Trends and Technological Challenges of 3D Bioprinting in Cultured Meat: Technological Prospection
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Publication Analysis
3.2. Document Analysis
3.3. Country Analysis
3.4. Keyword Analysis
4. Discussion
4.1. Overview of Main Studies
4.2. Status of Cultured Meat in in the World
4.3. Biofabrication of Cultured Meat
4.3.1. Animal Source
4.3.2. Cells
4.3.3. Biomaterials
4.3.4. 3D Bioprinting
Biofabrication of Cultured Meat Using 3D Bioprinting
4.3.5. Bioreactor
4.4. Technological Challenges
4.5. Acceptance and Regulation
5. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Searchinger, T.; Waite, R.; Hanson, C.; Ranganathan, J. World Resources Report: Creating a Sustainable Food Future—A Menu of Solutions to Feed Nearly 10 Billion People by 2050. Available online: https://research.wri.org/sites/default/files/2019-07/WRR_Food_Full_Report_0.pdf (accessed on 3 August 2022).
- Chen, L.; Guttieres, D.; Koenigsberg, A.; Barone, P.W.; Sinskey, A.J.; Springs, S.L. Large-Scale Cultured Meat Production: Trends, Challenges and Promising Biomanufacturing Technologies. Biomaterials 2022, 280, 121274. [Google Scholar] [CrossRef]
- Lynch, J.; Pierrehumbert, R. Climate Impacts of Cultured Meat and Beef Cattle. Front. Sustain. Food Syst. 2019, 3, 5. [Google Scholar] [CrossRef] [PubMed]
- Rojas-Downing, M.M.; Nejadhashemi, A.P.; Harrigan, T.; Woznicki, S.A. Climate Change and Livestock: Impacts, Adaptation, and Mitigation. Clim. Risk Manag. 2017, 16, 145–163. [Google Scholar] [CrossRef]
- Henchion, M.; Hayes, M.; Mullen, A.M.; Fenelon, M.; Tiwari, B. Future Protein Supply and Demand: Strategies and Factors Influencing a Sustainable Equilibrium. Foods 2017, 6, 53. [Google Scholar] [CrossRef] [PubMed]
- Bryant, C.; Barnett, J. Consumer Acceptance of Cultured Meat: An Updated Review (2018–2020). Appl. Sci. 2020, 10, 5201. [Google Scholar] [CrossRef]
- Hadi, J.; Brightwell, G. Safety of Alternative Proteins: Technological, Environmental and Regulatory Aspects of Cultured Meat, Plant-Based Meat, Insect Protein and Single-Cell Protein. Foods 2021, 10, 1226. [Google Scholar] [CrossRef]
- Post, M.J.; Hocquette, J.-F. Chapter 16—New Sources of Animal Proteins: Cultured Meat. In Woodhead Publishing Series in Food Science, Technology and Nutrition; Purslow, P.P.B.T.-N.A. of M.Q., Ed.; Woodhead Publishing: Sawston, UK, 2017; pp. 425–441. ISBN 978-0-08-100593-4. [Google Scholar]
- Dick, A.; Bhandari, B.; Prakash, S. 3D Printing of Meat. Meat Sci. 2019, 153, 35–44. [Google Scholar] [CrossRef]
- Jo, B.; Nie, M.; Takeuchi, S. Manufacturing of Animal Products by the Assembly of Microfabricated Tissues. Essays Biochem. 2021, 65, 611–623. [Google Scholar] [CrossRef]
- Ramiah, P.; du Toit, L.C.; Choonara, Y.E.; Kondiah, P.P.D.; Pillay, V. Hydrogel-Based Bioinks for 3D Bioprinting in Tissue Regeneration. Front. Mater. 2020, 7, 76. [Google Scholar] [CrossRef]
- Ashammakhi, N.; Ahadian, S.; Xu, C.; Montazerian, H.; Ko, H.; Nasiri, R.; Barros, N.; Khademhosseini, A. Bioinks and Bioprinting Technologies to Make Heterogeneous and Biomimetic Tissue Constructs. Mater. Today Bio 2019, 1, 100008. [Google Scholar] [CrossRef]
- ASTM 52900; Additive Manufacturing—General Principles—Fundamentals and Vocabulary. ASTM International: Geneva, Switzerland, 2021; p. 28.
- Ozbolat, I.T.; Hospodiuk, M. Current Advances and Future Perspectives in Extrusion-Based Bioprinting. Biomaterials 2016, 76, 321–343. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Liu, B.; Pei, B.; Chen, J.; Zhou, D.; Peng, J.; Zhang, X.; Jia, W.; Xu, T. Inkjet Bioprinting of Biomaterials. Chem. Rev. 2020, 120, 10793–10833. [Google Scholar] [CrossRef] [PubMed]
- Ng, W.L.; Lee, J.M.; Zhou, M.; Chen, Y.W.; Lee, K.X.A.; Yeong, W.Y.; Shen, Y.F. Vat Polymerization-Based Bioprinting—Process, Materials, Applications and Regulatory Challenges. Biofabrication 2020, 12, 022001. [Google Scholar] [CrossRef] [PubMed]
- State of the Industry Report—Cultivated Meat. Available online: https://gfi.org/wp-content/uploads/2021/04/COR-SOTIR-Cultivated-Meat-2021-0429.pdf (accessed on 3 August 2022).
