Trustworthy Artificial Intelligence Methods for Users’ Physical and Environmental Security: A Comprehensive Review
Abstract
:1. Introduction
1.1. Motivations and Contributions
1.2. Methodology
1.3. Organization
1.4. Acronyms
2. Trustworthy Methods in Artificial Intelligence
2.1. AI Methods and Their Applications
2.2. Spiking Neural Networks
3. Physical and Mixed Safety
3.1. Traffic Safety
3.2. Pedestrian Safety
3.3. Trustworthy and Explainable SNNs
3.4. Adversarial Attacks on CNNs, SNNs, and Neuro-Inspired Solutions against Them
4. Security of Computer Network Users
4.1. TAI-Based Securing against Intrusion Attacks
4.2. Discussion and Findings
- Attacks on custom network configurations;
- Attacks on unique systems (for example, those using specialized software or niche technologies);
- Attacks on custom ports or services unique to a particular organization or industry;
- Attacks on protocols: old generation, new generation, or less popular.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, J.; Tang, Y.; Zhao, H.; Wang, X.; Li, F.; Zhang, J. CPS Attack Detection under Limited Local Information in Cyber Security: An Ensemble Multi-node Multi-class Classification Approach. ACM Trans. Sens. Netw. 2023. [Google Scholar] [CrossRef]
- Thiebes, S.; Lins, S.; Sunyaev, A. Trustworthy artificial intelligence. Electron. Mark. 2021, 31, 447–464. [Google Scholar] [CrossRef]
- Kaur, D.; Uslu, S.; Rittichier, K.J.; Durresi, A. Trustworthy Artificial Intelligence: A Review. ACM Comput. Surv. 2022, 55, 1–38. [Google Scholar] [CrossRef]
- Hasan, M.K.; Habib, A.A.; Shukur, Z.; Ibrahim, F.; Islam, S.; Razzaque, M.A. Review on cyber-physical and cyber-security system in smart grid: Standards, protocols, constraints, and recommendations. J. Netw. Comput. Appl. 2023, 209, 103540. [Google Scholar] [CrossRef]
- Mittal, A.; Dhalla, S.; Gupta, S.; Gupta, A. Automated Analysis of Blood Smear Images for Leukemia Detection: A Comprehensive Review. ACM Comput. Surv. 2022, 54, 1–37. [Google Scholar] [CrossRef]
- Alzamer, H.; Abuhmed, T.; Hamad, K. A short review on the Machine Learning-guided oxygen uptake prediction for sport science applications. Electronics 2021, 10, 1956. [Google Scholar] [CrossRef]
- Yan, C.; Ji, X.; Wang, K.; Jiang, Q.; Jin, Z.; Xu, W. A Survey on Voice Assistant Security: Attacks and Countermeasures. ACM Comput. Surv. 2022, 55, 1–36. [Google Scholar] [CrossRef]
- Raut, R.; Jadhav, A.; Jaiswal, S.; Pathak, P. IoT-Assisted Smart Device for Blind People. In Intelligent Systems for Rehabilitation Engineering; John Wiley & Sons: Hoboken, NJ, USA, 2022; pp. 129–150. [Google Scholar]
- Kubanek, M.; Bobulski, J. Device for Acoustic Support of Orientation in the Surroundings for Blind People. Sensors 2018, 18, 4309. [Google Scholar] [CrossRef]
- Nait Aicha, A.; Englebienne, G.; Van Schooten, K.S.; Pijnappels, M.; Kröse, B. Deep Learning to Predict Falls in Older Adults Based on Daily-Life Trunk Accelerometry. Sensors 2018, 18, 1654. [Google Scholar] [CrossRef]
- Platt, F. Physical Threats to the Information Infrastructure. In Computer Security Handbook; John Wiley & Sons: New York, NY, USA, 2012; pp. 1–22. [Google Scholar]
- Szymoniak, S. Amelia—A new security protocol for protection against false links. Comput. Commun. 2021, 179, 73–81. [Google Scholar] [CrossRef]
- Guembe, B.; Azeta, A.; Misra, S.; Ahuja, R. Trustworthy Machine Learning Approaches for Cyberattack Detection: A Review. In Proceedings of the International Conference on Computational Science and Its Applications, Malaga, Spain, 4–7 July 2022; pp. 265–278. [Google Scholar] [CrossRef]
- Smuha, N.A. The EU Approach to Ethics Guidelines for Trustworthy Artificial Intelligence. Comput. Law Rev. Int. 2019, 20, 97–106. [Google Scholar] [CrossRef]
- Hickman, E.; Petrin, M. Trustworthy AI and corporate governance: The EU’s ethics guidelines for trustworthy artificial intelligence from a company law perspective. Eur. Bus. Organ. Law Rev. 2021, 22, 593–625. [Google Scholar] [CrossRef]
- Liu, H.; Wang, Y.; Fan, W.; Liu, X.; Li, Y.; Jain, S.; Liu, Y.; Jain, A.K.; Tang, J. Trustworthy AI: A Computational Perspective. ACM Trans. Intell. Syst. Technol. 2022, 14, 1–59. [Google Scholar] [CrossRef]
- Hasan, R.; Hasan, R. Pedestrian safety using the Internet of Things and sensors: Issues, challenges, and open problems. Future Gener. Comput. Syst. 2022, 134, 187–203. [Google Scholar] [CrossRef]
- Bharadiya, J. Artificial Intelligence in Transportation Systems A Critical Review. Am. J. Comput. Eng. 2023, 6, 34–45. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Jha, H.; Nanda, R.P. Application of IoT and Artificial Intelligence in Road Safety. In Proceedings of the 2022 Interdisciplinary Research in Technology and Management (IRTM), Kolkata, India, 26–28 February 2021; pp. 1–6. [Google Scholar]
- Olugbade, S.; Ojo, S.; Imoize, A.L.; Isabona, J.; Alaba, M.O. A Review of Artificial Intelligence and Machine Learning for Incident Detectors in Road Transport Systems. Math. Comput. Appl. 2022, 27, 77. [Google Scholar] [CrossRef]
- Mchergui, A.; Moulahi, T.; Zeadally, S. Survey on artificial intelligence (AI) techniques for vehicular ad-hoc networks (VANETs). Veh. Commun. 2022, 34, 100403. [Google Scholar] [CrossRef]
- Abdullahi, M.; Baashar, Y.; Alhussian, H.; Alwadain, A.; Aziz, N.; Capretz, L.F.; Abdulkadir, S.J. Detecting cybersecurity attacks in internet of things using artificial intelligence methods: A systematic literature review. Electronics 2022, 11, 198. [Google Scholar] [CrossRef]
- de Souza, C.A.; Westphall, C.B.; Machado, R.B.; Loffi, L.; Westphall, C.M.; Geronimo, G.A. Intrusion detection and prevention in fog based IoT environments: A systematic literature review. Comput. Netw. 2022, 214, 109154. [Google Scholar] [CrossRef]
