Influence on Physical and Mechanical Properties of Concrete Using Crushed Hazelnut Shell
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cement
2.2. Additives
2.3. Aggregates
2.4. Crushed Hazelnut Shell
2.5. Test Methodology
2.5.1. Crushing Method for Hazelnut Shell
2.5.2. Concrete Sample Preparation
2.5.3. Compressive Strength
2.5.4. Bending Strength
3. Results
3.1. Aggregates
3.1.1. Absorption Test
3.1.2. Density Test
3.2. Crushed Hazelnut Shell
Density and Water Absorption
3.3. Fresh Concrete Tests
3.3.1. Slump Test
3.3.2. Air Content and Bulk Density
3.4. Hardened Concrete Tests
3.4.1. Compressive Strength
3.4.2. Bending Strength
4. Discussion of the Results
4.1. Influence of Physical Properties on Mechanical Strength
4.2. Influence on Compressive Strength
4.3. Influence on the Bending Strength
5. Conclusions
- The findings indicated a non-linear relationship between the water/cement ratio and compressive strength. For the specimens with a w/c ratio of 0.4, a 9.5% increase in compressive strength at 28 days was observed in one specimen, while the other two specimens showed a decrease of approximately 20%. Similarly, for a w/c ratio of 0.5, the compressive strength at 28 days exhibited a decrease ranging from 2% to 14% compared to the original specimen. This non-linear behavior highlights the complex interplay between the water/cement ratio and compressive strength.
- The results suggested that an optimal w/c ratio exists for achieving the highest compressive strength. In this particular study, a w/c ratio of 0.4 resulted in a slight increase in compressive strength in one specimen, indicating that this ratio might be more conducive to optimal strength development. Conversely, a higher w/c ratio of 0.5 resulted in a slight decrease in compressive strength compared to the original specimen, implying that an excessive water content may have a detrimental effect on the strength of the concrete.
- For the specimens with a w/c ratio of 0.4, the tensile strength exhibited a general increase as the percentage of crushed hazelnut shell inclusion increased from 2.5% to 5%, reaching a peak value of MPa. However, a further increase to 10% resulted in a slight decrease in tensile strength to MPa. This suggests that an optimal percentage of crushed hazelnut shell inclusion exists, beyond which the tensile strength starts to decline.
- For the specimens with a w/c ratio of 0.5, the inclusion of crushed hazelnut shell resulted in a general decrease in tensile strength across all inclusion percentages. As the percentage of inclusion increased from 2.5% to 10%, the tensile strength decreased from MPa to MPa. This indicated that the higher w/c ratio negatively influenced the strength enhancement effect of crushed hazelnut shell inclusion.
- The use of a 0.4 w/c ratio consistently produced better results for both compressive and bending strength, with fewer and lower reductions in mechanical strength compared to the standard mixture. The correlation analysis showed that the strength results were inversely related to the w/c ratio and air content of the mixture.
- Based on the results obtained, concrete mixes with a HS replacement percentage of 2.5% could be used in constructive systems with a compression strength requirement lower than 17 MPa.
