Experimental Investigation on the Anchorage Performance of a Tension–Compression-Dispersed Composite Anti-Floating Anchor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Site
2.2. Tensile–Compressive Dispersed Composite Anchors
2.3. Experimental Design
3. Results
3.1. Failure Characteristics of Anchors
3.2. Load–Displacement Characteristics
3.3. Axial Force Distribution
3.4. Side Friction Distribution
4. Discussion
5. Conclusions
- (1)
- The ultimate bearing capacity of a 3 m composite anchor is 1.44 times that of a tension anchor of the same length, and 1.1 times that of a 4 m tension anchor. Unlike tension anchors that rely on increasing anchorage length to enhance bearing capacity, the composite anchor improves bearing capacity effectively by incorporating structural modifications.
- (2)
- The composite anchor not only improves ultimate bearing capacity, but also exhibits significant deformation during the early loading stage. It effectively prevents sudden displacement increases in the anchor head in the later loading stage, and the load–displacement curve shows a small slope before and after failure.
- (3)
- The axial force transmission behavior of tension anchors with different anchorage lengths was analyzed in this experiment. It was observed that the axial force of the three groups of tension anchors experienced abrupt changes at an anchorage depth of approximately 2 m, with an increased attenuation rate. Therefore, in the design of load-dispersed composite anchors, it is recommended to keep the effective anchorage length of each unit anchorage section below 2 m to fully utilize the strength of the rock and soil mass in the anchorage section.
- (4)
- By implementing structural measures such as a bearing plate and steel casing, the tension–compression-dispersed composite anchor enables load transmission to deeper rock and soil masses, fully utilizing the strength of the lower rock and soil mass. It effectively prevents bond-weakening effects, reduces local stress concentration to some extent, achieves a more uniform distribution of side friction resistance, and enhances the overall anchorage performance of the anchor.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guang, C.; Rui, W.; Mu, Z.; Jing, S.; Yang, Y.; Xiao, Z. Present situation and developmental trend of urban underground space development and utilization in China. Earth Sci. Front. 2019, 26, 39. [Google Scholar]
- Li, X.; Li, C.; Parriaux, A.; Wu, W.; Li, H.; Sun, L.; Liu, C. Multiple resources and their sustainable development in Urban Underground Space. Tunn. Undergr. Space Technol. 2016, 55, 59–66. [Google Scholar] [CrossRef]
- Tan, Z.; Roberts, A.C.; Christopoulos, G.I.; Kwok, K.-W.; Car, J.; Li, X.; Soh, C.-K. Working in underground spaces: Architectural parameters, perceptions and thermal comfort measurements. Tunn. Undergr. Space Technol. 2018, 71, 428–439. [Google Scholar] [CrossRef]
- Mothersille, D.; Littlejohn, S. Grouting of anchors to resist hydrostatic uplift at Burnley tunnel, Melbourne, Australia. In Proceedings of the Grouting and Deep, Mixing 2012, Engineers, New Orleans, LA, USA, 15–18 February 2012; pp. 1073–1084. [Google Scholar]
- Zheng, C.; Bai, X.; Zhang, M.; Wang, H. Research progress on glass fiber reinforced polymer anchors in anti-floating engineering of underground structures. Mater. Rep. 2020, 34, 13194–13202. [Google Scholar]
- Dong, C.; Zheng, Y.-R.; Chen, X.; Tang, X. Research on composite support pattern of soil nails and prestressed anchors in deep foundation pits. Rock Soil Mech. 2009, 30, 3793–3796. [Google Scholar]
- Hyett, A.; Moosavi, M.; Bawden, W. Load distribution along fully grouted bolts, with emphasis on cable bolt reinforcement. Int. J. Numer. Anal. Methods Geomech. 1996, 20, 517–544. [Google Scholar] [CrossRef]