- Ahmad, R.; Alsmadi, I.; Alhamdani, W.; Tawalbeh, L. Zero-day attack detection: A systematic literature review. Artif. Intell. Rev. 2023, 56, 10733–10811. [Google Scholar] [CrossRef]
- Victor, P.; Lashkari, A.H.; Lu, R.; Sasi, T.; Xiong, P.; Iqbal, S. IoT malware: An attribute-based taxonomy, detection mechanisms and challenges. Peer-to-Peer Netw. Appl. 2023, 16, 1380–1431. [Google Scholar] [CrossRef] [PubMed]
- Barnawi, A.; Gaba, S.; Alphy, A.; Jabbari, A.; Budhiraja, I.; Kumar, V.; Kumar, N. A systematic analysis of deep learning methods and potential attacks in internet-of-things surfaces. Neural Comput. Appl. 2023, 35, 18293–18308. [Google Scholar] [CrossRef]
- Ben-Bright, B.; Yongzhao, Z.; Benjamin, G.; Keddy, W.D.; Banaseka, K.F. A Review of Deep Machine Learning. Int. J. Eng. Res. Afr. 2016, 24, 124–136. [Google Scholar] [CrossRef]
- Hammadi, O.I.; Abas, A.D.; Ayed, K.H. Face recognition using deep learning methods a review. Int. J. Eng. Technol. 2018, 7, 6181–6188. [Google Scholar] [CrossRef]
- Contreras-Valenzuela, M.R.; Seuret-Jiménez, D.; Hdz-Jasso, A.M.; León Hernández, V.A.; Abundes-Recilla, A.N.; Trutié-Carrero, E. Design of a Fuzzy Logic Evaluation to Determine the Ergonomic Risk Level of Manual Material Handling Tasks. Int. J. Environ. Res. Public Health 2022, 19, 6511. [Google Scholar] [CrossRef] [PubMed]
- Serrano, W. Neural networks in big data and Web search. Data 2018, 4, 7. [Google Scholar] [CrossRef]
- Senthilkumar, M.; Chowdhary, C.L. An AI-Based Chatbot Using Deep Learning. In Intelligent Systems; Apple Academic Press: Ontario, CA, USA, 2019; pp. 231–242. [Google Scholar] [CrossRef]
- Abel, S.; Criado, J.C.; Spannowsky, M. Completely quantum neural networks. Phys. Rev. A 2022, 106, 022601. [Google Scholar] [CrossRef]
- Agavanakis, K.N.; Karpetas, G.E.; Taylor, M.; Pappa, E.; Michail, C.M.; Filos, J.; Trachana, V.; Kontopoulou, L. Practical Machine Learning based on cloud computing resources. In Proceedings of the AIP Conference Proceedings, Beirut, Lebanon, 10–12 April 2019; Volume 2123, p. 020096. [Google Scholar] [CrossRef]
- Jeong, D.S. Tutorial: Neuromorphic spiking neural networks for temporal learning. J. Appl. Phys. 2018, 124, 152002. [Google Scholar] [CrossRef]
- Schuman, C.D.; Potok, T.E.; Patton, R.M.; Birdwell, J.D.; Dean, M.E.; Rose, G.S.; Plank, J.S. A Survey of Neuromorphic Computing and Neural Networks in Hardware. arXiv 2017, arXiv:1705.06963. [Google Scholar] [CrossRef]
- Davies, M.; Wild, A.; Orchard, G.; Sandamirskaya, Y.; Guerra, G.A.F.; Joshi, P.; Plank, P.; Risbud, S.R. Advancing Neuromorphic Computing With Loihi: A Survey of Results and Outlook. Proc. IEEE 2021, 109, 911–934. [Google Scholar] [CrossRef]
- Orchard, G.; Frady, E.P.; Rubin, D.B.D.; Sanborn, S.; Shrestha, S.B.; Sommer, F.T.; Davies, M. Efficient neuromorphic signal processing with loihi 2. In Proceedings of the 2021 IEEE Workshop on Signal Processing Systems (SiPS), Coimbra, Portugal, 20–22 October 2021; pp. 254–259. [Google Scholar]
- Cachi, P.G.; Ventura, S.; Cios, K.J. MT-SNN: Spiking Neural Network that Enables Single-Tasking of Multiple Tasks. arXiv 2022, arXiv:2208.01522. [Google Scholar]
- Bekolay, T.; Bergstra, J.; Hunsberger, E.; Dewolf, T.; Stewart, T.; Rasmussen, D.; Choo, X.; Voelker, A.; Eliasmith, C. Nengo: A Python tool for building large-scale functional brain models. Front. Neuroinform. 2014, 7, 48. [Google Scholar] [CrossRef] [PubMed]
- Aimone, J.B. Neural algorithms and computing beyond Moore’s law. Commun. ACM 2019, 62, 110. [Google Scholar] [CrossRef]
- Eshraghian, J.K.; Ward, M.; Neftci, E.; Wang, X.; Lenz, G.; Dwivedi, G.; Bennamoun, M.; Jeong, D.S.; Lu, W.D. Training Spiking Neural Networks Using Lessons From Deep Learning. Proc. IEEE 2022, 111, 1016–1054. [Google Scholar] [CrossRef]
- Mozafari, M.; Ganjtabesh, M.; Nowzari-Dalini, A.; Masquelier, T. SpykeTorch: Efficient Simulation of Convolutional Spiking Neural Networks With at Most One Spike per Neuron. Front. Neurosci. 2019, 13, 625. [Google Scholar] [CrossRef] [PubMed]
- Lytton, W.W.; Seidenstein, A.H.; Dura-Bernal, S.; McDougal, R.A.; Schürmann, F.; Hines, M.L. Simulation Neurotechnologies for Advancing Brain Research: Parallelizing Large Networks in NEURON. Neural Comput. 2016, 28, 2063–2090. [Google Scholar] [CrossRef]
- Tiddia, G.; Golosio, B.; Albers, J.; Senk, J.; Simula, F.; Pronold, J.; Fanti, V.; Pastorelli, E.; Paolucci, P.S.; van Albada, S.J. Fast Simulation of a Multi-Area Spiking Network Model of Macaque Cortex on an MPI-GPU Cluster. Front. Neuroinform. 2022, 16, 883333. [Google Scholar] [CrossRef]
- Stimberg, M.; Brette, R.; Goodman, D.F. Brian 2, an intuitive and efficient neural simulator. eLife 2019, 8, e47314. [Google Scholar] [CrossRef]
- Niedermeier, L.; Chen, K.; Xing, J.; Das, A.; Kopsick, J.; Scott, E.; Sutton, N.; Weber, K.; Dutt, N.; Krichmar, J.L. CARLsim 6: An Open Source Library for Large-Scale, Biologically Detailed Spiking Neural Network Simulation. In Proceedings of the 2022 International Joint Conference on Neural Networks (IJCNN), Padua, Italy, 18–23 July 2022; pp. 1–10. [Google Scholar] [CrossRef]
- Rothganger, F.; Warrender, C.; Trumbo, D.; Aimone, J. N2A: A computational tool for modeling from neurons to algorithms. Front. Neural Circuits 2014, 8, 1. [Google Scholar] [CrossRef]
- Gerstner, W.; Kistler, W.M.; Naud, R. Neuronal Dynamics; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Zenke, F.; Neftci, E.O. Brain-inspired learning on neuromorphic substrates. Proc. IEEE 2021, 109, 935–950. [Google Scholar] [CrossRef]
- Kempter, R.; Gerstner, W.; van Hemmen, J.L. Hebbian learning and spiking neurons. Phys. Rev. E 1999, 59, 4498–4514. [Google Scholar] [CrossRef]
- The 6 Levels of Vehicle Autonomy Explained. 2022. Available online: https://www.synopsys.com/automotive/autonomous-driving-levels.html (accessed on 12 June 2023).