- Concrete mixtures with a HS replacement percentage of at most 10% of the fine aggregate could be used in structures with tensile bending stress requirements lower than 6 MPa. These results indicate that the use of hazelnut shells as a partial replacement for fine aggregates is a viable option for reducing the environmental impact and improving the mechanical properties of concrete. However, it is important to consider the specific requirements of each application when determining the optimal percentage of HS replacement.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Meyer, C. The greening of the concrete industry. Cem. Concr. Compos. 2009, 31, 601–605. [Google Scholar] [CrossRef]
- Mehta, P.K. High-performance, high-volume fly ash concrete for sustainable development. In Proceedings of the International Workshop on Sustainable Development And Concrete Technology; Iowa State University Ames: Ames, IA, USA, 2004; pp. 3–14. [Google Scholar]
- Tu, T.Y.; Chen, Y.Y.; Hwang, C.L. Properties of HPC with recycled aggregates. Cem. Concr. Res. 2006, 36, 943–950. [Google Scholar] [CrossRef]
- Yanez, S.; Márquez, C.; Valenzuela, B.; Villamar-Ayala, C.A. A Bibliometric-Statistical Review of Organic Residues as Cementitious Building Materials. Buildings 2022, 12, 597. [Google Scholar] [CrossRef]
- Steyn, Z.C.; Babafemi, A.J.; Fataar, H.; Combrinck, R. Concrete containing waste recycled glass, plastic and rubber as sand replacement. Constr. Build. Mater. 2021, 269, 121242. [Google Scholar] [CrossRef]
- Ramadan, R.; Jahami, A.; Khatib, J.; El-Hassan, H.; Elkordi, A. Improving Structural Performance of Reinforced Concrete Beams with Phragmites Australis Fiber and Waste Glass Additives. Appl. Sci. 2023, 13, 4206. [Google Scholar] [CrossRef]
- Islam, S.M.; Hussain, R.R.; Morshed, M.A.Z. Fiber-reinforced concrete incorporating locally available natural fibers in normal- and high-strength concrete and a performance analysis with steel fiber-reinforced composite concrete. J. Compos. Mater. 2012, 46, 111–122. [Google Scholar] [CrossRef]
- Ahmad, J.; Majdi, A.; Deifalla, A.F.; Ben Kahla, N.; El-Shorbagy, M.A. Concrete Reinforced with Sisal Fibers (SSF): Overview of Mechanical and Physical Properties. Crystals 2022, 12, 952. [Google Scholar] [CrossRef]
- Wei, J.; Meyer, C. Improving degradation resistance of sisal fiber in concrete through fiber surface treatment. Appl. Surf. Sci. 2014, 289, 511–523. [Google Scholar] [CrossRef]
- Ramli, M.; Kwan, W.H.; Abas, N.F. Strength and durability of coconut-fiber-reinforced concrete in aggressive environments. Constr. Build. Mater. 2013, 38, 554–566. [Google Scholar] [CrossRef]
- Ahmad, J.; Majdi, A.; Al-Fakih, A.; Deifalla, A.F.; Althoey, F.; El Ouni, M.H.; El-Shorbagy, M.A. Mechanical and Durability Performance of Coconut Fiber Reinforced Concrete: A State-of-the-Art Review. Materials 2022, 15, 3601. [Google Scholar] [CrossRef]
- Shukla, A.; Kumar, M.; Tiwari, H.; Shukla, A. Alternative Uses of Rice Straw in North-Western Regions of India: A Review. Int. J. Environ. Clim. Chang. 2022, 12, 206–216. [Google Scholar] [CrossRef]
- Sharma, T.; Singh, S. The experimental study on the effect of paddy straw fibers on mechanical properties of sustainable concrete. J. Green Eng. 2020, 10, 7997–8009. [Google Scholar]
- Cordeiro, G.C.; Toledo Filho, R.D.; Fairbairn, E.M.R. Effect of calcination temperature on the pozzolanic activity of sugar cane bagasse ash. Constr. Build. Mater. 2009, 23, 3301–3303. [Google Scholar] [CrossRef]
- de Brito, J.; Kurda, R. The past and future of sustainable concrete: A critical review and new strategies on cement-based materials. J. Clean. Prod. 2021, 281, 123558. [Google Scholar] [CrossRef]