- Kou, H.; Guo, W.; Zhang, M. Pullout performance of GFRP anti-floating anchor in weathered soil. Tunn. Undergr. Space Technol. 2015, 49, 408–416. [Google Scholar] [CrossRef]
- Sun, S.; Lu, Y. Rock & Soil Anchoring Technology and Its Engineering Application. In Proceedings of the 2017 2nd International Conference on Environmental Science and Energy Engineering (ICESEE 2017), Beijing, China, 15–16 January 2017. [Google Scholar]
- Jian, Y.; Wen, J.; Huang, W. Pull-out test and ultimate bearing capacity calculation of grouting branch-type anchor. Rock Soil. Mech. 2021, 42, 1126–1132. [Google Scholar]
- Wei, H.; Jian, B.; Yang, J.; Dou, H.; Lou, J. Prototype test and load transfer characteristic analysis of multi-disk anchor rod. Rock Soil. Mech. 2023, 44, 520–530. [Google Scholar]
- Zhang, Y.; Bai, X.; Yan, N.; Sang, S.; Jing, D.; Chen, X.; Zhang, M. Load Transfer Law of Anti-Floating Anchor With GFRP Bars Based on Fiber Bragg Grating Sensing Technology. Front. Mater. 2022, 9, 849114. [Google Scholar] [CrossRef]
- Sun, G.; Yan, N.; Bai, X.; Liu, J.; Hou, D.; Sang, S.; Zhang, M.; Wang, P.; Jing, D. Laboratory full-scale test on the bond property of GFRP anchor to concrete. Constr. Build. Mater. 2023, 396, 132216. [Google Scholar] [CrossRef]
- Xiao, B.; Xue, L.; Mingyi, Z.; De, J.; Chen, Z. Field tests and load-displacement models of GFRP bars and steel bars for anti-floating anchors. Acta Mater. Compos. Sin. 2021, 38, 4138–4149. [Google Scholar]
- Cheng, K. Present status and development of ground anchorages. China Civ. Eng. J. 2001, 34, 7–12. [Google Scholar]
- Zhou, S.; Feng, S.; Dai, C.; Xu, Q.; Ke, Z. Model Test of Stress and Displacement of Recyclable Anchor Rod Support Structure. Appl. Sci. 2023, 13, 7713. [Google Scholar] [CrossRef]
- Xue, W.; Gang, W.; Yu, J.; Bin, G.; Bo, L. Mechanism of CTC-yield bolts and its experimental research. Chin. J. Geotech. Eng. 2015, 37, 139–147. [Google Scholar]
- Shen, Q.; Yuan, D.-R.; Chen, C.-X. A New Monitoring Device for the Force States of the Pressure Dispersed Anchor Cable. In Proceedings of the 5th International Conference on Advanced Engineering Materials and Technology (AEMT 2015), Guangzhou, China, 22–23 August 2015; pp. 836–841. [Google Scholar]
- Jin, J.; Bing, T.; Hai, W.; Gang, M.; Da, Y. Mechanical behaviors of pressure-dispersive prestressed anchor. Chin. J. Geotech. Eng. 2011, 33, 1320–1325. [Google Scholar]
- He, Z.; Xin, A. Prestress loss model and experimental study of anchor cables in soft soil area. Adv. Mater. Res. 2012, 433, 2769–2773. [Google Scholar] [CrossRef]
- Shu, W.; Hong, F.; Yan, Z. Study on anchorage mechanism and application of tension-compression dispersive anchor cable. Rock Soil Mech. 2018, 39, 2155–2163. [Google Scholar]
- Xiao, C.; Jiu, Z.; Peng, Z. Calculation and analysis of differential tension of pressure dispersion anchor cables at Lianghekou hydropower station. Explor. Eng. 2020, 47, 85–88. [Google Scholar]
- Bing, T.; Shi, L.; Jin, Y.; Jing, H.; Jian, Z.; Jin, J. Analysis of anchorage performance on new tension-compression anchor: I simplified theory. Chin. J. Geotech. Eng. 2018, 40, 2289–2295. [Google Scholar]
- Killic, A.; Yasar, E.; Atis, C. Effect of bar shape on the pull-out load capacity of fully grouted rock bolt. Tunn. Undergr. Space Technol. 2002, 18, 1–6. [Google Scholar] [CrossRef]
- Serrano, A.; Olalla, C. Tensile resistance of rock anchors. Int. J. Rock Mech. Min. Sci. 1999, 36, 449–474. [Google Scholar] [CrossRef]
- Li, C.C.; Kristjansson, G.; Høien, A.H. Critical embedment length and bond strength of fully encapsulated rebar rockbolts. Tunn. Undergr. Space Technol. 2016, 59, 16–23. [Google Scholar] [CrossRef]
- Rui, G.; Wen, C.; Jian, D. Pullout mechanical analysis of soil anchor based on softening behavior of interface. J. Cent. S. Univ. 2012, 43, 4003–4009. [Google Scholar]