- Li, G.; Hu, L.; Liu, J.; Huang, J.; Yuan, C.; Takaki, K.; Hu, Y. A Review on 3D Printable Food Materials: Types and Development Trends. Int. J. Food Sci. Technol. 2022, 57, 164–172. [Google Scholar] [CrossRef]
- Castañeda, K.; Sánchez, O.; Herrera, R.F.; Mejía, G. Highway Planning Trends: A Bibliometric Analysis. Sustainability 2022, 14, 5544. [Google Scholar] [CrossRef]
- Donthu, N.; Kumar, S.; Mukherjee, D.; Pandey, N.; Lim, W.M. How to Conduct a Bibliometric Analysis: An Overview and Guidelines. J. Bus. Res. 2021, 133, 285–296. [Google Scholar] [CrossRef]
- Singh, V.K.; Singh, P.; Karmakar, M.; Leta, J.; Mayr, P. The Journal Coverage of Web of Science, Scopus and Dimensions: A Comparative Analysis. Scientometrics 2021, 126, 5113–5142. [Google Scholar] [CrossRef]
- Liu, J.; Hocquette, É.; Ellies-Oury, M.-P.; Chriki, S.; Hocquette, J.-F. Chinese Consumers’ Attitudes and Potential Acceptance toward Artificial Meat. Foods 2021, 10, 353. [Google Scholar] [CrossRef]
- Chriki, S.; Ellies-Oury, M.P.; Fournier, D.; Liu, J.; Hocquette, J.F. Analysis of Scientific and Press Articles Related to Cultured Meat for a Better Understanding of Its Perception. Front. Psychol. 2020, 11, 1845. [Google Scholar] [CrossRef]
- Skaf, L.; Buonocore, E.; Dumontet, S.; Capone, R.; Franzese, P.P. Applying Network Analysis to Explore the Global Scientific Literature on Food Security. Ecol. Inform. 2020, 56, 101062. [Google Scholar] [CrossRef]
- Van Eck, N.J.; Waltman, L. VOSviewer Manual 1.6.11. Manual, version 1.6.9. Universiteit Leiden. CWTS Meaningful Metrics: Leiden, The Netherlands, 2018.
- Ji, B.; Zhao, Y.; Vymazal, J.; Mander, Ü.; Lust, R.; Tang, C. Mapping the Field of Constructed Wetland-Microbial Fuel Cell: A Review and Bibliometric Analysis. Chemosphere 2021, 262, 128366. [Google Scholar] [CrossRef] [PubMed]
- Edelman, P.D.; McFarland, D.C.; Mironov, V.A.; Matheny, J.G. Commentary: In Vitro-Cultured Meat Production. Tissue Eng. 2005, 11, 659–662. [Google Scholar] [CrossRef] [PubMed]
- Kang, D.H.; Louis, F.; Liu, H.; Shimoda, H.; Nishiyama, Y.; Nozawa, H.; Kakitani, M.; Takagi, D.; Kasa, D.; Nagamori, E.; et al. Engineered Whole Cut Meat-like Tissue by the Assembly of Cell Fibers Using Tendon-Gel Integrated Bioprinting. Nat. Commun. 2021, 12, 5059. [Google Scholar] [CrossRef]
- Handral, H.K.; Hua Tay, S.; Wan Chan, W.; Choudhury, D. 3D Printing of Cultured Meat Products. Crit. Rev. Food Sci. Nutr. 2022, 62, 272–281. [Google Scholar] [CrossRef] [PubMed]
- Lupton, D.; Turner, B. Food of the Future? Consumer Responses to the Idea of 3D-Printed Meat and Insect-Based Foods. Food Foodways 2018, 26, 269–289. [Google Scholar] [CrossRef]
- Bomkamp, C.; Skaalure, S.C.; Fernando, G.F.; Ben-Arye, T.; Swartz, E.W.; Specht, E.A. Scaffolding Biomaterials for 3D Cultivated Meat: Prospects and Challenges. Adv. Sci. 2022, 9, 2102908. [Google Scholar] [CrossRef]
- Bonny, S.P.F.; Gardner, G.E.; Pethick, D.W.; Hocquette, J.F. Artificial Meat and the Future of the Meat Industry. Anim. Prod. Sci. 2017, 57, 2216–2223. [Google Scholar] [CrossRef]
- Ianovici, I.; Zagury, Y.; Redenski, I.; Lavon, N.; Levenberg, S. 3D-Printable Plant Protein-Enriched Scaffolds for Cultivated Meat Development. Biomaterials 2022, 284, 121487. [Google Scholar] [CrossRef]
- Bhat, Z.F.; Morton, J.D.; Kumar, S.; Bhat, H.F.; Aadil, R.M.; Bekhit, A.E.D.A. 3D Printing: Development of Animal Products and Special Foods. Trends Food Sci. Technol. 2021, 118, 87–105. [Google Scholar] [CrossRef]
- Balasubramanian, B.; Liu, W.; Pushparaj, K.; Park, S. The Epic of in Vitro Meat Production—A Fiction into Reality. Foods 2021, 10, 1395. [Google Scholar] [CrossRef]
- Wollschlaeger, J.O.; Maatz, R.; Albrecht, F.B.; Klatt, A.; Heine, S.; Blaeser, A.; Kluger, P.J. Scaffolds for Cultured Meat on the Basis of Polysaccharide Hydrogels Enriched with Plant-Based Proteins. Gels 2022, 8, 94. [Google Scholar] [CrossRef]
- Levi, S.; Yen, F.-C.; Baruch, L.; Machluf, M. Scaffolding Technologies for the Engineering of Cultured Meat: Towards a Safe, Sustainable, and Scalable Production. Trends Food Sci. Technol. 2022, 126, 13–25. [Google Scholar] [CrossRef]
- O’Riordan, K.; Fotopoulou, A.; Stephens, N. The First Bite: Imaginaries, Promotional Publics and the Laboratory Grown Burger. Public Underst. Sci. 2017, 26, 148–163. [Google Scholar] [CrossRef]
- Mattick, C.S.; Landis, A.E.; Allenby, B.R. A Case for Systemic Environmental Analysis of Cultured Meat. J. Integr. Agric. 2015, 14, 249–254. [Google Scholar] [CrossRef]
- Ronson, J. The Cost of a Lab-Grown Burger Has Dropped Dramatically. Available online: https://www.inverse.com/article/26464-cultured-meat-burger-price (accessed on 26 July 2022).