- Silva, P.B.; Andrade, M.; Ferreira, S. Machine Learning applied to road safety modeling: A systematic literature review. J. Traffic Transp. Eng. 2020, 7, 775–790. [Google Scholar] [CrossRef]
- Eskandari Torbaghan, M.; Sasidharan, M.; Reardon, L.; Muchanga-Hvelplund, L.C. Understanding the potential of emerging digital technologies for improving road safety. Accid. Anal. Prev. 2022, 166, 106543. [Google Scholar] [CrossRef] [PubMed]
- Chen, L. Road vehicle recognition algorithm in safety assistant driving based on artificial intelligence. Soft Comput. 2021, 27, 1153–1162. [Google Scholar] [CrossRef]
- Fu, Y.; Li, C.; Yu, F.R.; Luan, T.H.; Zhang, Y. A Survey of Driving Safety With Sensing, Vehicular Communications, and Artificial Intelligence-Based Collision Avoidance. IEEE Trans. Intell. Transp. Syst. 2022, 23, 6142–6163. [Google Scholar] [CrossRef]
- Benterki, A.; Boukhnifer, M.; Judalet, V.; Maaoui, C. Artificial Intelligence for Vehicle Behavior Anticipation: Hybrid Approach Based on Maneuver Classification and Trajectory Prediction. IEEE Access 2020, 8, 56992–57002. [Google Scholar] [CrossRef]
- Ahmad, S.e.a. Accident Risk Prediction and Avoidance in Intelligent Semi-autonomous Vehicles Based on Road Safety Data and Driver Biological Behaviours. J. Intell. Fuzzy Syst. 2020, 38, 4591–4601. [Google Scholar] [CrossRef]
- Kuşkapan, E.; Sahraei, M.A.; Çodur, M.K.; Çodur, M.Y. Pedestrian safety at signalized intersections: Spatial and machine learning approaches. J. Transp. Health 2022, 24, 101322. [Google Scholar] [CrossRef]
- Police Report 2021. 2021. Available online: https://statystyka.policja.pl/download/20/381967/Wypadkidrogowe2021.pdf (accessed on 1 June 2023).
- Tian, D.; Han, Y.; Wang, B.; Guan, T.; Wei, W. A Review of Intelligent Driving Pedestrian Detection Based on Deep Learning. Comput. Intell. Neurosci. 2021, 2021, 5410049. [Google Scholar] [CrossRef]
- Szarvas, M.; Yoshizawa, A.; Yamamoto, M.; Ogata, J. Pedestrian detection with convolutional neural networks. In Proceedings of the IEEE Proceedings. Intelligent Vehicles Symposium, Las Vegas, NV, USA, 6–8 June 2005; pp. 224–229. [Google Scholar] [CrossRef]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, OH, USA, 23–28 June 2014. [Google Scholar] [CrossRef]
- R-CNN, Fast R-CNN, Faster R-CNN, YOLO—Object Detection Algorithms. Available online: https://towardsdatascience.com/r-cnn-fast-r-cnn-faster-r-cnn-yolo-object-detection-algorithms-36d53571365e (accessed on 20 September 2023).
- Dong, P.; Wang, W. Better region proposals for pedestrian detection with R-CNN. In Proceedings of the 2016 Visual Communications and Image Processing (VCIP), Chengdu, China, 27–30 November 2016; pp. 1–4. [Google Scholar] [CrossRef]
- Dollár, P.; Appel, R.; Belongie, S.; Perona, P. Fast Feature Pyramids for Object Detection. IEEE Trans. Pattern Anal. Mach. Intell. 2014, 36, 1532–1545. [Google Scholar] [CrossRef]
- Wang, K.; Zhou, W. Pedestrian and cyclist detection based on deep neural network fast R-CNN. Int. J. Adv. Robot. Syst. 2019, 16, 1729881419829651. [Google Scholar] [CrossRef]
- Zhao, Z.Q.; Bian, H.; Hu, D.; Cheng, W.; Glotin, H. Pedestrian Detection Based on Fast R-CNN and Batch Normalization. In Proceedings of the Intelligent Computing Theories and Application, Liverpool, UK, 7–10 August 2017; Huang, D.S., Bevilacqua, V., Premaratne, P., Gupta, P., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 735–746. [Google Scholar]
- Li, J.; Liang, X.; Shen, S.; Xu, T.; Feng, J.; Yan, S. Scale-Aware Fast R-CNN for Pedestrian Detection. IEEE Trans. Multimed. 2018, 20, 985–996. [Google Scholar] [CrossRef]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. arXiv 2015, arXiv:1506.01497. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Lin, L.; Liang, X.; He, K. Is Faster R-CNN Doing Well for Pedestrian Detection? In Proceedings of the Computer Vision—ECCV 2016, Amsterdam, The Netherlands, 11–14 October 2016; Leibe, B., Matas, J., Sebe, N., Welling, M., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 443–457. [Google Scholar]
- Zhang, H.; Du, Y.; Ning, S.; Zhang, Y.; Yang, S.; Du, C. Pedestrian Detection Method Based on Faster R-CNN. In Proceedings of the 2017 13th International Conference on Computational Intelligence and Security (CIS), Hong Kong, China, 15–18 December 2017; pp. 427–430. [Google Scholar] [CrossRef]
- Hung, G.L.; Sahimi, M.S.B.; Samma, H.; Almohamad, T.A.; Lahasan, B. Faster R-CNN Deep Learning Model for Pedestrian Detection from Drone Images; Springer: Cham, Switzerland, 2020; Volume 1, pp. 1–9. [Google Scholar]
- Zhai, S.; Dong, S.; Shang, D.; Wang, S. An Improved Faster R-CNN Pedestrian Detection Algorithm Based on Feature Fusion and Context Analysis. IEEE Access 2020, 8, 138117–138128. [Google Scholar] [CrossRef]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar] [CrossRef]
- Redmon, J.; Farhadi, A. YOLO9000: Better, Faster, Stronger. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Honolulu, HI, USA, 21–26 July 2017. [Google Scholar] [CrossRef]
- Sweta Panigrahi, U.S.N.R. InceptionDepth-wiseYOLOv2: Improved implementation of YOLO framework for pedestrian detection. Int. J. Multimed. Inf. Retr. 2022, 11, 409–430. [Google Scholar] [CrossRef]
- Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement. arXiv 2018, arXiv:1804.02767. [Google Scholar] [CrossRef]
- Li, A.; Gao, X.; Qu, C. Pedestrian Detection Based on Improved YOLOv3 Algorithm. In Intelligent Life System Modelling, Image Processing and Analysis, Proceedings of the 7th International Conference on Life System Modeling and Simulation, LSMS 2021 and 7th International Conference on Intelligent Computing for Sustainable Energy and Environment, ICSEE 2021, Hangzhou, China, 30 October–1 November 2021; Springer: Singapore, 2021. [Google Scholar] [CrossRef]
- Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. YOLOv4: Optimal Speed and Accuracy of Object Detection. arXiv 2020, arXiv:2004.10934. [Google Scholar] [CrossRef]
- Wen, B.; Wu, M. Study on Pedestrian Detection Based on an Improved YOLOv4 Algorithm. In Proceedings of the 2020 IEEE 6th International Conference on Computer and Communications (ICCC), Chengdu, China, 11–14 December 2020; pp. 1198–1202. [Google Scholar] [CrossRef]
- Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. 2017. Available online: http://xxx.lanl.gov/abs/1704.04861 (accessed on 20 September 2023).
