Assessment of Temperature, Precipitation, and Snow Cover at Different Altitudes of the Varzob River Basin in Tajikistan
Abstract
:1. Introduction
2. Study Area
3. Materials and Methodology
3.1. Data
3.2. Mann–Kendall (MK) Test
3.3. Sen’s Slope Test
3.4. Pettitt’s Test
3.5. Normalized Difference Snow Index
3.6. MODIS Data Analysis Approach
4. Results
4.1. Air Temperature Analysis in the Varzob River Basin
4.2. Precipitation Analysis in the Varzob River Basin
4.3. Snow Cover Analysis in the Varzob River Basin
5. Discussion
6. Conclusions
- (1)
- The trend in mean annual temperature showed a significant increasing trend in all areas in VRB during the period 1991–2018. Almost all months indicated an increasing trend except November and December during the period 1991–2018.
- (2)
- The results of the annual precipitation showed a decreasing trend in upstream, midstream, and downstream areas, whereas in alpine areas (Anzob station), an increasing trend of annual precipitation was observed from 1960 to 1990. The monthly precipitation showed a significant decreasing trend in April, while January and February showed a significant increasing trend.
- (3)
- The trend in the MODIS data showed an increasing trend in snow cover area in April and July, while a decreasing trend was observed in February, September, November, and December during the period 2001–2022 in the VRB. The results revealed that at highly elevated areas, the snow cover area showed a spatially decreasing trend in the winter season. Hushyori station belongs to a low elevated region and showed the decreasing trend during most months. The station measurement-based data indicated the maximum monthly snow cover height in April (178 cm) at the Anzob station and in March at the Maykhura (138 cm) and Hushyori (54 cm) stations.
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kräuchi, N.; Brang, P.; Schönenberger, W. Forests of mountainous regions: Gaps in knowledge and research needs. For. Ecol. Manag. 2000, 132, 73–82. [Google Scholar] [CrossRef]
- Beniston, M. Climatic change in mountain regions: A review of possible impacts. Clim. Var. Chang. High Elev. Reg. Past Present Future 2003, 59, 5–31. [Google Scholar]
- Burns, D.A.; Klaus, J.; McHale, M.R. Recent climate trends and implications for water resources in the Catskill Mountain region, New York, USA. J. Hydrol. 2007, 336, 155–170. [Google Scholar] [CrossRef]
- Griffiths, R.; Madritch, M.; Swanson, A. The effects of topography on forest soil characteristics in the Oregon Cascade Mountains (USA): Implications for the effects of climate change on soil properties. For. Ecol. Manag. 2009, 257, 1–7. [Google Scholar] [CrossRef]
- Gulakhmadov, A.; Davlyatov, R.; Kobuliev, Z.; Chen, X. Elevation Dependency of Climatic Variables Trends in the Last Decades in the Snow-Fed and Glacier-Fed Vakhsh River Basin, Central Asia. Water Resour. 2021, 48, 914–924. [Google Scholar] [CrossRef]
- Buytaert, W.; Célleri, R.; De Bièvre, B.; Cisneros, F.; Wyseure, G.; Deckers, J.; Hofstede, R. Human impact on the hydrology of the Andean páramos. Earth-Sci. Rev. 2006, 79, 53–72. [Google Scholar] [CrossRef]
- Baratov, R. Tajikistan-country of mountains. In Gori i Nedra Tajikistana (Mountains and Bowels of Tajikistan); International Atomic Energy Agency: Vienna, Austria, 1989. [Google Scholar]
- Scientific Notes. Очерки Пo Геoграфии Таджикистана [Текст]/Ученые Записки, т. XXI; Серия геoграфическая: Stalinabad, Tajikistan, 1959; pp. 8–58. (In Russian) [Google Scholar]
- Giorgi, F. Climate change hot-spots. Geophys. Res. Lett. 2006, 33, 101029. [Google Scholar] [CrossRef]
- de Beurs, K.M.; Henebry, G.M.; Owsley, B.C.; Sokolik, I.N. Large scale climate oscillation impacts on temperature, precipitation and land surface phenology in Central Asia. Environ. Res. Lett. 2018, 13, 065018. [Google Scholar] [CrossRef]