- Ramani, S.; Ko, D.; Kim, B.; Cho, C.; Kim, W.; Jo, C.; Lee, C.K.; Kang, J.; Hur, S.; Park, S. Technical Requirements for Cultured Meat Production: A Review. J. Anim. Sci. Technol. 2021, 63, 681–692. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.; Ma, P.; Zeng, Y.; Sheng, J. Understanding the Interaction between Regulatory Focus and Message Framing in Determining Chinese Consumers, Attitudes toward Artificial Meat. Int. J. Environ. Res. Public. Health 2022, 19, 4948. [Google Scholar] [CrossRef]
- Baker, A. China’s New 5-Year Plan Is a Blueprint for the Future of Meat. Available online: https://time.com/6143109/china-future-of-cultivated-meat/ (accessed on 25 July 2022).
- Sheldon, M. China’s Agricultural Plan Includes Cultivated Meat and Meat Alternatives. Available online: https://www.nycfoodpolicy.org/food-policy-snapshot-china-five-year-agricultural-plan-cultivated-meat/ (accessed on 25 July 2022).
- Buxton, A. China’s 5-Year Agricultural Plan To Include Cultivated Meat and ‘Future Foods’ for The First Time. Available online: https://www.greenqueen.com.hk/ (accessed on 3 August 2022).
- IEDI Indústria 4.0: O Programa Make in India e Outras Iniciativas Do Governo Indiano. Available online: https://www.iedi.org.br/cartas/carta_iedi_n_849.html (accessed on 16 August 2022).
- Porto, L.; Berti, F. Carne Cultivada: Perspectivas e Oportunidades Para o Brasil. Available online: https://gfi.org.br/wp-content/uploads/2022/06/WP-Carne-Cultivada-no-Brasil-GFI-Brasil-05_2022_.pdf (accessed on 3 August 2022).
- Young, S. Celling Meat—Is Cultivated Meat Really Here to Stay? Available online: https://thefarmermagazine.com.au/celling-meat-is-cultivated-meat-here-to-stay/ (accessed on 3 August 2022).
- Bowling, D. Cultivated Meat Could Be on Australian Shelves Next Year. Available online: https://futurealternative.com.au/cultivated-meat-could-be-on-australian-shelves-next-year/ (accessed on 3 August 2022).
- Pointing, C. Japan’s Health Ministry Makes Move Towards Cultured Meat Regulation. Available online: https://plantbasednews.org/news/alternative-protein/japans-health-ministry-cultured-meat-regulation/ (accessed on 3 August 2022).
- GFI Japan: Regulatory Updates on Shaping the Cultivated Meat Market. Available online: https://gfi-apac.org/japan-regulatory-updates-on-shaping-the-cultivated-meat-market/ (accessed on 3 August 2022).
- Dadhania, S. 3D Printing Meets Meat in the Largest Cultured Steak Ever Made. Available online: https://www.idtechex.com/en/research-article/3d-printing-meets-meat-in-the-largest-cultured-steak-ever-made/25517 (accessed on 11 August 2022).
- Tan, A. World’s First Commercial Cultured Meat Production Facility Operational in Singapore. Available online: https://www.straitstimes.com/singapore/environment/worlds-first-commercial-cultured-meat-production-facility-operational-in (accessed on 3 August 2022).
- Singapore Management University Why Singaporeans Have a Taste for Lab-Grown Meat. Available online: https://cityperspectives.smu.edu.sg/article/why-singaporeans-have-taste-lab-grown-meat (accessed on 3 August 2022).
- Alexandratos, N.; Bruinsma, J. World Agriculture towards 2030/2050: The 2012 Revision. Available online: https://www.fao.org/3/ap106e/ap106e.pdf (accessed on 3 August 2022).
- Mancini, M.C.; Antonioli, F. Chapter 19—The Future of Cultured Meat between Sustainability Expectations and Socio-Economic Challenges. In Global Trends, Opportunities, and Sustainability Challenges; Bhat, R.B.T.-F.F., Ed.; Academic Press: New York, NY, USA, 2022; pp. 331–350. ISBN 978-0-323-91001-9. [Google Scholar]
- Lee, D.Y.; Lee, S.Y.; Jung, J.W.; Kim, J.H.; Oh, D.H.; Kim, H.W.; Kang, J.H.; Choi, J.S.; Kim, G.-D.; Joo, S.-T.; et al. Review of Technology and Materials for the Development of Cultured Meat. Crit. Rev. Food Sci. Nutr. 2022, 1–25. [Google Scholar] [CrossRef]
- Kantono, K.; Hamid, N.; Malavalli, M.M.; Liu, Y.; Liu, T.; Seyfoddin, A. Consumer Acceptance and Production of In Vitro Meat: A Review. Sustainability 2022, 14, 4910. [Google Scholar] [CrossRef]
- Lanzoni, D.; Bracco, F.; Cheli, F.; Colosimo, B.M.; Moscatelli, D.; Baldi, A.; Rebucci, R.; Giromini, C. Biotechnological and Technical Challenges Related to Cultured Meat Production. Appl. Sci. 2022, 12, 6771. [Google Scholar] [CrossRef]
- Fish, K.D.; Rubio, N.R.; Stout, A.J.; Yuen, J.S.K.; Kaplan, D.L. Prospects and Challenges for Cell-Cultured Fat as a Novel Food Ingredient. Trends Food Sci. Technol. 2020, 98, 53–67. [Google Scholar] [CrossRef]