- Małkowski, P.; Feng, X.; Niedbalski, Z.; Żelichowski, M.J.R.M.; Engineering, R. Laboratorial Tests and Numerical Modeling of Rock Bolts Bonded by Different Materials. Rock Mech. Rock Eng. 2023, 56, 2589–2606. [Google Scholar] [CrossRef]
- Zheng, J.; Dai, J. Analytical solution for the full-range pull-out behavior of FRP ground anchors. Constr. Build. Mater. 2014, 58, 129–137. [Google Scholar] [CrossRef]
- Klar, A.; Nissim, O.; Elkayam, I. A hardening load transfer function for rock bolts and its calibration using distributed fiber optic sensing. J. Rock Mech. Geotech. Eng. 2023, 15, 2816–2830. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, H.; Zhang, X. Test study of mechanical performances of anchorage zone of pressure dispersion anchor cable style. Chin. J. Rock Mech. Eng. 2010, 29, 3052–3056. [Google Scholar]
- Liu, X.; Li, Z.; Tai, P.; Chen, R.; Fu, W. In-situ Experimental Investigation on Stress Distribution of Grout Body of Tension-type Ground Anchor. Chin. J. Undergr. Space Eng. 2021, 17, 63–70. [Google Scholar]
- Ostermayer, H.; Scheele, F. Research on ground anchors in non-cohesive soils. Rev. Française Géotechnique 1978, 3, 92–97. [Google Scholar] [CrossRef]
- Grindheim, B.; Aasbø, K.S.; Høien, A.H.; Li, C.C. Small block model tests for the behaviour of a blocky rock mass under a concentrated rock anchor load. Geotech. Geol. Eng. 2022, 40, 5813–5830. [Google Scholar] [CrossRef]
- Littlejohn, G.S.; Bruce, D.A. Rock anchors-state of the art. Part 1: Design. Ground Eng. 1975, 8, 25–32. [Google Scholar]
- Zhang, Y.; Li, L.; Xiao, R. Model test research on mechanical behavior of compression type rock bolt. Rock Soil. Mech. 2010, 31, 2045–2050. [Google Scholar]
- Shu, W.; Yong, Z.; Kang, M. An analysis of working performance of pressure-type and tensile-type anchor. Hydrogeol. Eng. Geol. 2008, 5, 45–49. [Google Scholar]
- Huang, M.; Zhou, Z.; Ou, J. Nonlinear full-range analysis of load transfer in fixed segment of tensile anchors. Chin. J. Rock Mech. Eng. 2014, 33, 2190–2199. [Google Scholar]
- Liang, C.; Pei, Z.; Fan, W. Several mechanical concepts for anchored structures in rock and soil. Chin. J. Rock Mech. Eng. 2015, 34, 668–682. [Google Scholar]
- Guo, Z.; Han, L.; Li, Y.; Hu, H.; Zhang, Y.; Luo, S. Analysis of Stresses on Wholly Grouted Anchors Based on Different Constitutive Models. Geotech. Geol. Eng. 2019, 37, 2495–2501. [Google Scholar] [CrossRef]
- Xian, Z.; Da, L.; Shi, L.; Kui, Z.; Xiao, X.; Ningbo, D.U. Comprehensive research of critical anchorage length problem of rod of anchorage structure. Chin. J. Rock Mech. Eng. 2009, 28, 3609–3625. [Google Scholar]
- Grindheim, B.; Li, C.C.; Høien, A.H. Full-scale pullout tests of rock anchors in a limestone quarry focusing on bond failure at the anchor-grout and grout-rock interfaces. J. Rock Mech. Geotech. Eng. 2023, 15, 2264–2279. [Google Scholar] [CrossRef]
- Yue, Z.; Li, A.; Wang, P. An analytical analysis for the mechanical performance of fully-grouted rockbolts based on the exponential softening model. Int. J. Min. Sci. Technol. 2022, 32, 981–995. [Google Scholar] [CrossRef]
- Anzanpour, S.; Aziz, N.; Remennikov, A.; Nemcik, J.; Mirzaghorbanali, A.; Rastegarmanesh, A. Laboratory study of the behaviour of grouted cable bolts under static and dynamic axial loading. In Proceedings of the Eurock 2022: Rock and Fracture Mechanics in Rock Engineering and Mining, Espoo, Finland, 12–15 September 2023. [Google Scholar]
- Kömürlü, E.; Kesimal, A. Rock bolting from past to present in 20 inventions. MT Bilimsel 2016, 9, 69–85. [Google Scholar]
- Purcell, J.; Vandermaat, D.; Callan, M.; Craig, P. Practical investigations into resin anchored roof bolting parameters. In Proceedings of the 16th Coal Operators’ Conference.Mining Engineering, Wollongong, NSW, Australia, 10–12 February 2016; pp. 53–63. [Google Scholar]
