Climate Change and the Dung Beetle: Evaluation of Global Warming Impact on the Distribution of Phyllognathus excavatus (Forster, 1771) through the Mediterranean Region
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Occurrence Records
2.2. Current and Future Climatic Data
2.3. Species Distribution Modeling
2.4. Two-Dimensional Niche Methodology
2.5. Model Evaluation
3. Results
3.1. Model Evaluation and Bioclimatic Factor Contributions
3.2. Two-Dimensional Niche Analysis
3.3. Predicted Current Potential Distribution
3.4. The Estimated Potential Future Distribution in 2050 and 2070
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Onoja, U.; Dibua, U.; Enete, A. Climate change: Causes, effects and mitigation measures-a review. Glob. J. Pure Appl. Sci. 2011, 17, 469–479. [Google Scholar]
- Adams, R.M.; Hurd, B.H.; Lenhart, S.; Leary, N. Effects of global climate change on agriculture: An interpretative review. Clim. Res. 1998, 11, 19–30. [Google Scholar] [CrossRef]
- Society, T.R. Climate change and global warming: Impacts on crop production. Genet. Modif. Plants 2021, 283–296. [Google Scholar] [CrossRef]
- Okil, A.M.; Haggag, S.M.; Tadros, A.W. Population dynamics of Phyllognathus excavatus Forster (Coleoptera: Scarabaeidae) in date palm orchards in Egypt. Ann. Agric. Sci. 2000, 38, 1307–1318. [Google Scholar]
- Nichols, E.; Spector, S.; Louzada, J.; Larsen, T.; Amezquita, S.; Favila, M.E.; Network, T.S. Ecological functions and ecosystem services provided by Scarabaeinae dung beetles. Biol. Conserv. 2008, 141, 1461–1474. [Google Scholar] [CrossRef]
- Drumont, A.; Saldaitis, A. New records of palaearctic Dynastinae (2): Phyllognathus excavatus (Forster) in the Arabian Peninsula (Coleoptera, Scarabaeoidea, Dynastidae). Lambillionea 2011, CXI, 275–277. [Google Scholar]
- Amari, R.; Guesmi, F.; Ben Ali, M.; Hedfi, A.; Saidi, I.; Alghamdi, A.S.; Albogami, B.; Achouri, M.S.; Allagui, M.S. Immune response in the larva of the dung beetle Phyllognathus excavatus against human blood cells as foreign bodies. J. King Saud. Univ.-Sci. 2022, 34, 101947. [Google Scholar] [CrossRef]
- Alali, S.; Zouhair Mohmalji, M.; Louai, A. Ecological and Biological Studies of Some Species of Scarabaeidae and Life Cycle of Phyllognathus excavatus Forster in Damascus Countryside, Syria. AL-MAGALLAT AL-URDUNNIYYAT FI AL-′ULUM AL-ZIRA′IYYAT 2015, 15, 1169–1182. [Google Scholar]
- Tishechkin, A.K.; Dégallier, N. Beetles (Coleoptera) of Peru: A survey of the families. Histeridae. J. Kans. Entomol. Soc. 2015, 88, 173–179. [Google Scholar] [CrossRef]
- Hanski, I.; Cambefort, Y. Dung Beetle Ecology; Princeton University Press: Princeton, NJ, USA, 1991. [Google Scholar]
- Yamada, D.; Imura, O.; Shi, K.; Shibuya, T. Effect of tunneler dung beetles on cattle dung decomposition, soil nutrients and herbage growth. Grassl. Sci. 2007, 53, 121–129. [Google Scholar] [CrossRef]
- Deutsch, C.A.; Tewksbury, J.J.; Huey, R.B.; Sheldon, K.S.; Ghalambor, C.K.; Haak, D.C.; Martin, P.R. Impacts of climate warming on terrestrial ectotherms across latitude. Proc. Natl. Acad. Sci. USA 2008, 105, 6668–6672. [Google Scholar] [CrossRef] [PubMed]
- Six, D. Climate change and mutualism. Nat. Rev. Microbiol. 2009, 7, 686. [Google Scholar] [CrossRef] [PubMed]
- Malik, K.; Bugaj-Nawrocka, A.; Wieczorek, K. Distribution of Drepanaphis acerifoliae–aphid pest of Acer trees–faced with global climate change. Folia Biol. 2023, 71, 115–130. [Google Scholar] [CrossRef]
- Farashi, A.; Alizadeh-Noughani, M. Basic Introduction to Species Distribution Modelling. In Ecosystem and Species Habitat Modeling for Conservation and Restoration; Springer Nature Singapore: Singapore, 2023; pp. 21–40. [Google Scholar]
- Liu, Y.; Shi, J. Predicting the potential global geographical distribution of two Icerya species under climate change. Forests 2020, 11, 684. [Google Scholar] [CrossRef]
- Jung, J.B.; Park, G.E.; Kim, H.J.; Huh, J.H.; Um, Y. Predicting the Habitat Suitability for Angelica gigas Medicinal Herb Using an Ensemble Species Distribution Model. Forests 2023, 14, 592. [Google Scholar] [CrossRef]
- GBIF.org (18/6/2022) GBIF Occurrence Download. Available online: https://www.gbif.org/occurrence/download/0009699-230918134249559 (accessed on 18 June 2022).