- Zhang, G.; Zhao, X.; Li, X.; Du, G.; Zhou, J.; Chen, J. Challenges and Possibilities for Bio-Manufacturing Cultured Meat. Trends Food Sci. Technol. 2020, 97, 443–450. [Google Scholar] [CrossRef]
- Knežić, T.; Janjušević, L.; Djisalov, M.; Yodmuang, S.; Gadjanski, I. Using Vertebrate Stem and Progenitor Cells for Cellular Agriculture, State-of-the-Art, Challenges, and Future Perspectives. Biomolecules 2022, 12, 699. [Google Scholar] [CrossRef] [PubMed]
- Skrivergaard, S.; Rasmussen, M.K.; Therkildsen, M.; Young, J.F. Bovine Satellite Cells Isolated after 2 and 5 Days of Tissue Storage Maintain the Proliferative and Myogenic Capacity Needed for Cultured Meat Production. Int. J. Mol. Sci. 2021, 22, 8376. [Google Scholar] [CrossRef] [PubMed]
- Messmer, T.; Klevernic, I.; Furquim, C.; Ovchinnikova, E.; Dogan, A.; Cruz, H.; Post, M.J.; Flack, J.E. A Serum-Free Media Formulation for Cultured Meat Production Supports Bovine Satellite Cell Differentiation in the Absence of Serum Starvation. Nat. Food 2022, 3, 74–85. [Google Scholar] [CrossRef]
- Guan, X.; Zhou, J.; Du, G.; Chen, J. Bioprocessing Technology of Muscle Stem Cells: Implications for Cultured Meat. Trends Biotechnol. 2022, 40, 721–734. [Google Scholar] [CrossRef]
- Stout, A.J.; Mirliani, A.B.; Rittenberg, M.L.; Shub, M.; White, E.C.; Yuen, J.S.K.; Kaplan, D.L. Simple and Effective Serum-Free Medium for Sustained Expansion of Bovine Satellite Cells for Cell Cultured Meat. Commun. Biol. 2022, 5, 466. [Google Scholar] [CrossRef]
- Zernov, A.; Baruch, L.; Machluf, M. Chitosan-Collagen Hydrogel Microparticles as Edible Cell Microcarriers for Cultured Meat. Food Hydrocoll. 2022, 129, 107632. [Google Scholar] [CrossRef]
- Dohmen, R.G.J.; Hubalek, S.; Melke, J.; Messmer, T.; Cantoni, F.; Mei, A.; Hueber, R.; Mitic, R.; Remmers, D.; Moutsatsou, P.; et al. Muscle-Derived Fibro-Adipogenic Progenitor Cells for Production of Cultured Bovine Adipose Tissue. Npj Sci. Food 2022, 6, 6. [Google Scholar] [CrossRef]
- Acevedo, C.A.; Orellana, N.; Avarias, K.; Ortiz, R.; Benavente, D.; Prieto, P. Micropatterning Technology to Design an Edible Film for In Vitro Meat Production. Food Bioprocess. Technol. 2018, 11, 1267–1273. [Google Scholar] [CrossRef]
- Axpe, E.; Oyen, M.L. Applications of Alginate-Based Bioinks in 3D Bioprinting. Int. J. Mol. Sci. 2016, 17, 1976. [Google Scholar] [CrossRef]
- Chen, H.; Fei, F.; Li, X.; Nie, Z.; Zhou, D.; Liu, L.; Zhang, J.; Zhang, H.; Fei, Z.; Xu, T. A Facile, Versatile Hydrogel Bioink for 3D Bioprinting Benefits Long-Term Subaqueous Fidelity, Cell Viability and Proliferation. Regen. Biomater. 2021, 8, rbab026. [Google Scholar] [CrossRef] [PubMed]
- Shams, E.; Barzad, M.S.; Mohamadnia, S.; Tavakoli, O.; Mehrdadfar, A. A Review on Alginate-Based Bioinks, Combination with Other Natural Biomaterials and Characteristics. J. Biomater. Appl. 2022, 37, 355–372. [Google Scholar] [CrossRef] [PubMed]
- Pahlevanzadeh, F.; Mokhtari, H.; Bakhsheshi-Rad, H.R.; Emadi, R.; Kharaziha, M.; Valiani, A.; Poursamar, S.A.; Ismail, A.F.; RamaKrishna, S.; Berto, F. Recent Trends in Three-Dimensional Bioinks Based on Alginate for Biomedical Applications. Mater 2020, 13, 3980. [Google Scholar] [CrossRef] [PubMed]
- Naghieh, S.; Chen, X. Printability–A Key Issue in Extrusion-Based Bioprinting. J. Pharm. Anal. 2021, 11, 564–579. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.J.; Yong, H.I.; Kim, M.; Choi, Y.-S.; Jo, C. Status of Meat Alternatives and Their Potential Role in the Future Meat Market —A Review. Asian-Australas. J. Anim. Sci. 2020, 33, 1533–1543. [Google Scholar] [CrossRef]
- Afratis, N.A.; Sagi, I. Novel Approaches for Extracellular Matrix Targeting in Disease Treatment. Methods Mol. Biol. 2019, 1952, 261–275. [Google Scholar] [CrossRef]
- Enrione, J.; Blaker, J.J.; Brown, D.I.; Weinstein-Oppenheimer, C.R.; Pepczynska, M.; Olguín, Y.; Sánchez, E.; Acevedo, C.A. Edible Scaffolds Based on Non-Mammalian Biopolymers for Myoblast Growth. Materials 2017, 10, 1404. [Google Scholar] [CrossRef]
- Orellana, N.; Sánchez, E.; Benavente, D.; Prieto, P.; Enrione, J.; Acevedo, C.A. A New Edible Film to Produce In Vitro Meat. Foods 2020, 9, 185. [Google Scholar] [CrossRef]
- Jaques, A.; Sánchez, E.; Orellana, N.; Enrione, J.; Acevedo, C.A. Modelling the Growth of In-Vitro Meat on Microstructured Edible Films. J. Food Eng. 2021, 307, 110662. [Google Scholar] [CrossRef]
