275–318. [Google Scholar] [CrossRef]
- Meloni, E.; Martino, M.; Palma, V. A Short Review on Ni Based Catalysts and Related Engineering Issues for Methane Steam Reforming. In Proceedings of the 5th Global Conference on Catalysis, Chemical Engineering, and Technology (CAT), London, UK, 16–18 September 2019; p. 352. [Google Scholar]
- Ho, M.T.; Allinson, G.W.; Wiley, D.E. Reducing the Cost of CO2 Capture from Flue Gases Using Pressure Swing Adsorption. Ind. Eng. Chem. Res. 2008, 47, 4883–4890. [Google Scholar] [CrossRef]
- Raganati, F.; Alfe, M.; Gargiulo, V.; Chirone, R.; Ammendola, P. Isotherms and thermodynamics of CO2 adsorption on a novel carbon-magnetite composite sorbent. Chem. Eng. Res. Des. 2018, 134, 540–552. [Google Scholar] [CrossRef]
- Xiao, J.; Peng, Y.; Bénard, P.; Chahine, R. Thermal effects on breakthrough curves of pressure swing adsorption for hydrogen purification. Int. J. Hydrogen Energy 2016, 41, 8236–8245. [Google Scholar] [CrossRef]
- Liu, Z.; Karimi, I. Simulation of a combined cycle gas turbine power plant in Aspen HYSYS. Energy Procedia 2019, 158, 3620–3625. [Google Scholar] [CrossRef]
- Kuhn, J.; Kesler, O. Carbon deposition thresholds on nickel-based solid oxide fuel cell anodes II. Steam: Carbon ratio and current density. J. Power Sources 2015, 277, 455–463. [Google Scholar] [CrossRef]
- Asgari, M.; Anisi, H.; Mohammadi, H.; Sadighi, S. Designing a commercial scale pressure swing adsorber for hydrogen purifica-tion. Pet. Coal 2014, 56, 552–561. [Google Scholar]
- Lee, J.; Kim, M.; Lee, D.; Ahn, H.; Kim, M.; Lee, C. Heat-exchange pressure swing adsorption process for hydrogen separation. AIChE J. 2008, 54, 2054–2064. [Google Scholar] [CrossRef]
- Abdeljaoued, A.; Relvas, F.; Mendes, A.; Chahbani, M.H. Simulation and experimental results of a PSA process for production of hydrogen used in fuel cells. J. Environ. Chem. Eng. 2018, 6, 338–355. [Google Scholar] [CrossRef]
Reactions | Energy Amount | |
---|---|---|
Steam reforming | ||
Steam reforming + Water–gas shift | ||
Dry reforming | ||
Combustion | ||
Partial oxidation | ||
CO oxidation | ||
Hydrogen oxidation | ||
Water–gas Shift | ||
Methanation I | ||
Methanation II | ||
Methanation III | ||
Endothermic water–gas shift | ||
Methane decomposition |
Temperature (°C) | ||
---|---|---|
400 | 5.93 × 10−8 | 1.17 |
600 | 5.22 × 10−1 | 2.55 |
800 | 1.69 × 102 | 1.04 |
1000 | 1.0934 × 10−4 | 0.58 |
Langmuir Parameters | ||||||
---|---|---|---|---|---|---|
Component | ||||||
activated carbon | ||||||
H2 | 163,943 | −2.1 | 0.6248 | 1229 | 0.7 | 2880 |
CO | 33.85 | −9.072 | 2.311 | 1751 | 0.15 | 4300 |
CH4 | 23.86 | −5.621 | 34.78 | 1159 | 0.195 | 4290 |
CO2 | 28.7973 | −7 | 100 | 1030 | 0.0355 | 5240 |
Zeolite 5A | ||||||
H2 | 4.314 | −1.06 | 25.15 | 458 | 0.7 | 2800 |
CO | 11.8454 | −3.13 | 202 | 763 | 0.063 | 5000 |
CH4 | 5.833 | −1.192 | 6.0504 | 1731 | 0.147 | 5300 |
CO2 | 10.03 | −1.858 | 15,781 | 207 | 0.0135 | 9330 |
Simulation Conditions | |
---|---|
Reformer temperature (°C) | 600–1000 |
Reformer pressure (atm) | 1–10 |
Water–gas shift temperature (°C) | 200 |
Input gas temperature (°C) | 15 |
Total input methane gas amount (lpm) | 30–61 |
Compressor efficiency | 0.8 |
Steam-carbon ratio (S/C ratio) | 3 |
Step | Bed 1 | Bed 2 |
---|---|---|
1 | Pressurize | Blow down |
2 | Adsorption | Purge |
3 | Depressurize | Pressure equalization |
4 | Blow down | Pressurize |
5 | Purge | Adsorption |
6 | Pressure equalization | Depressurize |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ko, S.; Lee, S. Research on Pure Hydrogen Production Using a Fuel-Processing System Combined with a PSA System. Appl. Sci. 2023, 13, 11947. https://doi.org/10.3390/app132111947
Ko S, Lee S. Research on Pure Hydrogen Production Using a Fuel-Processing System Combined with a PSA System. Applied Sciences. 2023; 13(21):11947. https://doi.org/10.3390/app132111947
Chicago/Turabian StyleKo, Seokkyun, and Sangyong Lee. 2023. "Research on Pure Hydrogen Production Using a Fuel-Processing System Combined with a PSA System" Applied Sciences 13, no. 21: 11947. https://doi.org/10.3390/app132111947
APA StyleKo, S., & Lee, S. (2023). Research on Pure Hydrogen Production Using a Fuel-Processing System Combined with a PSA System. Applied Sciences, 13(21), 11947. https://doi.org/10.3390/app132111947