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. SSD: Single Shot MultiBox Detector. In Computer Vision—ECCV 2016; Springer International Publishing: Berlin/Heidelberg, Germany, 2016; pp. 21–37. [Google Scholar] [CrossRef]
- Murthy, C.B.; Hashmi, M.F.; Keskar, A.G. Optimized MobileNet + SSD: A real-time pedestrian detection on a low-end edge device. Int. J. Multimed. Inf. Retr. 2021, 10, 171–184. [Google Scholar] [CrossRef]
- El-Sayed, S.A.; Spyrou, T.; Pavlidis, A.; Afacan, E.; Camuñas-Mesa, L.A.; Linares-Barranco, B.; Stratigopoulos, H.G. Spiking Neuron Hardware-Level Fault Modeling. In Proceedings of the 2020 IEEE 26th International Symposium on On-Line Testing and Robust System Design (IOLTS), Napoli, Italy, 13–15 July 2020; pp. 1–4. [Google Scholar] [CrossRef]
- Spyrou, T.; El-Sayed, S.A.; Afacan, E.; Camunas-Mesa, L.A.; Linares-Barranco, B.; Stratigopoulos, H.G. Neuron Fault Tolerance in Spiking Neural Networks. In Proceedings of the 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE), Virtual, 1–5 February 2021; pp. 743–748. [Google Scholar] [CrossRef]
- Orchard, G.; Jayawant, A.; Cohen, G.K.; Thakor, N. Converting Static Image Datasets to Spiking Neuromorphic Datasets Using Saccades. Front. Neurosci. 2015, 9, 437. [Google Scholar] [CrossRef]
- Amir, A.; Taba, B.; Berg, D.; Melano, T.; McKinstry, J.; Di Nolfo, C.; Nayak, T.; Andreopoulos, A.; Garreau, G.; Mendoza, M.; et al. A Low Power, Fully Event-Based Gesture Recognition System. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 7388–7397. [Google Scholar] [CrossRef]
- Spyrou, T.; El-Sayed, S.A.; Afacan, E.; Camuñas-Mesa, L.A.; Linares-Barranco, B.; Stratigopoulos, H.G. Reliability Analysis of a Spiking Neural Network Hardware Accelerator. In Proceedings of the 2022 Design, Automation & Test in Europe Conference & Exhibition (DATE), Valencia, Spain, 25–27 March 2022; pp. 370–375. [Google Scholar] [CrossRef]
- Han, W.S.; Han, I.S. All Weather Human Detection Using Neuromorphic Visual Processing. In Intelligent Systems for Science and Information: Extended and Selected Results from the Science and Information Conference 2013; Chen, L., Kapoor, S., Bhatia, R., Eds.; Springer International Publishing: Cham, Switzerland, 2014; pp. 25–44. [Google Scholar] [CrossRef]
- Han, W.S.; Han, I.S. Neuromorphic visual object detection for enhanced driving safety. In Proceedings of the 2015 Science and Information Conference (SAI), London, UK, 28–30 July 2015; pp. 721–726. [Google Scholar] [CrossRef]
- Prez, H.; Rudomin, I.; Tabarez-Paz, I. Support Vector Machine and Spiking Neural Networks for Data Driven Prediction of Crowd Character Movement; MIT Press: Cambridge, MA, USA, 2016; pp. 638–645. [Google Scholar] [CrossRef]
- Ramanishka, V.; Chen, Y.T.; Misu, T.; Saenko, K. Toward Driving Scene Understanding: A Dataset for Learning Driver Behavior and Causal Reasoning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018. [Google Scholar]
- Gaurav, R. Driving Scene Understanding Using Spiking Neural Networks. Master’s Thesis, University of Waterloo, Waterloo, ON, Canada, 2022. [Google Scholar]
- Zhao, Z.; Lu, E.; Zhao, F.; Zeng, Y.; Zhao, Y. A Brain-Inspired Theory of Mind Spiking Neural Network for Reducing Safety Risks of Other Agents. Front. Neurosci. 2022, 16, 753900. [Google Scholar] [CrossRef]
- Farries, M.A.; Fairhall, A.L. Reinforcement Learning with Modulated Spike Timing–Dependent Synaptic Plasticity. J. Neurophysiol. 2007, 98, 3648–3665. [Google Scholar] [CrossRef] [PubMed]
- Frémaux, N.; Gerstner, W. Neuromodulated Spike-Timing-Dependent Plasticity, and Theory of Three-Factor Learning Rules. Front. Neural Circuits 2016, 9, 85. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, E. Temporal Spike Attribution: A Local Feature-Based Explanation for Temporally Coded Spiking Neural Networks. Master’s Thesis, University of Twente, Enschede, The Netherlands, 2021. [Google Scholar]
- Kim, Y.; Panda, P. Visual explanations from spiking neural networks using inter-spike intervals. Sci. Rep. 2021, 11, 19037. [Google Scholar] [CrossRef]
- Seras, A.M.; Ser, J.D.; Lobo, J.L.; Garcia-Bringas, P.; Kasabov, N. A Novel Explainable Out-of-Distribution Detection Approach for Spiking Neural Networks. arXiv 2022, arXiv:2210.00894. [Google Scholar]
- Gallego, G.; Delbrück, T.; Orchard, G.; Bartolozzi, C.; Taba, B.; Censi, A.; Leutenegger, S.; Davison, A.J.; Conradt, J.; Daniilidis, K.; et al. Event-Based Vision: A Survey. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 44, 154–180. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Xiao, G.; Gui, S.; Ren, Q. Research on Brain-inspired Vision Based on Dynamic Vision Sensor Cameras. In Proceedings of the 2020 International Conference on Aviation Safety and Information Technology, Weihai, China, 14–16 October 2020; Association for Computing Machinery: New York, NY, USA, 2020; pp. 725–733. [Google Scholar] [CrossRef]
- Cordts, M.; Omran, M.; Ramos, S.; Rehfeld, T.; Enzweiler, M.; Benenson, R.; Franke, U.; Roth, S.; Schiele, B. The Cityscapes Dataset for Semantic Urban Scene Understanding. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- Yao, M.; Gao, H.; Zhao, G.; Wang, D.; Lin, Y.; Yang, Z.; Li, G. Temporal-Wise Attention Spiking Neural Networks for Event Streams Classification. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, BC, Canada, 11–17 October 2021; pp. 10221–10230. Available online: http://xxx.lanl.gov/abs/2107.11711 (accessed on 19 September 2023).