- Li, L.; Chen, L.; Chen, X.; Chen, Y.; Ding, S.; Fan, X.; Liu, Y.; Xu, X.; Zhou, G.; Zhu, B.; et al. Chitosan-sodium Alginate-Collagen/Gelatin Three-Dimensional Edible Scaffolds for Building a Structured Model for Cell Cultured Meat. Int. J. Biol. Macromol. 2022, 209, 668–679. [Google Scholar] [CrossRef]
- Schuster, E.; Wallin, P.; Klose, F.P.; Gold, J.; Ström, A. Correlating Network Structure with Functional Properties of Capillary Alginate Gels for Muscle Fiber Formation. Food Hydrocoll. 2017, 72, 210–218. [Google Scholar] [CrossRef]
- Kong, Y.; Ong, S.; Liu, M.H.; Yu, H.; Huang, D. Functional Composite Microbeads for Cell-Based Meat Culture: Effect of Animal Gelatin Coating on Cell Proliferation and Differentiation. J. Phys. D. Appl. Phys. 2022, 55, 345401. [Google Scholar] [CrossRef]
- Park, S.; Jung, S.; Heo, J.; Koh, W.-G.; Lee, S.; Hong, J. Chitosan/Cellulose-Based Porous Nanofilm Delivering C-Phycocyanin: A Novel Platform for the Production of Cost-Effective Cultured Meat. ACS Appl. Mater. Interfaces 2021, 13, 32193–32204. [Google Scholar] [CrossRef]
- Xiang, N.; Yao, Y.; Yuen, J.S.K.; Stout, A.J.; Fennelly, C.; Sylvia, R.; Schnitzler, A.; Wong, S.; Kaplan, D.L. Edible Films for Cultivated Meat Production. Biomaterials 2022, 287, 121659. [Google Scholar] [CrossRef] [PubMed]
- Young, J.F.; Skrivergaard, S. Cultured Meat on a Plant-Based Frame. Nat. Food 2020, 1, 195. [Google Scholar] [CrossRef]
- Abbasi, J. Soy Scaffoldings Poised to Make Cultured Meat More Affordable. JAMA 2020, 323, 1764. [Google Scholar] [CrossRef] [PubMed]
- Chiang, J.H.; Loveday, S.M.; Hardacre, A.K.; Parker, M.E. Effects of Soy Protein to Wheat Gluten Ratio on the Physicochemical Properties of Extruded Meat Analogues. Food Struct. 2019, 19, 100102. [Google Scholar] [CrossRef]
- Xiang, N.; Yuen, J.S.K.; Stout, A.J.; Rubio, N.R.; Chen, Y.; Kaplan, D.L. 3D Porous Scaffolds from Wheat Glutenin for Cultured Meat Applications. Biomaterials 2022, 285, 121543. [Google Scholar] [CrossRef]
- Lin, C.-W.; Wu, P.-T.; Liu, K.-T.; Fan, Y.-J.; Yu, J. An Environmental Friendly Tapioca Starch-Alginate Cultured Scaffold as Biomimetic Muscle Tissue. Polymers 2021, 13, 2882. [Google Scholar] [CrossRef]
- Wallin, P.; Höglund, K.; Wildt-Persson, K.; Gold, J. Skeletal Myoblast Differentiation on Starch Microspheres for the Development of Cultured Meat. J. Tissue Eng. Regen. Med. 2012, 6, 378. [Google Scholar] [CrossRef]
- Rybchyn, M.S.; Biazik, J.M.; Charlesworth, J.; le Coutre, J. Nanocellulose from Nata de Coco as a Bioscaffold for Cell-Based Meat. ACS Omega 2021, 6, 33923–33931. [Google Scholar] [CrossRef]
- Priyadarshini, M.; Mohanty, S.; Mahapatra, T.; Mohapatra, P.; Dash, R. Chapter 20—Three-Dimensional Tumor Model and Their Implication in Drug Screening for Tackling Chemoresistance. In Materials Today; Kundu, S.C., Reis, R.L.B.T.-B. for 3D T.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 481–503. ISBN 978-0-12-818128-7. [Google Scholar]
- Li, Y.; Liu, W.; Li, S.; Zhang, M.; Yang, F.; Wang, S. Porcine Skeletal Muscle Tissue Fabrication for Cultured Meat Production Using Three-Dimensional Bioprinting Technology. J. Futur. Foods 2021, 1, 88–97. [Google Scholar] [CrossRef]
- Tahmasebifar, A.; Yilmaz, B.; Baran, E.T. 11—Polysaccharide-Based 3D Bioprinter Inks for Tissue Engineering. In Woodhead Publishing Series in Biomaterials; Bhawani, S.A., Karim, Z., Jawaid, M.B.T.-P.-B.N. for G.D. and T.E., Eds.; Woodhead Publishing: Sawston, UK, 2021; pp. 207–242. ISBN 978-0-12-821230-1. [Google Scholar]
- Tarassoli, S.P.; Jessop, Z.M.; Jovic, T.; Hawkins, K.; Whitaker, I.S. Candidate Bioinks for Extrusion 3D Bioprinting—A Systematic Review of the Literature. Front. Bioeng. Biotechnol. 2021, 9, 616753. [Google Scholar] [CrossRef]
- Lima, T.D.P.L.; Canelas, C.A.D.A.; Concha, V.O.C.; Costa, F.A.M.D.; Passos, M.F. 3D Bioprinting Technology and Hydrogels Used in the Process. J. Funct. Biomater. 2022, 13, 214. [Google Scholar] [CrossRef] [PubMed]
- Schätzlein, E.; Blaeser, A. Recent Trends in Bioartificial Muscle Engineering and Their Applications in Cultured Meat, Biorobotic Systems and Biohybrid Implants. Commun. Biol. 2022, 5, 737. [Google Scholar] [CrossRef] [PubMed]
- Santoni, S.; Gugliandolo, S.G.; Sponchioni, M.; Moscatelli, D.; Colosimo, B.M. 3D Bioprinting: Current Status and Trends—A Guide to the Literature and Industrial Practice. Bio-Des. Manuf. 2022, 5, 14–42. [Google Scholar] [CrossRef]