- Chen, F.; Huang, W.; Jin, L.; Chen, J.; Wang, J. Spatiotemporal precipitation variations in the arid Central Asia in the context of global warming. Sci. China Earth Sci. 2011, 54, 1812–1821. [Google Scholar] [CrossRef]
- Hu, Z.; Zhou, Q.; Chen, X.; Qian, C.; Wang, S.; Li, J. Variations and changes of annual precipitation in Central Asia over the last century. Int. J. Climatol. 2017, 37, 157–170. [Google Scholar] [CrossRef]
- Hu, Z.; Zhang, C.; Hu, Q.; Tian, H. Temperature changes in Central Asia from 1979 to 2011 based on multiple datasets. J. Clim. 2014, 27, 1143–1167. [Google Scholar] [CrossRef]
- Zhang, M.; Chen, Y.; Shen, Y.; Li, B. Tracking climate change in Central Asia through temperature and precipitation extremes. J. Geogr. Sci. 2019, 29, 3–28. [Google Scholar] [CrossRef]
- Siegfried, T.; Bernauer, T.; Guiennet, R.; Sellars, S.; Robertson, A.W.; Mankin, J.; Bauer-Gottwein, P.; Yakovlev, A. Will climate change exacerbate water stress in Central Asia? Clim. Chang. 2012, 112, 881–899. [Google Scholar] [CrossRef]
- Rakhmatullaev, S.; Huneau, F.; Le Coustumer, P.; Motelica-Heino, M.; Bakiev, M. Facts and perspectives of water reservoirs in Central Asia: A special focus on Uzbekistan. Water 2010, 2, 307–320. [Google Scholar] [CrossRef]
- Davi, N.K.; D’Arrigo, R.; Jacoby, G.; Cook, E.R.; Anchukaitis, K.; Nachin, B.; Rao, M.P.; Leland, C. A long-term context (931–2005 CE) for rapid warming over Central Asia. Quat. Sci. Rev. 2015, 121, 89–97. [Google Scholar] [CrossRef]
- Feng, R.; Yu, R.; Zheng, H.; Gan, M. Spatial and temporal variations in extreme temperature in Central Asia. Int. J. Climatol. 2018, 38, e388–e400. [Google Scholar] [CrossRef]
- Mannig, B.; Müller, M.; Starke, E.; Merkenschlager, C.; Mao, W.; Zhi, X.; Podzun, R.; Jacob, D.; Paeth, H. Dynamical downscaling of climate change in Central Asia. Glob. Planet. Chang. 2013, 110, 26–39. [Google Scholar] [CrossRef]
- Pan, S.; Tian, H.; Dangal, S.R.; Zhang, C.; Yang, J.; Tao, B.; Ouyang, Z.; Wang, X.; Lu, C.; Ren, W. Complex spatiotemporal responses of global terrestrial primary production to climate change and increasing atmospheric CO2 in the 21st century. PLoS ONE 2014, 9, e112810. [Google Scholar] [CrossRef]
- Zhang, C.; Ren, W. Complex climatic and CO2 controls on net primary productivity of temperate dryland ecosystems over central Asia during 1980–2014. J. Geophys. Res. Biogeosci. 2017, 122, 2356–2374. [Google Scholar] [CrossRef]
- Klein Tank, A.M.; Peterson, T.; Quadir, D.; Dorji, S.; Zou, X.; Tang, H.; Santhosh, K.; Joshi, U.; Jaswal, A.; Kolli, R. Changes in daily temperature and precipitation extremes in central and south Asia. J. Geophys. Res. Atmos. 2006, 111. [Google Scholar] [CrossRef]
- Martinez, C.J.; Maleski, J.J.; Miller, M.F. Trends in precipitation and temperature in Florida, USA. J. Hydrol. 2012, 452, 259–281. [Google Scholar] [CrossRef]
- Duhan, D.; Pandey, A. Statistical analysis of long term spatial and temporal trends of precipitation during 1901–2002 at Madhya Pradesh, India. Atmos. Res. 2013, 122, 136–149. [Google Scholar] [CrossRef]
- Kampata, J.M.; Parida, B.P.; Moalafhi, D. Trend analysis of rainfall in the headstreams of the Zambezi River Basin in Zambia. Phys. Chem. Earth Parts A/B/C 2008, 33, 621–625. [Google Scholar] [CrossRef]
- Liu, Q.; Yang, Z.; Cui, B. Spatial and temporal variability of annual precipitation during 1961–2006 in Yellow River Basin, China. J. Hydrol. 2008, 361, 330–338. [Google Scholar] [CrossRef]
- Tomozeiu, R.; Busuioc, A.; Marletto, V.; Zinoni, F.; Cacciamani, C. Detection of changes in the summer precipitation time series of the region Emilia-Romagna, Italy. Theor. Appl. Climatol. 2000, 67, 193–200. [Google Scholar] [CrossRef]
- FOEN. Climate Change in Central Asia: A Visual Synthesis; Zoï Environment Network: Vernier, Switzerland, 2009.