- Li, H.; Liu, H.; Ji, X.; Li, G.; Shi, L. CIFAR10-DVS: An Event-Stream Dataset for Object Classification. Front. Neurosci. 2017, 11, 309. [Google Scholar] [CrossRef] [PubMed]
- Cramer, B.; Stradmann, Y.; Schemmel, J.; Zenke, F. The Heidelberg Spiking Data Sets for the Systematic Evaluation of Spiking Neural Networks. IEEE Trans. Neural Netw. Learn. Syst. 2022, 33, 2744–2757. [Google Scholar] [CrossRef]
- Liu, Q.; Xing, D.; Tang, H.; Ma, D.; Pan, G. Event-based Action Recognition Using Motion Information and Spiking Neural Networks. SSRN 2021, 2, 1743–1749. [Google Scholar] [CrossRef]
- Miao, S.; Chen, G.; Ning, X.; Zi, Y.; Ren, K.; Bing, Z.; Knoll, A. Neuromorphic Vision Datasets for Pedestrian Detection, Action Recognition, and Fall Detection. Front. Neurorobot. 2019, 13, 38. [Google Scholar] [CrossRef]
- Salah, M.; Chehadah, M.; Humais, M.; Wahbah, M.; Ayyad, A.; Azzam, R.; Seneviratne, L.; Zweiri, Y. A Neuromorphic Vision-Based Measurement for Robust Relative Localization in Future Space Exploration Missions. arXiv 2022, arXiv:2206.11541. [Google Scholar] [CrossRef]
- Marchisio, A.; Pira, G.; Martina, M.; Masera, G.; Shafique, M. DVS-Attacks: Adversarial Attacks on Dynamic Vision Sensors for Spiking Neural Networks. In Proceedings of the 2021 International Joint Conference on Neural Networks (IJCNN), Shenzhen, China, 18–22 July 2021; pp. 1–9. [Google Scholar] [CrossRef]
- Machado, G.R.; Silva, E.; Goldschmidt, R.R. Adversarial Machine Learning in Image Classification: A Survey Toward the Defender’s Perspective. ACM Comput. Surv. 2021, 55, 8:1–8:38. [Google Scholar] [CrossRef]
- Dapello, J.; Marques, T.; Schrimpf, M.; Geiger, F.; Cox, D.D.; DiCarlo, J.J. Simulating a Primary Visual Cortex at the Front of CNNs Improves Robustness to Image Perturbations. Adv. Neural Inf. Process. Syst. 2020, 33, 13073–13087. [Google Scholar] [CrossRef]
- Branytskyi, V.; Golovianko, M.; Malyk, D.; Terziyan, V. Generative adversarial networks with bio-inspired primary visual cortex for Industry 4.0. Procedia Comput. Sci. 2022, 200, 418–427. [Google Scholar] [CrossRef]
- Shi, B.; Song, Y.; Joshi, N.; Darrell, T.; Wang, X. Visual Attention Emerges from Recurrent Sparse Reconstruction. arXiv 2022, arXiv:2204.10962. [Google Scholar]
- Mao, X.; Qi, G.; Chen, Y.; Li, X.; Duan, R.; Ye, S.; He, Y.; Xue, H. Towards Robust Vision Transformer. arXiv 2022, arXiv:2105.07926. [Google Scholar]
- Krithivasan, S.; Sen, S.; Rathi, N.; Roy, K.; Raghunathan, A. Efficiency Attacks on Spiking Neural Networks. In Proceedings of the 59th ACM/IEEE Design Automation Conference, San Francisco, CA, USA, 10–14 July 2022; Association for Computing Machinery: New York, NY, USA, 2022; pp. 373–378. [Google Scholar] [CrossRef]
- El-Allami, R.; Marchisio, A.; Shafique, M.; Alouani, I. Securing Deep Spiking Neural Networks against Adversarial Attacks through Inherent Structural Parameters. In Proceedings of the 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE), Grenoble, France, 1–5 February 2021; pp. 774–779. [Google Scholar] [CrossRef]
- Nomura, O.; Sakemi, Y.; Hosomi, T.; Morie, T. Robustness of Spiking Neural Networks Based on Time-to-First-Spike Encoding Against Adversarial Attacks. IEEE Trans. Circuits Syst. II Express Briefs 2022, 69, 3640–3644. [Google Scholar] [CrossRef]
- Kim, Y.; Park, H.; Moitra, A.; Bhattacharjee, A.; Venkatesha, Y.; Panda, P. Rate Coding Or Direct Coding: Which One Is Better For Accurate, Robust, And Energy-Efficient Spiking Neural Networks? In Proceedings of the ICASSP 2022—2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Singapore, 22–27 May 2022; pp. 71–75. [Google Scholar] [CrossRef]
- Yang, W.; Liu, L.; Liu, Y.; Fan, L.; Lu, W. Secure and efficient multi-dimensional range query algorithm over TMWSNs. Ad Hoc Netw. 2022, 130, 102820. [Google Scholar] [CrossRef]
- Temene, N.; Sergiou, C.; Georgiou, C.; Vassiliou, V. A Survey on Mobility in Wireless Sensor Networks. Ad Hoc Netw. 2022, 125, 102726. [Google Scholar] [CrossRef]
- Szymoniak, S.; Siedlecka-Lamch, O. Securing Meetings in D2D IoT Systems. In Proceedings of the Ethicomp, 20th International Conference on the Ethical and Social issues in Information and Communication Technologies, Turku, Finland, 26–28 July 2022; pp. 30–41. [Google Scholar]
- Sarker, I.H.; Furhad, M.H.; Nowrozy, R. Ai-driven cybersecurity: An overview, security intelligence modeling and research directions. SN Comput. Sci. 2021, 2, 1–18. [Google Scholar] [CrossRef]
- Kubanek, M.; Bobulski, J.; Karbowiak, L.u. Intelligent Identity Authentication, Using Face and Behavior Analysis. In Proceedings of the Ethicomp, 20th International Conference on the Ethical and Social issues in Information and Communication Technologies, Turku, Finland, 26–28 July 2022; pp. 42–51. [Google Scholar]
- Szymoniak, S.; Kesar, S. Key Agreement and Authentication Protocols in the Internet of Things: A Survey. Appl. Sci. 2023, 13, 404. [Google Scholar] [CrossRef]
- Attkan, A.; Ranga, V. Cyber-physical security for IoT networks: A comprehensive review on traditional, blockchain and artificial intelligence based key-security. Complex Intell. Syst. 2022, 8, 3559–3591. [Google Scholar] [CrossRef]
- Amma, N.; Selvakumar, S. Optimization of vector convolutional deep neural network using binary real cumulative incarnation for detection of distributed denial of service attacks. Neural Comput. Appl. 2022, 34, 2869–2882. [Google Scholar] [CrossRef] [PubMed]
- Sivasankari, N.; Kamalakkannan, S. Detection and prevention of man-in-the-middle attack in iot network using regression modeling. Adv. Eng. Softw. 2022, 169, 103126. [Google Scholar] [CrossRef]