- Vijayavenkataraman, S.; Yan, W.-C.; Lu, W.F.; Wang, C.-H.; Fuh, J.Y.H. 3D Bioprinting of Tissues and Organs for Regenerative Medicine. Adv. Drug Deliv. Rev. 2018, 132, 296–332. [Google Scholar] [CrossRef]
- Jafari, A.; Ajji, Z.; Mousavi, A.; Naghieh, S.; Bencherif, S.A.; Savoji, H. Latest Advances in 3D Bioprinting of Cardiac Tissues. Adv. Mater. Technol. 2022, 7, 2101636. [Google Scholar] [CrossRef]
- Koçak, E.; Yıldız, A.; Acartürk, F. Three Dimensional Bioprinting Technology: Applications in Pharmaceutical and Biomedical Area. Colloids Surf. B Biointerfaces 2021, 197, 111396. [Google Scholar] [CrossRef]
- Alonzo, M.; AnilKumar, S.; Roman, B.; Tasnim, N.; Joddar, B. 3D Bioprinting of Cardiac Tissue and Cardiac Stem Cell Therapy. Transl. Res. 2019, 211, 64–83. [Google Scholar] [CrossRef] [PubMed]
- Abu Owida, H. Developments and Clinical Applications of Biomimetic Tissue Regeneration Using 3D Bioprinting Technique. Appl. Bionics Biomech. 2022, 2022, 2260216. [Google Scholar] [CrossRef]
- Ji, S.; Guvendiren, M. Recent Advances in Bioink Design for 3D Bioprinting of Tissues and Organs. Front. Bioeng. Biotechnol. 2017, 5, 23. [Google Scholar] [CrossRef]
- Thangadurai, M.; Ajith, A.; Budharaju, H.; Sethuraman, S.; Sundaramurthi, D. Advances in Electrospinning and 3D Bioprinting Strategies to Enhance Functional Regeneration of Skeletal Muscle Tissue. Biomater. Adv. 2022, 142, 213135. [Google Scholar] [CrossRef] [PubMed]
- Derakhshanfar, S.; Mbeleck, R.; Xu, K.; Zhang, X.; Zhong, W.; Xing, M. 3D Bioprinting for Biomedical Devices and Tissue Engineering: A Review of Recent Trends and Advances. Bioact. Mater. 2018, 3, 144–156. [Google Scholar] [CrossRef]
- Melo, B.A.G.; Jodat, Y.A.; Cruz, E.M.; Benincasa, J.C.; Shin, S.R.; Porcionatto, M.A. Strategies to Use Fibrinogen as Bioink for 3D Bioprinting Fibrin-Based Soft and Hard Tissues. Acta Biomater. 2020, 117, 60–76. [Google Scholar] [CrossRef]
- Chameettachal, S.; Yeleswarapu, S.; Sasikumar, S.; Shukla, P.; Hibare, P.; Bera, A.K.; Bojedla, S.S.R.; Pati, F. 3D Bioprinting: Recent Trends and Challenges. J. Indian Inst. Sci. 2019, 99, 375–403. [Google Scholar] [CrossRef]
- Malekpour, A.; Chen, X. Printability and Cell Viability in Extrusion-Based Bioprinting from Experimental, Computational, and Machine Learning Views. J. Funct. Biomater. 2022, 13, 40. [Google Scholar] [CrossRef]
- Chand, R.; Muhire, B.S.; Vijayavenkataraman, S. Computational Fluid Dynamics Assessment of the Effect of Bioprinting Parameters in Extrusion Bioprinting. Int. J. Bioprinting 2022, 8, 545. [Google Scholar] [CrossRef]
- Ng, W.L.; Huang, X.; Shkolnikov, V.; Goh, G.L.; Suntornnond, R.; Yeong, W.Y. Controlling Droplet Impact Velocity and Droplet Volume: Key Factors to Achieving High Cell Viability in Sub-Nanoliter Droplet-Based Bioprinting. Int. J. Bioprinting 2022, 8, 424. [Google Scholar] [CrossRef] [PubMed]
- Pereira, R.F.; Bártolo, P.J. 3D Bioprinting of Photocrosslinkable Hydrogel Constructs. J. Appl. Polym. Sci. 2015, 132, 42458. [Google Scholar] [CrossRef]
- Adhikari, J.; Roy, A.; Das, A.; Ghosh, M.; Thomas, S.; Sinha, A.; Kim, J.; Saha, P. Effects of Processing Parameters of 3D Bioprinting on the Cellular Activity of Bioinks. Macromol. Biosci. 2021, 21, 2000179. [Google Scholar] [CrossRef]
- Chen, M.; Bolognesi, G.; Vladisavljević, G.T. Crosslinking Strategies for the Microfluidic Production of Microgels. Molecules 2021, 26, 3752. [Google Scholar] [CrossRef] [PubMed]
- Montheil, T.; Simon, M.; Noël, D.; Mehdi, A.; Subra, G.; Echalier, C. Silylated Biomolecules: Versatile Components for Bioinks. Front. Bioeng. Biotechnol. 2022, 10, 888437. [Google Scholar] [CrossRef]
- Choi, G.; Cha, H.J. Recent Advances in the Development of Nature-Derived Photocrosslinkable Biomaterials for 3D Printing in Tissue Engineering. Biomater. Res. 2019, 23, 18. [Google Scholar] [CrossRef] [PubMed]
- Knowlton, S.; Yenilmez, B.; Anand, S.; Tasoglu, S. Photocrosslinking-Based Bioprinting: Examining Crosslinking Schemes. Bioprinting 2017, 5, 10–18. [Google Scholar] [CrossRef]
- Shin, J.Y.; Yeo, Y.H.; Jeong, J.E.; Park, S.A.; Park, W.H. Dual-Crosslinked Methylcellulose Hydrogels for 3D Bioprinting Applications. Carbohydr. Polym. 2020, 238, 116192. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Guo, L.; Sun, H. Manufacture of Biomaterials. In Encyclopedia of Biomedical Engineering; Narayan, R.B.T.-E. of B.E., Ed.; Elsevier: Oxford, UK, 2019; pp. 116–134. ISBN 978-0-12-805144-3. [Google Scholar]
- Hoare, T.R.; Kohane, D.S. Hydrogels in Drug Delivery: Progress and Challenges. Polymer 2008, 49, 1993–2007. [Google Scholar] [CrossRef]