- Chen, F.; Huang, W.; Jin, L. Characteristics and spatial differences of precipitation in arid region of Central Asia under the background of global warming. Chin. Sci. Earth Sci. 2012, 41, 1647–1657. [Google Scholar]
- Yao, J.; Chen, Y. Trend analysis of temperature and precipitation in the Syr Darya Basin in Central Asia. Theor. Appl. Climatol. 2015, 120, 521–531. [Google Scholar] [CrossRef]
- Maillard, É.; McConkey, B.G.; Luce, M.S.; Angers, D.A.; Fan, J. Crop rotation, tillage system, and precipitation regime effects on soil carbon stocks over 1 to 30 years in Saskatchewan, Canada. Soil Tillage Res. 2018, 177, 97–104. [Google Scholar] [CrossRef]
- Zhang, T. Influence of the seasonal snow cover on the ground thermal regime: An overview. Rev. Geophys. 2005, 43. [Google Scholar] [CrossRef]
- Ososkova, T.; Gorelkin, N.; Chub, V. Water resources of Central Asia and adaptation measures for climate change. Environ. Monit. Assess. 2000, 61, 161–166. [Google Scholar] [CrossRef]
- Klein, I.; Gessner, U.; Kuenzer, C. Regional land cover mapping and change detection in Central Asia using MODIS time-series. Appl. Geogr. 2012, 35, 219–234. [Google Scholar] [CrossRef]
- Aizen, V.B.; Aizen, E.M.; Melack, J.M. Climate, snow cover, glaciers, and runoff in the Tien Shan, Central Asia 1. JAWRA J. Am. Water Resour. Assoc. 1995, 31, 1113–1129. [Google Scholar] [CrossRef]
- Lioubimtseva, E.; Henebry, G.M. Climate and environmental change in arid Central Asia: Impacts, vulnerability, and adaptations. J. Arid Environ. 2009, 73, 963–977. [Google Scholar] [CrossRef]
- Dietz, A.J.; Conrad, C.; Kuenzer, C.; Gesell, G.; Dech, S. Identifying changing snow cover characteristics in Central Asia between 1986 and 2014 from remote sensing data. Remote Sens. 2014, 6, 12752–12775. [Google Scholar] [CrossRef]
- Dietz, A.J.; Kuenzer, C.; Conrad, C. Snow-cover variability in central Asia between 2000 and 2011 derived from improved MODIS daily snow-cover products. Int. J. Remote Sens. 2013, 34, 3879–3902. [Google Scholar] [CrossRef]
- Fourth National Communication of the Republic of Tajikistan under the UN Framework Convention on Climate Change. Dushanbe, 232p. Available online: https://unfccc.int/sites/default/files/resource/4NC_TJK_eng_0.pdf (accessed on 26 April 2023).