- Hosni, E.M.; Nasser, M.G.; Al-Ashaal, S.A.; Rady, M.H.; Kenawy, M.A. Modeling current and future global distribution of Chrysomya bezziana under changing climate. Sci. Rep. 2020, 10, 4947. [Google Scholar] [CrossRef]
- Nasser, M.; Okely, M.; Nasif, O.; Alharbi, S.; GadAllah, S.; Al-Obaid, S.; Enan, R.; Bala, M.; Al-Ashaal, S. Spatio-temporal analysis of Egyptian flower mantis Blepharopsis mendica (order: Mantodea), with notes of its future status under climate change. Saudi J. Biol. Sci. 2021, 28, 2049–2055. [Google Scholar] [CrossRef]
- Hosni, E.M.; Nasser, M.; Al-Khalaf, A.A.; Al-Shammery, K.A.; Al-Ashaal, S.; Soliman, D. Invasion of the Land of Samurai: Potential Spread of Old-World Screwworm to Japan under Climate Change. Diversity 2022, 14, 99. [Google Scholar] [CrossRef]
- Hosni, E.M.; Al-Khalaf, A.A.; Nasser, M.G.; Abou-Shaara, H.F.; Radwan, M.H. Modeling the Potential Global Distribution of Honeybee Pest, Galleria mellonella under Changing Climate. Insects 2022, 13, 484. [Google Scholar] [CrossRef]
- Sabour, A. Global Risk Maps of Climate Change Impacts on the Distribution of Acinetobacter baumannii Using GIS. Microorganisms 2023, 11, 2174. [Google Scholar] [CrossRef]
- Soliman, M.M.; Al-Khalaf, A.A.; El-Hawagry, M.S. Effects of Climatic Change on Potential Distribution of Spogostylum ocyale (Diptera: Bombyliidae) in the Middle East Using Maxent Modelling. Insects 2023, 14, 120. [Google Scholar] [CrossRef] [PubMed]
- IPCC. Climate Change 2021: The Physical Science Basis. In Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panelon Climate Change; IPCC: Geneva, Switzerland, 2021. [Google Scholar]
- Shahzad, U. Global warming: Causes, effects and solutions. Durreesamin J. 2015, 1, 1–7. [Google Scholar]
- Baloch, M.N.; Fan, J.; Haseeb, M.; Zhang, R. Mapping potential distribution of Spodoptera frugiperda (Lepidoptera: Noctuidae) in central Asia. Insects 2020, 11, 172. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Li, Z.; Wu, J.; Rajotte, E.G.; Wan, F.; Wang, Z. The potential geographical distribution of Bactrocera dorsalis (Diptera: Tephrididae) in China based on emergence rate model and ArcGIS. In International Conference on Computer and Computing Technologies in Agriculture; Springer: Boston, MA, USA, 2008; pp. 399–411. [Google Scholar]
- Manrique, V.; Cuda, J.P.; Overholt, W.A.; Diaz, R. Temperature-dependent development and potential distribution of Episimus utilis (Lepidoptera: Tortricidae), a candidate biological control agent of Brazilian peppertree (Sapindales: Anacardiaceae) in Florida. Environ. Entomol. 2008, 37, 862–870. [Google Scholar] [CrossRef] [PubMed]
- Aidoo, O.F.; Ding, F.; Ma, T.; Jiang, D.; Wang, D.; Hao, M.; Tettey, E.; Andoh-Mensah, S.; Ninsin, K.D.; Borgemeister, C. Determining the potential distribution of Oryctes monoceros and Oryctes rhinoceros by combining machine-learning with high-dimensional multidisciplinary environmental variables. Sci. Rep. 2022, 12, 17439. [Google Scholar] [CrossRef]
- Early, R.; Bradley, B.A.; Dukes, J.S.; Lawler, J.J.; Olden, J.D.; Blumenthal, D.M.; Gonzalez, P.; Grosholz, E.D.; Ibañez, I.; Miller, L.P. Global threats from invasive alien species in the twenty-first century and national response capacities. Nat. Commun. 2016, 7, 12485. [Google Scholar] [CrossRef] [PubMed]
- Hosni, E.M.; Al-Khalaf, A.A.; Naguib, R.M.; Afify, A.E.; Abdalgawad, A.A.; Faltas, E.M.; Hassan, M.A.; Mahmoud, M.A.; Naeem, O.M.; Hassan, Y.M.; et al. Evaluation of Climate Change Impacts on the Global Distribution of the Calliphorid Fly Chrysomya albiceps Using GIS. Diversity 2022, 14, 578. [Google Scholar] [CrossRef]