- Ng, W.L.; Chua, C.K.; Shen, Y.-F. Print Me An Organ! Why We Are Not There Yet. Prog. Polym. Sci. 2019, 97, 101145. [Google Scholar] [CrossRef]
- Dick, A.; Bhandari, B.; Prakash, S. Post-Processing Feasibility of Composite-Layer 3D Printed Beef. Meat Sci. 2019, 153, 9–18. [Google Scholar] [CrossRef]
- Munteanu, C.; Mireşan, V.; Răducu, C.; Ihuţ, A.; Uiuiu, P.; Pop, D.; Neacşu, A.; Cenariu, M.; Groza, I. Can Cultured Meat Be an Alternative to Farm Animal Production for a Sustainable and Healthier Lifestyle? Front. Nutr. 2021, 8, 749298. [Google Scholar] [CrossRef]
- Specht, E.A.; Welch, D.R.; Rees Clayton, E.M.; Lagally, C.D. Opportunities for Applying Biomedical Production and Manufacturing Methods to the Development of the Clean Meat Industry. Biochem. Eng. J. 2018, 132, 161–168. [Google Scholar] [CrossRef]
- Allan, S.J.; De Bank, P.A.; Ellis, M.J. Bioprocess Design Considerations for Cultured Meat Production With a Focus on the Expansion Bioreactor. Front. Sustain. Food Syst. 2019, 3, 44. [Google Scholar] [CrossRef]
- Reiss, J.; Robertson, S.; Suzuki, M. Cell Sources for Cultivated Meat: Applications and Considerations throughout the Production Workflow. Int. J. Mol. Sci. 2021, 22, 7513. [Google Scholar] [CrossRef] [PubMed]
- Cacopardo, L.; Ahluwalia, A. Engineering and Monitoring 3D Cell Constructs with Time-Evolving Viscoelasticity for the Study of Liver Fibrosis In Vitro. Bioengineering 2021, 8, 106. [Google Scholar] [CrossRef]
- Todros, S.; Spadoni, S.; Maghin, E.; Piccoli, M.; Pavan, P.G. A Novel Bioreactor for the Mechanical Stimulation of Clinically Relevant Scaffolds for Muscle Tissue Engineering Purposes. Processes 2021, 9, 474. [Google Scholar] [CrossRef]
- Hassoun, A.; Bekhit, A.E.-D.; Jambrak, A.R.; Regenstein, J.M.; Chemat, F.; Morton, J.D.; Gudjónsdóttir, M.; Carpena, M.; Prieto, M.A.; Varela, P.; et al. The Fourth Industrial Revolution in the Food Industry—Part II: Emerging Food Trends. Crit. Rev. Food Sci. Nutr. 2022, 1–31. [Google Scholar] [CrossRef]
- Hassoun, A.; Cropotova, J.; Trif, M.; Rusu, A.V.; Bobiş, O.; Nayik, G.A.; Jagdale, Y.D.; Saeed, F.; Afzaal, M.; Mostashari, P.; et al. Consumer Acceptance of New Food Trends Resulting from the Fourth Industrial Revolution Technologies: A Narrative Review of Literature and Future Perspectives. Front. Nutr. 2022, 9, 972154. [Google Scholar] [CrossRef]
- Mateti, T.; Laha, A.; Shenoy, P. Artificial Meat Industry: Production Methodology, Challenges, and Future. JOM 2022, 74, 3428–3444. [Google Scholar] [CrossRef]
- Ng, S.; Kurisawa, M. Integrating Biomaterials and Food Biopolymers for Cultured Meat Production. Acta Biomater. 2021, 124, 108–129. [Google Scholar] [CrossRef]
- Bryant, C.J. Culture, Meat, and Cultured Meat. J. Anim. Sci. 2020, 98, skaa172. [Google Scholar] [CrossRef]
- Siddiqui, S.A.; Khan, S.; Murid, M.; Asif, Z.; Oboturova, N.P.; Nagdalian, A.A.; Blinov, A.V.; Ibrahim, S.A.; Jafari, S.M. Marketing Strategies for Cultured Meat: A Review. Appl. Sci. 2022, 12, 8795. [Google Scholar] [CrossRef]
- Zhang, M.; Li, L.; Bai, J. Consumer Acceptance of Cultured Meat in Urban Areas of Three Cities in China. Food Control 2020, 118, 107390. [Google Scholar] [CrossRef]
- Weinrich, R.; Strack, M.; Neugebauer, F. Consumer Acceptance of Cultured Meat in Germany. Meat Sci. 2020, 162, 107924. [Google Scholar] [CrossRef]
- Palmieri, N.; Perito, M.A.; Lupi, C. Consumer Acceptance of Cultured Meat: Some Hints from Italy. Br. Food J. 2021, 123, 109–123. [Google Scholar] [CrossRef]
- Pakseresht, A.; Ahmadi Kaliji, S.; Canavari, M. Review of Factors Affecting Consumer Acceptance of Cultured Meat. Appetite 2022, 170, 105829. [Google Scholar] [CrossRef]
- Post, M.J.; Levenberg, S.; Kaplan, D.L.; Genovese, N.; Fu, J.; Bryant, C.J.; Negowetti, N.; Verzijden, K.; Moutsatsou, P. Scientific, Sustainability and Regulatory Challenges of Cultured Meat. Nat. Food 2020, 1, 403–415. [Google Scholar] [CrossRef]
- Ribeiro, G.O.; Rodrigues, L.D.A.P.; dos Santos, T.B.S.; Alves, J.P.S.; Oliveira, R.S.; Nery, T.B.R.; Barbosa, J.D.V.; Soares, M.B.P. Innovations and Developments in Single Cell Protein: Bibliometric Review and Patents Analysis. Front. Microbiol. 2023, 13, 1093464. [Google Scholar] [CrossRef]
- Derbes, E. Cultivated Meat Is Gaining Momentum and Pathways for Regulatory Approval. Available online: https://gfi.org/blog/cultivated-meat-regulation-2021/ (accessed on 12 August 2022).