- Shen, Y.J.; Shen, Y.; Goetz, J.; Brenning, A. Spatial-temporal variation of near-surface temperature lapse rates over the Tianshan Mountains, central Asia. J. Geophys. Res. Atmos. 2016, 121, 14006–14017. [Google Scholar] [CrossRef]
- Katalog lednikov SSSR. Каталoг Ледникoв СССР. Т. 14. Средняя Азия. Выпуск 3. Амударья. Ч.5. Бассейн р. Кoфирнигана //В.И. Квачев, А.Г. Санникoв, Л.Н. Сoкoлoв; Gidrometeoizdat: Leningrad, Russia, 1968; p. 44. (In Russian) [Google Scholar]
- Statistic, RT. Паспoрт Варзoбскoгo Райoна, 2008, Гoсударственный Кoмитет Статистики РТ-Региoны РТ; Statistic RT: Dushanbe, Tajikistan, 2008; p. 82. (In Russian) [Google Scholar]
- Atlas. Атлас Таджикскoй ССР [Текст] ГУГК; Atlas: Dushanbe, Tajikistan, 1968; p. 199. (In Russian) [Google Scholar]
- Nazirova, D. Прирoдные Услoвия Развития Геoрискoв в Пределах Теритoрии Бассейна Реки Варзoб; Science and Innovation: Dushanbe, Tajikistan, 2016; pp. 89–92. (In Russian) [Google Scholar]
- Konovalov, V.G. Таяние и Стoк с Ледникoв в Бассейнах Средней Азии. САРНИГМИ; Gidrometeoizdat: Leningrad, Russia, 1985; pp. 217–2018. (In Russian) [Google Scholar]
- Gulakhmadov, A.; Chen, X.; Gulahmadov, N.; Liu, T.; Davlyatov, R.; Sharofiddinov, S.; Gulakhmadov, M. Long-Term Hydro–Climatic Trends in the Mountainous Kofarnihon River Basin in Central Asia. Water 2020, 12, 2140. [Google Scholar] [CrossRef]
- Gulahmadov, N.; Chen, Y.; Gulakhmadov, A.; Rakhimova, M.; Gulakhmadov, M. Quantifying the relative contribution of climate change and anthropogenic activities on runoff variations in the central part of Tajikistan in Central Asia. Land 2021, 10, 525. [Google Scholar] [CrossRef]
- Mavromatis, T.; Stathis, D. Response of the water balance in Greece to temperature and precipitation trends. Theor. Appl. Climatol. 2011, 104, 13–24. [Google Scholar] [CrossRef]
- Yue, S.; Wang, C.Y. Applicability of prewhitening to eliminate the influence of serial correlation on the Mann-Kendall test. Water Resour. Res. 2002, 38, 4-1–4-7. [Google Scholar] [CrossRef]
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Atif, I.; Iqbal, J.; Mahboob, M.A. Investigating snow cover and hydrometeorological trends in contrasting hydrological regimes of the Upper Indus Basin. Atmosphere 2018, 9, 162. [Google Scholar] [CrossRef]
- Pettitt, A. A non-parametric approach to the change-point problem. J. R. Stat. Soc. Ser. C Appl. Stat. 1979, 28, 126–135. [Google Scholar] [CrossRef]
- Riggs, G.A.; Hall, D.; Salomonson, V. MODIS snow products user guide. NASA Goddard Space Flight Cent. Rep. 2006, 80, 1–45. [Google Scholar]
- Hall, D.K.; Riggs, G.A. Accuracy assessment of the MODIS snow products. Hydrol. Process. Int. J. 2007, 21, 1534–1547. [Google Scholar] [CrossRef]
- Gao, Y.; Xie, H.; Yao, T.; Xue, C. Integrated assessment on multi-temporal and multi-sensor combinations for reducing cloud obscuration of MODIS snow cover products of the Pacific Northwest USA. Remote Sens. Environ. 2010, 114, 1662–1675. [Google Scholar] [CrossRef]
- Zhu, X. GIS for Environmental Applications: A Practical Approach; Routledge: Oxfordshire, UK, 2016. [Google Scholar]