- Bing, T.; Jin, Y.; Jin, H.; Qiang, C.; Guo, X.; Jin, J. Analysis of anchorage performance on new tension-compression anchor II: Model test. Chin. J. Geotech. Eng. 2019, 41, 475–483. [Google Scholar]
- Bing, T.; Yan, C.; Jin, H.; Jin, Y.; Guo, X.; Qiang, C. Analysis of anchorage performance on new tension-compression anchor III field test. Chin. J. Geotech. Eng. 2019, 41, 846–854. [Google Scholar]
- Rui, C. Application of tension and compression dispersed anchor cables in landslide control on Xianglin Highway. Chin. Foreign Entrep. 2014, 228–229. [Google Scholar] [CrossRef]
- Xian, C. Study the Anchoring Stress Mechanism ofthe Tension-Compression Dispersed Anchor Cable. Master’s Thesis, Chongqing University, Chongqing, China, 2015. [Google Scholar]
- Yan, Z. Study on the Tension-Compression Dispersive Anchor Cable’s Applicationto Building Rock Slope. Master’s Thesis, Chongqing University, Chongqing, China, 2015. [Google Scholar]
- Liu, J.; Wu, P.; Yin, H.; Zhong, D.; Li, S.; Zhou, H.; Li, Z.; Xu, H. Pressure-dispersive anti-float anchor technique and its application to engineering. Chin. J. Rock Mechan Eng. 2005, 24, 3948–3953. [Google Scholar]
- Kim, H.; Kim, K.; Kim, H.; Shin, J. Anchorage mechanism and pullout resistance of rock bolt in water-bearing rocks. Geomech. Eng. 2018, 15, 841–849. [Google Scholar]
- Liu, X.; Ma, Z. Mechanical behavior analysis of fully grouted bolt under axial load. Sci. Rep. 2023, 13, 421. [Google Scholar] [CrossRef]
- Aghchai, M.H.; Maarefvand, P.; Rad, H.S. Analytically determining bond shear strength of fully grouted rock bolt based on pullout test results. Period. Polytech. Civ. Eng. 2020, 64, 212–222. [Google Scholar]
- Jin, Z.; Peng, Z. Analytical model of fully grouted bolts in pull-out tests and in situ rock masses. Int. J. Rock Mech. Min. Sci. 2019, 113, 278–294. [Google Scholar]
- Ren, F.; Yang, Z.; Chen, J.F.; Chen, W. An analytical analysis of the full-range behaviour of grouted rockbolts based on a tri-linear bond-slip model. Constr. Build. Mater. 2010, 24, 361–370. [Google Scholar] [CrossRef]
- Yang, S.; Zhu, X.; Zhang, G.; Yang, L.; Xia, H.; Li, W. Research on the Mechanics Performance of the New Tension–Compression Rock Bolt Through Numerical Simulation. Geotech. Geol. Eng. 2022, 40, 2255–2266. [Google Scholar] [CrossRef]
- Arda, M. Axial dynamics of functionally graded Rayleigh-Bishop nanorods. Microsyst. Technol. 2021, 27, 269–282. [Google Scholar] [CrossRef]
- Kiani, K. Free dynamic analysis of functionally graded tapered nanorods via a newly developed nonlocal surface energy-based integro-differential model. Compos. Struct. 2016, 139, 151–166. [Google Scholar] [CrossRef]
- Kiani, K. Nonlocal-integro-differential modeling of vibration of elastically supported nanorods. Phys. E Low-Dimens. Syst. Nanostructures 2016, 83, 151–163. [Google Scholar] [CrossRef]
- Kiani, K.; Żur, K.K. Dynamic behavior of magnetically affected rod-like nanostructures with multiple defects via nonlocal-integral/differential-based models. Nanomaterials 2020, 10, 2306. [Google Scholar] [CrossRef]
- Yuan, Y.; Xu, K.; Kiani, K. Torsional vibration of nonprismatically nonhomogeneous nanowires with multiple defects: Surface energy-nonlocal-integro-based formulations. Appl. Math. Model. 2020, 82, 17–44. [Google Scholar] [CrossRef]
- Yuan, Y.; Zhao, K.; Zhao, Y.; Kiani, K. Nonlocal-integro-vibro analysis of vertically aligned monolayered nonuniform FGM nanorods. Steel Compos. Struct. 2020, 37, 551–569. [Google Scholar]
- Du, H.; Du, S.; Li, W. Probabilistic time series forecasting with deep non-linear state space models. CAAI Trans. Intell. Technol. 2023, 8, 3–13. [Google Scholar] [CrossRef]