- Jairath, G.; Mal, G.; Gopinath, D.; Singh, B. A Holistic Approach to Access the Viability of Cultured Meat: A Review. Trends Food Sci. Technol. 2021, 110, 700–710. [Google Scholar] [CrossRef]
Title | Journal | Citations | Author |
---|---|---|---|
Engineered whole cut meat-like tissue by the assembly of cell fibers using tendon-gel integrated bioprinting | Nature Communications | 68 | Kang et al. (2021) [28] |
3D Printing of cultured meat products | Critical Reviews in Food Science and Nutrition | 55 | Handral et al. (2022) [29] |
Food of the Future? Consumer Responses to the Idea of 3D-Printed Meat and Insect-Based Foods | Food and Foodways | 37 | Lupton and Turner (2018) [30] |
Scaffolding Biomaterials for 3D Cultivated Meat: Prospects and Challenges | Advanced Science | 34 | Bomkamp et al. (2022) [31] |
Artificial meat and the future of the meat industry | Animal Production Science | 25 | Bonny et al. (2017) [32] |
3D-printable plant protein-enriched scaffolds for cultivated meat development | Biomaterials | 23 | Ianovici et al. (2022) [33] |
3D printing: Development of animal products and special foods | Trends in Food Science & Technology | 13 | Bhat et al. (2021) [34] |
The Epic of in vitro Meat Production-A Fiction into Reality | Foods | 10 | Balasubramanian et al. (2021) [35] |
Scaffolds for Cultured Meat on the Basis of Polysaccharide Hydrogels Enriched with Plant-Based Proteins | Gels | 8 | Wollschlaeger et al. (2022) [36] |
Scaffolding technologies for the engineering of cultured meat: Towards a safe, sustainable, and scalable production | Trends in Food Science & Technology | 7 | Levi et al. (2022) [37] |
Country/Region | Status |
---|---|
Australia-New Zealand | According to Food Standards Australia New Zealand (FSANZ), concerning the regulation of “novel food”, cultured meat manufacturers must apply for inclusion of their products in the approved new foods list if they wish to sell them in any country. This requires an assessment of safety in the production process carried out by FSANZ, which is likely to last at least 14 months. The safety assessment is intended to establish and confirm that the food does not present a health risk. |
Canada | Cultured meats are characterized as “novel foods” and detailed information must be submitted in a pre-market approval application. Information includes evidence that the food is safe for consumption, such as molecular characterization, nutritional composition, toxicology and allergenicity, and types and levels of chemical contaminants. |
United States of America | The services of the US Food and Drug Administration (FDA) and the Food Safety and Inspection Service (FSIS) of the US Department of Agriculture (USDA) are well documented. On 7 March 2019, the FDA and USDA released a formal agreement outlining their respective oversight roles and responsibilities under this framework and how they will collaborate to regulate the production of cultured meat and its entry into trade. |
European Union | The Novel Food Regulation (Regulation (EU) No. 2015/2283) governs pre-marketing authorizations for foods produced from animal cells or tissue culture. However, if genetic engineering is used in the production of cultured meat, the Regulation on Genetically Modified Food and Feed (Regulation (EC) No. 1829/2003) may apply. |
United Kingdom | With its departure from the EU, the UK no longer participates in the EU’s common food authorization procedures. From May 2021, any cultured meat company that wants to sell its products in the UK needs to apply for authorization from the UK Food Standards Agency (FSA). |
Singapore | The Singapore Food Agency (SFA) has published guidance on its requirements for the safety assessment of novel foods, including specific requirements for the information to be submitted for the approval of cultured meat products. On 1 December 2020, the SFA approved the sale of cultured chicken meat from Eat Just Inc., which was the first approval of cultivated meat in the world. |
Japan | Depending on the production method, cultured meat already falls under the existing regulatory regime in Japan and may not require pre-market assessment or approval. However, the Japanese government is working to develop a specific regulatory framework, ensuring food safety and consumer acceptance. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barbosa, W.; Correia, P.; Vieira, J.; Leal, I.; Rodrigues, L.; Nery, T.; Barbosa, J.; Soares, M. Trends and Technological Challenges of 3D Bioprinting in Cultured Meat: Technological Prospection. Appl. Sci. 2023, 13, 12158. https://doi.org/10.3390/app132212158
Barbosa W, Correia P, Vieira J, Leal I, Rodrigues L, Nery T, Barbosa J, Soares M. Trends and Technological Challenges of 3D Bioprinting in Cultured Meat: Technological Prospection. Applied Sciences. 2023; 13(22):12158. https://doi.org/10.3390/app132212158
Chicago/Turabian StyleBarbosa, Willams, Paulo Correia, Jaqueline Vieira, Ingrid Leal, Letícia Rodrigues, Tatiana Nery, Josiane Barbosa, and Milena Soares. 2023. "Trends and Technological Challenges of 3D Bioprinting in Cultured Meat: Technological Prospection" Applied Sciences 13, no. 22: 12158. https://doi.org/10.3390/app132212158
APA StyleBarbosa, W., Correia, P., Vieira, J., Leal, I., Rodrigues, L., Nery, T., Barbosa, J., & Soares, M. (2023). Trends and Technological Challenges of 3D Bioprinting in Cultured Meat: Technological Prospection. Applied Sciences, 13(22), 12158. https://doi.org/10.3390/app132212158