- Li, X.; Jing, Y.; Shen, H.; Zhang, L. The recent developments in spatio-temporally continuous snow cover product generation. Hydrol. Earth Syst. Sci. Discuss. 2019, 1–28. [Google Scholar] [CrossRef]
- Negi, H.S.; Kulkarni, A.; Semwal, B. Estimation of snow cover distribution in Beas basin, Indian Himalaya using satellite data and ground measurements. J. Earth Syst. Sci. 2009, 118, 525–538. [Google Scholar] [CrossRef]
- Huang, X.; Liang, T.; Zhang, X.; Guo, Z. Validation of MODIS snow cover products using Landsat and ground measurements during the 2001–2005 snow seasons over northern Xinjiang, China. Int. J. Remote Sens. 2011, 32, 133–152. [Google Scholar] [CrossRef]
- Zhou, H.; Aizen, E.; Aizen, V. Deriving long term snow cover extent dataset from AVHRR and MODIS data: Central Asia case study. Remote Sens. Environ. 2013, 136, 146–162. [Google Scholar] [CrossRef]
- Ackroyd, C.; Skiles, S.M.; Rittger, K.; Meyer, J. Trends in snow cover duration across river basins in high mountain Asia from daily gap-filled MODIS fractional snow covered area. Front. Earth Sci. 2021, 9, 713145. [Google Scholar] [CrossRef]
- Pepin, N.; Bradley, R.; Diaz, H.; Baraer, M.; Caceres, E.; Forsythe, N.; Fowler, H.; Greenwood, G.; Hashmi, M.; Liu, X.; et al. Elevation-dependent warming in mountain regions of the world. Nat. Clim. Chang. 2015, 5, 424–430. [Google Scholar]
- Hopkins, W.G. A spreadsheet for deriving a confidence interval, mechanistic inference and clinical inference from a p value. J Sport. 2007, 11, 16–21. [Google Scholar]
- Aizen, V.B.; Aizen, E.M.; Melack, J.M.; Dozier, J. Climatic and hydrologic changes in the Tien Shan, central Asia. J. Clim. 1997, 10, 1393–1404. [Google Scholar] [CrossRef]
- Beniston, M.; Rebetez, M. Regional behavior of minimum temperatures in Switzerland for the period 1979–1993. Theor. Appl. Climatol. 1996, 53, 231–243. [Google Scholar] [CrossRef]
- Giese, E.; Moßig, I. Klimawandel in Zentralasien. Zentrum für internationale Entwicklungs-und Umweltforschung (ZEU) der Justus-Liebig-Universität Gießen. Discuss. Pap. 2004, 17. [Google Scholar]
- Bolch, T. Climate change and glacier retreat in northern Tien Shan (Kazakhstan/Kyrgyzstan) using remote sensing data. Glob. Planet. Chang. 2007, 56, 1–12. [Google Scholar] [CrossRef]
- Song, S.; Bai, J. Increasing winter precipitation over arid central Asia under global warming. Atmosphere 2016, 7, 139. [Google Scholar] [CrossRef]
- Pendergrass, A.G.; Knutti, R.; Lehner, F.; Deser, C.; Sanderson, B.M. Precipitation variability increases in a warmer climate. Sci. Rep. 2017, 7, 17966. [Google Scholar] [CrossRef]
- Liu, Q.; Cui, B. Impacts of climate change/variability on the streamflow in the Yellow River Basin, China. Ecol. Model. 2011, 222, 268–274. [Google Scholar] [CrossRef]
- Li, Z.; Chen, Y.; Fang, G.; Li, Y. Multivariate assessment and attribution of droughts in Central Asia. Sci. Rep. 2017, 7, 1316. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, N.; Wang, G.; Booij, M.J.; Oluwafemi, A.; Hashmi, M.Z.-u.-R.; Ali, S.; Munir, S.J.W. Climatic variability and periodicity for upstream sub-basins of the Yangtze River, China. Water 2020, 12, 842. [Google Scholar] [CrossRef]