- Liu, J.; Liu, L.; Liu, Z.; Lai, Y.; Qin, H.; Luo, S. WSN node access authentication protocol based on trusted computing. Simul. Model. Pract. Theory 2022, 117, 102522. [Google Scholar] [CrossRef]
- Vinoth, R.; Deborah, L.J.; Vijayakumar, P.; Kumar, N. Secure Multifactor Authenticated Key Agreement Scheme for Industrial IoT. IEEE Internet Things J. 2021, 8, 3801–3811. [Google Scholar] [CrossRef]
- Catillo, M.; Pecchia, A.; Villano, U. Botnet Detection in the Internet of Things through All-in-One Deep Autoencoding. In Proceedings of the 17th International Conference on Availability, Reliability and Security, Vienna, Austria, 23–26 August 2022; Association for Computing Machinery: New York, NY, USA, 2022. [Google Scholar] [CrossRef]
- Rao, P.M.; Deebak, B. Security and privacy issues in smart cities/industries: Technologies, applications, and challenges. J. Ambient. Intell. Humaniz. Comput. 2022, 14, 10517–10553. [Google Scholar] [CrossRef]
- He, Z.; Rezaei, A.; Homayoun, H.; Sayadi, H. Deep Neural Network and Transfer Learning for Accurate Hardware-Based Zero-Day Malware Detection. In Proceedings of the Great Lakes Symposium on VLSI 2022, Irvine, CA, USA, 6–8 June 2022; Association for Computing Machinery: New York, NY, USA, 2022; pp. 27–32. [Google Scholar] [CrossRef]
- Amanoul, S.V.; Abdulazeez, A.M.; Zeebare, D.Q.; Ahmed, F.Y. Intrusion-Detection Systems Based on Machine Learning Algorithms. In Proceedings of the 2021 IEEE International Conference on Automatic Control & Intelligent Systems (I2CACIS), Shah Alam, Malaysia, 26 June 2021; pp. 282–287. [Google Scholar]
- Kocher, G.; Kumar, G. Machine Learning and deep learning methods for intrusion detection systems: Recent developments and challenges. Soft Comput. 2021, 25, 9731–9763. [Google Scholar] [CrossRef]
- Ahmad, R.; Wazirali, R.; Abu-Ain, T. Machine Learning for Wireless Sensor Networks Security: An Overview of Challenges and Issues. Sensors 2022, 22, 4730. [Google Scholar] [CrossRef]
- Apruzzese, G.; Laskov, P.; Montes de Oca, E.; Mallouli, W.; Brdalo Rapa, L.; Grammatopoulos, A.V.; Di Franco, F. The role of Machine Learning in cybersecurity. Digit. Threat. Res. Pract. 2023, 4, 1–38. [Google Scholar] [CrossRef]
- Kumar, R.; Tripathi, R. DBTP2SF: A deep blockchain-based trustworthy privacy-preserving secured framework in industrial internet of things systems. Trans. Emerg. Telecommun. Technol. 2021, 32, e4222. [Google Scholar] [CrossRef]
- Kumar, N.; Makkar, A. Machine Learning in Cognitive IoT; CRC Press: Boca Raton, FL, USA, 2020. [Google Scholar]
- Gu, J.; Lu, S. An effective intrusion detection approach using SVM with naïve Bayes feature embedding. Comput. Secur. 2021, 103, 102158. [Google Scholar] [CrossRef]
- Ravi, V.; Chaganti, R.; Alazab, M. Recurrent deep learning-based feature fusion ensemble meta-classifier approach for intelligent network Intrusion-Detection System. Comput. Electr. Eng. 2022, 102, 108156. [Google Scholar] [CrossRef]
- Wang, B.X.; Chen, J.L.; Yu, C.L. An AI-Powered Network Threat Detection System. IEEE Access 2022, 10, 54029–54037. [Google Scholar] [CrossRef]
- Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T.Y. Lightgbm: A highly efficient gradient boosting decision tree. Adv. Neural Inf. Process. Syst. 2017, 30, 3146–3154. [Google Scholar]
- Leevy, J.L.; Hancock, J.; Zuech, R.; Khoshgoftaar, T.M. Detecting cybersecurity attacks using different network features with lightgbm and xgboost learners. In Proceedings of the 2020 IEEE Second International Conference on Cognitive Machine Intelligence (CogMI), Atlanta, GA, USA, 21–38 October 2020; pp. 190–197. [Google Scholar]
- Leevy, J.L.; Hancock, J.; Zuech, R.; Khoshgoftaar, T.M. Detecting cybersecurity attacks across different network features and learners. J. Big Data 2021, 8, 1–29. [Google Scholar] [CrossRef]
- Latif, S.; Huma, Z.e.; Jamal, S.S.; Ahmed, F.; Ahmad, J.; Zahid, A.; Dashtipour, K.; Aftab, M.U.; Ahmad, M.; Abbasi, Q.H. Intrusion Detection Framework for the Internet of Things Using a Dense Random Neural Network. IEEE Trans. Ind. Inform. 2022, 18, 6435–6444. [Google Scholar] [CrossRef]
- Cai, S.; Han, D.; Yin, X.; Li, D.; Chang, C.C. A Hybrid parallel deep learning model for efficient intrusion detection based on metric learning. Connect. Sci. 2022, 34, 551–577. [Google Scholar] [CrossRef]
- Balyan, A.K.; Ahuja, S.; Lilhore, U.K.; Sharma, S.K.; Manoharan, P.; Algarni, A.D.; Elmannai, H.; Raahemifar, K. A Hybrid Intrusion Detection Model Using EGA-PSO and Improved Random Forest Method. Sensors 2022, 22, 5986. [Google Scholar] [CrossRef]
- Alsarhan, A.; Al-Ghuwairi, A.R.; Almalkawi, I.T.; Alauthman, M.; Al-Dubai, A. Machine Learning-driven optimization for intrusion detection in smart vehicular networks. Wirel. Pers. Commun. 2021, 117, 3129–3152. [Google Scholar] [CrossRef]
- Du, Y.W.; Zhong, J.J. Generalized combination rule for evidential reasoning approach and Dempster–Shafer theory of evidence. Inf. Sci. 2021, 547, 1201–1232. [Google Scholar] [CrossRef]
- Ullah, S.; Khan, M.A.; Ahmad, J.; Jamal, S.S.; e Huma, Z.; Hassan, M.T.; Pitropakis, N.; Buchanan, W.J. HDL-IDS: A hybrid deep learning architecture for intrusion detection in the Internet of Vehicles. Sensors 2022, 22, 1340. [Google Scholar] [CrossRef] [PubMed]
- Ullah, S.; Ahmad, J.; Khan, M.A.; Alkhammash, E.H.; Hadjouni, M.; Ghadi, Y.Y.; Saeed, F.; Pitropakis, N. A New Intrusion-Detection System for the Internet of Things via Deep Convolutional Neural Network and Feature Engineering. Sensors 2022, 22, 3607. [Google Scholar] [CrossRef] [PubMed]