- Zhao, H.; Ma, L. Several rough set models in quotient space. CAAI Trans. Intell. Technol. 2022, 7, 69–80. [Google Scholar] [CrossRef]
- Chen, J.; Yu, S.; Wei, W.; Ma, Y. Matrix-based method for solving decision domains of neighbourhood multigranulation decision-theoretic rough sets. CAAI Trans. Intell. Technol. 2022, 7, 313–327. [Google Scholar] [CrossRef]
- Hu, X.; Kuang, Q.; Cai, Q.; Xue, Y.; Zhou, W.; Li, Y. A Coherent Pattern Mining Algorithm Based on All Contiguous Column Bicluster. J. Artif. Intell. Technol. 2022, 2, 80–92. [Google Scholar] [CrossRef]
- Zhang, Z.; De Luca, G.; Archambault, B.; Chavez, J.; Rice, B. Traffic Dataset and Dynamic Routing Algorithm in Traffic Simulation. J. Artif. Intell. Technol. 2022, 2, 111–122. [Google Scholar] [CrossRef]
- Hsiao, I.; Chung, C. AI-infused semantic model to enrich and expand programming question generation. J. Artif. Intell. Technol. 2022, 2, 47–54. [Google Scholar] [CrossRef]
- Jia, Z.; Wang, W.; Zhang, J.; Li, H. Contact High-Temperature Strain Automatic Calibration and Precision Compensation Research. J. Artif. Intell. Technol. 2022, 2, 69–76. [Google Scholar]
Gravity (kN·m−3) | The Angle of Internal Friction (°) | Force of Cohesion (kPa) | Elastic Modulus (GPa) | Poisson Ratio | Saturated Compressive Strength (MPa) |
---|---|---|---|---|---|
21.3 | 34.7 | 80 | 1.7 | 0.18 | 0.88 |
Anchor Name | Group Number | Anchor Number | Length of Bearing Section 1 # (mm) | Length of Bearing Section 2 # (mm) | Length of Pressure Section (mm) |
---|---|---|---|---|---|
composite anchor | group 1 | K-6-1 | 750 | 750 | 1500 |
K-6-2 | 750 | 750 | 1500 | ||
K-6-3 | 750 | 750 | 1500 | ||
tension anchor | group 2 | K-9-1 | 3000 | / 1 | / |
K-9-2 | 3000 | / | / | ||
K-9-3 | 3000 | / | / | ||
tension anchor | group 3 | K-11-1 | 4000 | / | / |
K-11-2 | 4000 | / | / | ||
K-11-3 | 4000 | / | / | ||
tension anchor | group 4 | K-12-1 | 5000 | / | / |
K-12-2 | 5000 | / | / | ||
K-12-3 | 5000 | / | / |
Anchor Name | Group Number | Anchor Number | Failure Load (kN) | Maximum Displacement (mm) | Destruction Form |
---|---|---|---|---|---|
composite anchor | group 1 | K-6-1 | 670 | 13.59 | Second interface failure |
K-6-2 | 680 | 12.43 | Second interface failure | ||
tension anchor | group 2 | K-9-1 | 480 | 14.96 | Second interface failure |
K-9-2 | 460 | 15.68 | Second interface failure | ||
K-9-3 | 470 | 14.32 | Second interface failure | ||
tension anchor | group 3 | K-11-1 | 610 | 14.76 | Second interface failure |
K-11-2 | 605 | 13.98 | Second interface failure | ||
K-11-3 | 620 | 11.43 | Second interface failure | ||
tension anchor | group 4 | K-12-1 | >715 | 3.44 | Anchor damage |
K-12-2 | >715 | 4.57 | Anchor damage | ||
K-12-3 | >715 | 6.91 | Anchor damage |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Xia, K.; Wang, B.; Le, J.; Ma, Y.; Zhang, M. Experimental Investigation on the Anchorage Performance of a Tension–Compression-Dispersed Composite Anti-Floating Anchor. Appl. Sci. 2023, 13, 12016. https://doi.org/10.3390/app132112016
Liu Y, Xia K, Wang B, Le J, Ma Y, Zhang M. Experimental Investigation on the Anchorage Performance of a Tension–Compression-Dispersed Composite Anti-Floating Anchor. Applied Sciences. 2023; 13(21):12016. https://doi.org/10.3390/app132112016
Chicago/Turabian StyleLiu, Yuguo, Kai Xia, Botong Wang, Ji Le, Yanqing Ma, and Mingli Zhang. 2023. "Experimental Investigation on the Anchorage Performance of a Tension–Compression-Dispersed Composite Anti-Floating Anchor" Applied Sciences 13, no. 21: 12016. https://doi.org/10.3390/app132112016
APA StyleLiu, Y., Xia, K., Wang, B., Le, J., Ma, Y., & Zhang, M. (2023). Experimental Investigation on the Anchorage Performance of a Tension–Compression-Dispersed Composite Anti-Floating Anchor. Applied Sciences, 13(21), 12016. https://doi.org/10.3390/app132112016