- Folini, D.; Wild, M. The effect of aerosols and sea surface temperature on China’s climate in the late twentieth century from ensembles of global climate simulations. J. Geophys. Res. Atmos. 2015, 120, 2261–2279. [Google Scholar] [CrossRef]
- Wang, C. Impact of anthropogenic absorbing aerosols on clouds and precipitation: A review of recent progresses. Atmos. Res. 2013, 122, 237–249. [Google Scholar] [CrossRef]
- Singh, D.K.; Gusain, H.S.; Mishra, V.; Gupta, N. Snow cover variability in North-West Himalaya during last decade. Arab. J. Geosci. 2018, 11, 1–12. [Google Scholar] [CrossRef]
- Zafar, M.U.; Ahmed, M.; Rao, M.P.; Buckley, B.M.; Khan, N.; Wahab, M.; Palmer, J. Karakorum temperature out of phase with hemispheric trends for the past five centuries. Clim. Dyn. 2016, 46, 1943–1952. [Google Scholar] [CrossRef]
- Singh, S.; Rathore, B.; Bahuguna, I. Snow cover variability in the Himalayan–Tibetan region. Int. J. Climatol. 2014, 34, 446–452. [Google Scholar] [CrossRef]
- Shul’ts, V.L. Reki Sredney Azii. CH. I (Rivers of Central Asia. Part I); Gidrometeoizdat: Leningrad, Russia, 1963; p. 300. [Google Scholar]
№ | Name | Datasets | Index | Lon. | Lat. | Alt. (m) | Period |
---|---|---|---|---|---|---|---|
1 | Anzob | Temperature, precipitation | 38,719 | 39°50′ | 68°52′ | 3373 | 1961–2018 |
2 | Maykhura | Temperature, precipitation | 38,717 | 39°01′ | 68°47′ | 1922 | 1964–2017 |
3 | Hushyori | Temperature, precipitation | 38,833 | 38°53′ | 68°50′ | 1361 | 1960–2018 |
Parameter | Datasets | Temporal resolution | Spatial resolution | ||||
4 | MODIS-NDSI | Snow cover, MOD10A1 Terra/MYD10A1 Aqua | Daily | 500 m | 2001–2022 |
Month | Anzob Average Temperature (°C) | Maykhura Average Temperature (°C) | Hushyori Average Temperature (°C) | ||||||
---|---|---|---|---|---|---|---|---|---|
1961–1990 | 1991–2018 | 1961–2018 | 1964–1990 | 1991–2017 | 1964–2017 | 1960–1990 | 1991–2018 | 1960–2018 | |
January | 0.429 | −1.7 * | −1.919 * | 1.795 * | 1.043 | 2.851 *** | 0.272 | 1.9 * | 1.616 * |
February | −0.071 | −1.662 * | −1.107 | −0.021 | 2.003 ** | 2.851 *** | −0.595 | 0.949 | 0.942 |
March | −1.519 * | 1.108 | −0.389 | −0.271 | 2.9 *** | 3.232 *** | −1.157 | 2.69 *** | 2.068 ** |
April | 0.839 | 1.838 * | 1.416 | 1.295 | 2.189 ** | 2.419 ** | 1.344 | 2.196 ** | 2.912 *** |
May | 0.732 | 2.312 ** | 1.611 * | 1.419 | 2.755 *** | 2.493 ** | 0.478 | 2.492 ** | 2.037 ** |
June | 0.357 | 2.688 ** | 1.53 | 0 | 1.816 * | 0.366 | −0.562 | 2.95 *** | 0.281 |
July | 1.019 | 1.403 | 0.832 | 1.128 | 2.169 ** | 0.105 | −0.46 | 2.573 *** | −0.111 |
August | 1.179 | −0.198 | 1.202 | 1.402 | 0.856 | 0.388 | −0.835 | 1.248 | 0.347 |
September | 2.769 *** | 0.613 | 3.519 *** | 3.298 *** | 1.711 * | 2.994 *** | 0.29 | 1.128 | 2.269 * |
October | 0.786 | 0 | 2.074 ** | 0.689 | 2.045 ** | 2.143 | −0.596 | 0.85 | 0.89 |
November | 1.554 * | −1.897 * | −0.329 | 0.751 | −0.292 | 0.642 | 1.618 * | −0.534 | 0.838 |