- Driss, M.; Almomani, I.; Ahmad, J. A federated learning framework for cyber attack detection in vehicular sensor networks. Complex Intell. Syst. 2022, 8, 4221–4235. [Google Scholar] [CrossRef]
- Hu, R.; Wu, Z.; Xu, Y.; Lai, T. Vehicular-Network-Intrusion Detection Based on a Mosaic-Coded Convolutional Neural Network. Mathematics 2022, 10, 2030. [Google Scholar] [CrossRef]
- Roy, S.; Li, J.; Choi, B.J.; Bai, Y. A lightweight supervised intrusion detection mechanism for IoT networks. Future Gener. Comput. Syst. 2022, 127, 276–285. [Google Scholar] [CrossRef]
- Roy, S.; Li, J.; Bai, Y. A Two-layer Fog-Cloud Intrusion Detection Model for IoT Networks. Internet Things 2022, 19, 100557. [Google Scholar] [CrossRef]
- ul Haq Qazi, E.; Imran, M.; Haider, N.; Shoaib, M.; Razzak, I. An intelligent and efficient network Intrusion-Detection System using deep learning. Comput. Electr. Eng. 2022, 99, 107764. [Google Scholar] [CrossRef]
- Nguyen, X.H.; Nguyen, X.D.; Huynh, H.H.; Le, K.H. Realguard: A Lightweight Network Intrusion-Detection System for IoT Gateways. Sensors 2022, 22, 432. [Google Scholar] [CrossRef]
- Yang, R.; He, H.; Xu, Y.; Xin, B.; Wang, Y.; Qu, Y.; Zhang, W. Efficient intrusion detection toward IoT networks using cloud–edge collaboration. Comput. Netw. 2023, 228, 109724. [Google Scholar] [CrossRef]
- Dina, A.S.; Siddique, A.; Manivannan, D. A deep learning approach for intrusion detection in Internet of Things using focal loss function. Internet Things 2023, 22, 100699. [Google Scholar] [CrossRef]
- Altaf, T.; Wang, X.; Ni, W.; Yu, G.; Liu, R.P.; Braun, R. A new concatenated Multigraph Neural Network for IoT intrusion detection. Internet Things 2023, 22, 100818. [Google Scholar] [CrossRef]
- Blaise, A.; Bouet, M.; Conan, V.; Secci, S. Botnet fingerprinting: A frequency distributions scheme for lightweight bot detection. IEEE Trans. Netw. Serv. Manag. 2020, 17, 1701–1714. [Google Scholar] [CrossRef]
- Blaise, A.; Bouet, M.; Conan, V.; Secci, S. Botfp: Fingerprints clustering for bot detection. In Proceedings of the NOMS 2020—2020 IEEE/IFIP Network Operations and Management Symposium, Budapest, Hungary, 20–24 April 2020; pp. 1–7. [Google Scholar]
- Blaise, A.; Mihailescu, E.; Vidalenc, B.; Aufrechter, L.; Mihai, D.; Carabas, M. Learning Model Generalisation for Bot Detection. In Proceedings of the 2022 European Interdisciplinary Cybersecurity Conference, Barcelona, Spain, 15–16 June 2022; Association for Computing Machinery: New York, NY, USA, 2022; pp. 57–63. [Google Scholar] [CrossRef]
- Ilango, H.S.; Ma, M.; Su, R. A FeedForward–Convolutional Neural Network to Detect Low-Rate DoS in IoT. Eng. Appl. Artif. Intell. 2022, 114, 105059. [Google Scholar] [CrossRef]
- Gupta, K.; Sharma, D.K.; Gupta, K.D.; Kumar, A. A tree classifier based network intrusion detection model for Internet of Medical Things. Comput. Electr. Eng. 2022, 102, 108158. [Google Scholar] [CrossRef]
- Sohi, S.M.; Seifert, J.P.; Ganji, F. RNNIDS: Enhancing network Intrusion-Detection Systems through deep learning. Comput. Secur. 2021, 102, 102151. [Google Scholar] [CrossRef]
- Apruzzese, G.; Andreolini, M.; Ferretti, L.; Marchetti, M.; Colajanni, M. Modeling realistic adversarial attacks against network intrusion detection systems. Digit. Threat. Res. Pract. 2021, 3, 1–19. [Google Scholar] [CrossRef]
- Han, D.; Wang, Z.; Zhong, Y.; Chen, W.; Yang, J.; Lu, S.; Shi, X.; Yin, X. Evaluating and improving adversarial robustness of machine learning-based network intrusion detectors. IEEE J. Sel. Areas Commun. 2021, 39, 2632–2647. [Google Scholar] [CrossRef]
- Han, D.; Wang, Z.; Chen, W.; Zhong, Y.; Wang, S.; Zhang, H.; Yang, J.; Shi, X.; Yin, X. DeepAID: Interpreting and improving deep learning-based anomaly detection in security applications. In Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security, Virtual, 15–19 November 2021; pp. 3197–3217. [Google Scholar]
- Jiang, H.; Lin, J.; Kang, H. FGMD: A robust detector against adversarial attacks in the IoT network. Future Gener. Comput. Syst. 2022, 132, 194–210. [Google Scholar] [CrossRef]
- Liu, Y.; Tantithamthavorn, C.; Li, L.; Liu, Y. Deep Learning for Android Malware Defenses: A Systematic Literature Review. ACM Comput. Surv. 2022, 55, 1–36. [Google Scholar] [CrossRef]
- Imtiaz, S.I.; ur Rehman, S.; Javed, A.R.; Jalil, Z.; Liu, X.; Alnumay, W.S. DeepAMD: Detection and identification of Android malware using high-efficient Deep Artificial Neural Network. Future Gener. Comput. Syst. 2021, 115, 844–856. [Google Scholar] [CrossRef]
- Rey, V.; Sánchez Sánchez, P.M.; Huertas Celdrán, A.; Bovet, G. Federated learning for malware detection in IoT devices. Comput. Netw. 2022, 204, 108693. [Google Scholar] [CrossRef]
- Eremia, M.; Toma, L.; Sanduleac, M. The Smart City Concept in the 21st Century. In Proceedings of the 10th International Conference Interdisciplinarity in Engineering, INTER-ENG 2016, Tirgu Mures, Romania, 6–7 October 2016; Volume 181, pp. 12–19. [Google Scholar] [CrossRef]
- Dameri, R.P. Searching for smart city definition: A comprehensive proposal. Int. J. Comput. Technol. 2013, 11, 2544–2551. [Google Scholar] [CrossRef]
- Qi, C.R.; Liu, W.; Wu, C.; Su, H.; Guibas, L.J. Frustum PointNets for 3D Object Detection from RGB-D Data. arXiv 2017, arXiv:1711.08488. [Google Scholar]
- Liang, M.; Yang, B.; Chen, Y.; Hu, R.; Urtasun, R. Multi-Task Multi-Sensor Fusion for 3D Object Detection. 2020. Available online: http://xxx.lanl.gov/abs/2012.12397 (accessed on 25 October 2023).
- Chen, X.; Ma, H.; Wan, J.; Li, B.; Xia, T. Multi-View 3D Object Detection Network for Autonomous Driving. 2017. Available online: http://xxx.lanl.gov/abs/1611.07759 (accessed on 25 October 2023).