- Araújo, M.B.; Pearson, R.G.; Rahbek, C. Equilibrium of species’ distributions with climate. Ecography 2005, 28, 693–695. [Google Scholar] [CrossRef]
- Abou-Shaara, H.; Alashaal, S.A.; Hosni, E.M.; Nasser, M.G.; Ansari, M.J.; Alharbi, S.A. Modeling the Invasion of the Large Hive Beetle, Oplostomus fuligineus, into North Africa and South Europe under a Changing Climate. Insects 2021, 12, 275. [Google Scholar] [CrossRef]
- Parmesan, C.; Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 2003, 421, 37–42. [Google Scholar] [CrossRef]
- Thuiller, W.; Lavorel, S.; Araujo, M.B.; Sykes, M.T.; Prentice, I.C. Climate change threats to plant diversity in Europe. Proc. Natl. Acad. Sci. USA 2005, 102, 8245–8250. [Google Scholar] [CrossRef] [PubMed]
- Elith, J.; Graham, C.H.; Anderson, R.P.; Dudík, M.; Ferrier, S.; Guisan, A.; Hijmans, R.J.; Huettmann, F.; Leathwick, J.R.; Lehmann, A. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 2006, 29, 129–151. [Google Scholar] [CrossRef]
- Chen, I.C.; Hill, J.K.; Ohlemuller, R.; Roy, D.B.; Thomas, C.D. Rapid range shifts of species associated with high levels of climate warming. Science 2011, 333, 1024–1026. [Google Scholar] [CrossRef] [PubMed]
- Leiva, M.J.; Sobrino-Mengual, G. Cattle dung and bioturbation by dung beetles improve oak seedling establishment in Mediterranean silvopastoral ecosystems. New For. 2023, 54, 289–309. [Google Scholar] [CrossRef]
- Maldonado, M.B.; Serrano, A.M.; Chacoff, N.P.; Vazquez, D.P. The role of dung beetles in seed dispersal in an arid environment. Ecol. Austral 2023, 33, 370–378. [Google Scholar] [CrossRef]
- El Shahed, S.M.; Mostafa, Z.K.; Radwan, M.H.; Hosni, E.M. Modeling the potential global distribution of the Egyptian cotton leafworm, Spodoptera littoralis under climate change. Sci. Rep. 2023, 13, 17314. [Google Scholar] [CrossRef]
Variables | Bio_2 | Bio_1 | Bio_17 | Bio_10 | Bio_4 | Bio_5 |
Permutation importance | 22.5 | 40.4 | 7.9 | 25.8 | 2.1 | 1.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fatah, A.M.A.; Zalat, S.; Elbanna, S.M.; Al-Khalaf, A.A.; Nasser, M. Climate Change and the Dung Beetle: Evaluation of Global Warming Impact on the Distribution of Phyllognathus excavatus (Forster, 1771) through the Mediterranean Region. Appl. Sci. 2023, 13, 12107. https://doi.org/10.3390/app132212107
Fatah AMA, Zalat S, Elbanna SM, Al-Khalaf AA, Nasser M. Climate Change and the Dung Beetle: Evaluation of Global Warming Impact on the Distribution of Phyllognathus excavatus (Forster, 1771) through the Mediterranean Region. Applied Sciences. 2023; 13(22):12107. https://doi.org/10.3390/app132212107
Chicago/Turabian StyleFatah, Adel Mamoun A., Samy Zalat, Shereen M. Elbanna, Areej A. Al-Khalaf, and Mohamed Nasser. 2023. "Climate Change and the Dung Beetle: Evaluation of Global Warming Impact on the Distribution of Phyllognathus excavatus (Forster, 1771) through the Mediterranean Region" Applied Sciences 13, no. 22: 12107. https://doi.org/10.3390/app132212107
APA StyleFatah, A. M. A., Zalat, S., Elbanna, S. M., Al-Khalaf, A. A., & Nasser, M. (2023). Climate Change and the Dung Beetle: Evaluation of Global Warming Impact on the Distribution of Phyllognathus excavatus (Forster, 1771) through the Mediterranean Region. Applied Sciences, 13(22), 12107. https://doi.org/10.3390/app132212107