December | 0.786 | −3.182 *** | −2.128 ** | 1.126 | −1.399 | 0.134 | 0.612 | −1.068 | −0.079 |
Anzob Average Temperature (°C) | ||||||
---|---|---|---|---|---|---|
Period | Change Point | Sen’s Slope | Original MK Test Z-Value | Modified MK Test Z-Value | p-Value | Significance Based on the Modified MK Test |
1961–1990 | 1976 | 0.019 | 1.356 | 5.775 | 0 | *** |
1991–2018 | 2007 | −0.00064 | 0 | 0 | 1 | NS |
1961–2018 | 2007 | 0.002 | 0.489 | 1.067 | 0.285 | NS |
Maykhura Average Temperature (°C) | ||||||
Period | Change point | Sen’s slope | Original MK Test Z-Value | Modified MK Test Z-Value | p-value | Significance Based on the Modified MK Test |
1964–1990 | 1976 | 0.034 | 0.242 | 6.695 | 0 | *** |
1991–2017 | 2000 | 0.065 | 3.835 | 9.331 | 0 | *** |
1964–2017 | 1998 | 0.028 | 4.103 | 8.542 | 0 | *** |
Hushyori Average Temperature (°C) | ||||||
Period | Change point | Sen’s slope | Original MK Test Z-value | Modified MK Test Z-value | p-value | Significance Based on the Modified MK Test |
1960–1990 | 1971 | −0.004 | −0.187 | −0.839 | 0.401 | NS |
1991–2018 | 1998 | 0.05 | 3.32 | 6.224 | 0 | *** |
1960–2018 | 1998 | 0.015 | 2.825 | 5.032 | 0 | *** |
Month | Anzob Precipitation (mm) | Maykhura Precipitation (mm) | Hushyori Precipitation (mm) | ||||||
---|---|---|---|---|---|---|---|---|---|
1960–1990 | 1991–2018 | 1960–2018 | 1964–1990 | 1991–2018 | 1964–2018 | 1960–1990 | 1991–2018 | 1960–2018 | |
January | 2.567 *** | −0.375 | 2.426 ** | −0.521 | −0.356 | −1.075 | 0.799 | −0.593 | 0.131 |
February | 0.034 | −0.356 | 2.152 ** | −0.772 | 0.356 | 0.9 | −0.646 | 0.454 | 1.713 * |
March | −0.085 | −1.087 | −0.19 | −0.208 | −1.246 | −1.35 | 0.17 | −0.099 | −0.137 |
April | −0.884 | −0.771 | −3.714 *** | −1.981 ** | −0.514 | −3.035 *** | −1.428 | −0.771 | −1.04 |
May | −0.323 | −1.127 | −4.362 *** | −0.208 | −0.04 | −1.416 | −1.292 | −0.257 | −0.497 |
June | 0.952 | −2.47 ** | −1.236 | 0.709 | −1.681 * | 0.653 | 0.102 | −1.126 | 1.524 * |
July | 0.425 | −2.312 ** | −0.935 | −0.521 | −2.018 * | −0.842 | 0.493 | −0.633 | 0.916 |
August | −0.102 | −1.146 | −0.726 | 0.668 | −0.514 | −0.036 | 0.935 | −0.817 | 1.06 |
September | −1.122 | −0.929 | −0.903 | −0.73 | −0.929 | −0.443 | 0.732 | −0.139 | 0.269 |
October | 0.629 | 1.344 | −1.014 | −0.459 | 0.376 | −1.176 | 0.935 | 0.711 | −0.301 |
November | −0.306 | −0.356 | −0.02 | −0.083 | 0.356 | 1.198 | −1.751 * | 0.573 | 0.517 |
December | 2.465 ** | −1.995 ** | −0.098 | 1.251 | −1.186 | −0.298 | 0.918 | −1.561 * | −0.216 |
Anzob Precipitation (mm) | ||||||
---|---|---|---|---|---|---|
Period | Change point | Sen’s slope | Original MK Test Z-Value | Modified MK Test Z-Value | p-value | Significance Based on the Modified MK Test |
1960–1990 | (-) | 0.481 | 0.186 | 0.632 | 0.527 | NS |
1991–2018 | 1999 | −5.615 | −1.639 | −2.844 | 0.004 | *** |
1960–2018 | 1994 | −1.343 | −1.752 | −3.521 | 0 | *** |
Maykhura Precipitation (mm) | ||||||
Period | Change point | Sen’s slope | Original MK Test Z-Value | Modified MK Test Z-Value | p-value | Significance Based on the Modified MK Test |