- Chen, H.; Li, Y.; Su, D. Multi-modal fusion network with multi-scale multi-path and cross-modal interactions for RGB-D salient object detection. Pattern Recognit. 2019, 86, 376–385. [Google Scholar] [CrossRef]
Acronym | Explanation | Acronym | Explanation |
---|---|---|---|
ANN | Artificial Neural Network | KNN | K-Nearest Neighbors algorithm |
BL | Bayesian Learning | KPCA | Kernel Principal Component Analysis |
BSM | Basic Safety Messages | LSB | Least-Significant Bit |
(D)CNN | (Deep) Convolutional Neural Network | LSTM | Long Short-Term Memory |
CPS | Cyber–Physical System | MITM | Man In The Middle attack |
(D)DoS | (Distributed) Denial of Service attack | ML | Machine Learning |
DL | Deep Learning | NB | Naive Bayes |
DNN | Deep Neural Network | PSO | Particle Swarm Optimization |
DRNN | Dense Random Neural Network | RNN | Recurrent Neural Network |
DSU | Driving Scene Understanding | R-CNN | Region-based Convolutional Neural Network |
DVS | Dynamic Vision Sensor | R-STDP | Reward-modulated Spike-Timing-Dependent Plasticity |
(FF)CNN | (Feed-Forward) Convolutional Neural Network | SNDAE | Stacked Non-symmetric Deep Auto-Encoder |
FL | Federated Learning | SNN | Spiking Neural Network |
FPGA | Field Programmable Gate Array | SOTA | State-Of-The-Art |
GA | Genetic Algorithm | SPP | Spatial Pyramid Pooling |
GAN | Generative Adversarial Network | SSD | Single-Shot Detector |
GNN | Graph Neural Network | SVM | Support Vector Machine |
GRU | Gated Recurrent Unit | (T)AI | (Trustworthy) Artificial Intelligence |
HOG | Histogram of Oriented Gradients | TA-SNN | Temporalwise Attention SNN |
IDS | Intrusion-Detection System | ToM | Theory of Mind |
IMU | Inertial Measurement Unit | UAV | Unnamed Aerial Vehicle |
IoT | Internet of Things | VANET | Vehicular Ad Hoc Network |
(I)RF | (Improved) Random Forest | WSN | Wireless Sensor Network |
Ref. | Name | Papers Utilizing | Description | Total Samples | Download |
---|---|---|---|---|---|
[86] | N-MNIST | [85,109] | The spiking version of the MNIST dataset. It consists of handwritten digits. The dataset is generated with a DVS camera and consists of 70,000 samples. | 70 k | https://www.garrickorchard.com/datasets/n-mnist (accessed on 16 July 2023) |
[87] | DVS128 Gesture | [85,103,106,109] | A spiking dataset was recorded with a DVS camera, comprising 11 hand gesture categories, under 3 different illumination conditions, with 29 subjects. The camera resolution is 128 × 128 spiking pixels. The recordings are 6 s long on average [103]. There are 1342 recordings in total. | 1342 | https://research.ibm.com/interactive/dvsgesture/ (accessed on 17 July 2023) |
[92] | Honda Research Institute Driving Dataset (HDD) | [93] | The dataset was created for the Driving Scene Understanding task realization. Consists of 104 h of driving data, comprising three video cameras (1920 × 1200 px, 30 fps), Velodyne HDL-64E S2 3D LiDAR, GeneSys Elektronik GmbH Automotive Dynamic Motion Analyzer, and the vehicle’s CAN data (throttle angle, brake pressure, steering angle, yaw rate, and speed). | 104 h | https://usa.honda-ri.com/HDD (accessed on 18 July 2023) |
[102] | Cityscapes | [101] | The dataset consists of 25,000 annotated (segmentation) frames coming from driving scenes. There are 5000 frames annotated on the pixel level, and 20,000 are weakly annotated (with polygons). The frames are annotated with 30 classes, recorded in different months in 50 cities (mainly Germany). Each annotated frame is preceded and followed by non-annotated frames, supplied with stereo frames, global coordinates, data from odometry, and an outside thermometer. | 25 k | https://www.cityscapes-dataset.com/downloads/ (accessed on 20 July 2023) |
[104] | CIFAR10-DVS | [103] | The dataset is the CIFAR10 dataset converted by the DVS camera (at a resolution 128 × 128 spiking px) to event representation. There are 10 classes (animals and vehicles), 1000 recordings per class, and 10,000 recordings overall. The images were upscaled, displayed on the LCD monitor with a circular movement, and recorded with the DVS. | 10 k | https://figshare.com/articles/dataset/CIFAR10-DVS_New/4724671/2 (accessed on 21 July 2023) |
[105] | Spiking Heidelberg Digits (SHDs) | [103] | An audio spiking dataset. It consists of ∼10,000 high-quality audio recordings. The words are pronounced by 12 distinct speakers and converted to spiking representation to 700 spiking channels. There are 20 classes—digits from 0 to 9 spoken in English and German. | ∼10 k | https://zenkelab.org/resources/spiking-heidelberg-datasets-shd/ (accessed on 22 July 2023) |
[106] | DailyAction-DVS | [106] | The dataset comprises 1440 DVS recordings of 12 different activities (12 classes). There are 2 illuminations, 15 actors, and 128 × 128 spiking px, and each recording is about 6 s long. | 1440 | https://github.com/qianhuiliu/SNN-action-recognition (accessed on 23 July 2023) |
[107] | Action Recognition | [106] | The dataset consists of 450 DVS recordings of 10 different human actions, acted by 15 subjects with an average recording length of 5 s. Recorded at different positions and distances from the subjects. The sensor resolution is 346 × 260 spiking px. | 450 | https://github.com/CrystalMiaoshu/PAFBenchmark (accessed on 25 July 2023) |
Refs. | AI Techniques | Characteristics | Application | Acc. | Prec. |
---|---|---|---|---|---|
[137] | DNN |
| IoT | 98.97 | 97.71 |
[139] | SVM, NB |
| CPSs | NM | NM |
[140] | RNN, LSTM, GRU, RF |
| CPS | 98 | 96 |
[141] | LightGBM |
| CPS | 99.2 | 98.78 |
[145] | DRNN |
| IoT | 99.14 | 99.13 |
[146] | Metric Learning |
| CPS | 99.94 | 99 |
[147] | GA, PSO, IRF |
| CPS | 98.98 | 99.85 |
[148] | ML, BL |
| VANET | NM | NM |
[150,151] | DL, LSTM, GRU |
| VANET | 99.7 | 97.26 |
[152] | FL, GRU, RF |
| VANET | 99.52 | 99.77 |
[153] | CNN |
| VANET | NM | NM |
[154,155] | KNN, RF, XGBoost |
| IoT | 99.11 | 98.56 |
[158] | FL |
| IoT | 98.62 | 98.9 |
[159] | FFCNN |
| IoT | 93.26 | 95.24 |
[160] | GNN |
| IoT | 99.45 | 98.89 |
Refs. | AI Techniques | Characteristics | Application | Acc. | Prec. |
---|---|---|---|---|---|
[156] | DL, SNDAE, SVM |
| IoT | 99.65 | 99.99 |
[157] | DNN |
| IoT | 99.57 | 98.45 |
[161,162,163] | SVM, Multilayer Perceptron |
| CPS | NM | NM |
[164] | FFCNN |
| IoT | 99 | 99.45 |
[165] | RF, Grid Search CV |
| IoT | 94.23 | 93.45 |
[166] | RNN |
| CPS | NM | NM |
[168,169] | GAN, PSO |
| CPS | NM | NM |
[170] | LSTM, RNN |
| IoT | 99.82 | 99.59 |
[172] | DNN |
| Android system, IoT | NM | NM |
[173] | FL |
| IoT | 99.87 | 99.98 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szymoniak, S.; Depta, F.; Karbowiak, Ł.; Kubanek, M. Trustworthy Artificial Intelligence Methods for Users’ Physical and Environmental Security: A Comprehensive Review. Appl. Sci. 2023, 13, 12068. https://doi.org/10.3390/app132112068
Szymoniak S, Depta F, Karbowiak Ł, Kubanek M. Trustworthy Artificial Intelligence Methods for Users’ Physical and Environmental Security: A Comprehensive Review. Applied Sciences. 2023; 13(21):12068. https://doi.org/10.3390/app132112068
Chicago/Turabian StyleSzymoniak, Sabina, Filip Depta, Łukasz Karbowiak, and Mariusz Kubanek. 2023. "Trustworthy Artificial Intelligence Methods for Users’ Physical and Environmental Security: A Comprehensive Review" Applied Sciences 13, no. 21: 12068. https://doi.org/10.3390/app132112068
APA StyleSzymoniak, S., Depta, F., Karbowiak, Ł., & Kubanek, M. (2023). Trustworthy Artificial Intelligence Methods for Users’ Physical and Environmental Security: A Comprehensive Review. Applied Sciences, 13(21), 12068. https://doi.org/10.3390/app132112068