1964–1990 | 1969 | −7.794 | −1.167 | −4.174 | 0 | *** |
1991–2018 | 1994 | −6.33 | −1.027 | −3.371 | 0 | *** |
1964–2018 | 1993 | −3.262 | −1.604 | −6.064 | 0 | *** |
Hushyori Precipitation (mm) | ||||||
Period | Change point | Sen’s slope | Original MK Test Z-Value | Modified MK Test Z-Value | p-value | Significance Based on the Modified MK Test |
1960–1990 | 1969 | −1.01 | −0.204 | −0.596 | 0.551 | NS |
1991–2018 | 2004 | −4.325 | −0.968 | −3.754 | 0 | *** |
1960–2018 | 1986 | 0.925 | 0.477 | 1.879 | 0.06 | * |
Month | Anzob Snow Cover | Maykhura Snow Cover | Hushyori Snow Cover | ||||||
---|---|---|---|---|---|---|---|---|---|
p-Value 1 | Sen’s Slope | Trend | p-Value 1 | Sen’s Slope | Trend | p-Value 1 | Sen’s Slope | Trend | |
January | 0.600 | −0.003 | Decr. | 0.472 | −0.004 | Decr. | 0.277 | −0.007 | Decr. |
February | 0.071 | −0.009 | Decr. | 0.593 | −0.003 | Decr. | 0.284 | −0.005 | Decr. |
March | 0.872 | −0.001 | Decr. | 0.71 | −0.002 | Decr. | 0.333 | 0.006 | Incr. |
April | 0.180 | 0.008 | Incr. | 0.520 | 0.003 | Incr. | 0.363 | −0.005 | Decr. |
May | 0.821 | 0.002 | Incr. | 0.67 | 0.002 | Incr. | 0.701 | −0.001 | Decr. |
June | 0.625 | −0.002 | Decr. | 0.647 | −0.002 | Decr. | 0.254 | −0.004 | Decr. |
July | 0.613 | 0.002 | Incr. | 0.022 | 0.008 | Incr. | 0.863 | −0.001 | Decr. |
August | 0.589 | 0.002 | Incr. | 0.277 | 0.003 | Incr. | 0.905 | 0.000 | Incr. |
September | 0.011 | −0.010 | Decr. | 0.781 | −0.001 | Decr. | 0.249 | −0.004 | Decr. |
October | 0.925 | 0.001 | Incr. | 0.6 | −0.003 | Decr. | 0.67 | −0.002 | Decr. |
November | 0.722 | −0.002 | Decr. | 0.919 | 0.001 | Incr. | 0.032 | −0.011 | Decr. |
December | 0.811 | −0.001 | Decr. | 0.647 | −0.002 | Decr. | 0.288 | −0.006 | Decr. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gulahmadov, N.; Chen, Y.; Gulakhmadov, M.; Satti, Z.; Naveed, M.; Davlyatov, R.; Ali, S.; Gulakhmadov, A. Assessment of Temperature, Precipitation, and Snow Cover at Different Altitudes of the Varzob River Basin in Tajikistan. Appl. Sci. 2023, 13, 5583. https://doi.org/10.3390/app13095583
Gulahmadov N, Chen Y, Gulakhmadov M, Satti Z, Naveed M, Davlyatov R, Ali S, Gulakhmadov A. Assessment of Temperature, Precipitation, and Snow Cover at Different Altitudes of the Varzob River Basin in Tajikistan. Applied Sciences. 2023; 13(9):5583. https://doi.org/10.3390/app13095583
Chicago/Turabian StyleGulahmadov, Nekruz, Yaning Chen, Manuchekhr Gulakhmadov, Zulqarnain Satti, Muhammad Naveed, Rashid Davlyatov, Sikandar Ali, and Aminjon Gulakhmadov. 2023. "Assessment of Temperature, Precipitation, and Snow Cover at Different Altitudes of the Varzob River Basin in Tajikistan" Applied Sciences 13, no. 9: 5583. https://doi.org/10.3390/app13095583
APA StyleGulahmadov, N., Chen, Y., Gulakhmadov, M., Satti, Z., Naveed, M., Davlyatov, R., Ali, S., & Gulakhmadov, A. (2023). Assessment of Temperature, Precipitation, and Snow Cover at Different Altitudes of the Varzob River Basin in Tajikistan. Applied Sciences, 13(9), 5583. https://doi.org/10.3390/app13095583