- Agwa, I.S.; Zeyad, A.M.; Tayeh, B.A.; Amin, M. Effect of different burning degrees of sugarcane leaf ash on the properties of ultrahigh-strength concrete. J. Build. Eng. 2022, 56, 104773. [Google Scholar] [CrossRef]
- Xu, Q.; Ji, T.; Gao, S.J.; Yang, Z.; Wu, N. Characteristics and Applications of Sugar Cane Bagasse Ash Waste in Cementitious Materials. Materials 2019, 12, 39. [Google Scholar] [CrossRef] [PubMed]
- Udoeyo, F.F.; Abubakar, S.A. Maize-cob Ash As Filler in Concrete. J. Mater. Civ. Eng. 2003, 15, 205–208. [Google Scholar] [CrossRef]
- Bagcal, O.R.; Baccay, M.A. Effect of maize cob ash as supplementary cementitious material on the mechanical properties of concrete. Int. J. Mater. Eng. Innov. 2019, 10, 83–97. [Google Scholar] [CrossRef]
- Laverde, V.; Marin, A.; Benjumea, J.M.; Rincón Ortiz, M. Use of vegetable fibers as reinforcements in cement-matrix composite materials: A review. Constr. Build. Mater. 2022, 340, 127729. [Google Scholar] [CrossRef]
- Deo, S. Parametric Study of Natural Organic Materials as Admixture in Concrete. Int. J. Appl. Eng. Res. 2016, 11, 6271–6277. [Google Scholar]
- Sales, A.; Lima, S.A. Use of Brazilian sugarcane bagasse ash in concrete as sand replacement. Waste Manag. 2010, 30, 1114–1122. [Google Scholar] [CrossRef] [PubMed]
- Yurt, U.; Bekar, F. Comparative study of hazelnut-shell biomass ash and metakaolin to improve the performance of alkali-activated concrete: A sustainable greener alternative. Constr. Build. Mater. 2022, 320, 126230. [Google Scholar] [CrossRef]
- Baran, Y.; Gökçe, H.S.; Durmaz, M. Physical and mechanical properties of cement containing regional hazelnut shell ash wastes. J. Clean. Prod. 2020, 259, 120965. [Google Scholar] [CrossRef]
- Pérez-Armada, L.; Rivas, S.; González, B.; Moure, A. Extraction of phenolic compounds from hazelnut shells by green processes. J. Food Eng. 2019, 255, 1–8. [Google Scholar] [CrossRef]
- Demir, Y.; Demir, A.D. The effect of organic matter applications on the saturated hydraulic conductivity and available water-holding capacity of sandy soils. Appl. Ecol. Environ. Res. 2019, 17, 3137–3146. [Google Scholar] [CrossRef]
- Skamarokhova, A.; Danilova, A.; Agarkova, N.; Babukhadia, K.; Arutyunova, G.Y. Dynamics of increasing the yield of vetch-triticale grass mixture due to the use of a new complex biofertilizer. In Proceedings of the IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2022; Volume 1045, p. 012138. [Google Scholar]
- Guan, T.; Shanku, W.; Rauf, M.; Adil, S.; Iqbal, M.F.; Tariq, M.A.U.R.; Azim, I.; Ng, A.W. Evolutionary Algorithm-Based Modeling of Split Tensile Strength of Foundry Sand-Based Concrete. Sustainability 2022, 14, 3274. [Google Scholar]
- Deboucha, W.; Sebaibi, N.; El Mendili, Y.; Fabien, A.; Alengaram, U.J.; Leklou, N.; Hamdadou, M.N.; Bourdot, A.; Gascoin, S. Reactivity effect of calcium carbonate on the formation of carboaluminate phases in ground granulated blast furnace slag blended cements. Sustainability 2021, 13, 6504. [Google Scholar]
- Rivera, F.; Martínez, P.; Castro, J.; López, M. “Massive volume fly-ash concrete: A more sustainable material with fly ash replacing cement and aggregates”. Cem. Concr. Compos. 2015, 63, 104–112. [Google Scholar] [CrossRef]
- ASTM C595/C595; Standard Specification for Blended Hydraulic Cements. ASTM International: West Conshohocken, PA, USA, 2008.
- Guvalov, A.; Abbasova, S. Influence of Rheological Active Additives on the Properties of Self-compacting Concrete. J. Wuhan Univ. Technol.-Mater. Sci. Ed. 2021, 36, 381–386. [Google Scholar] [CrossRef]
- ASTM C136-06; Standard Test Method for Sieve Analysis of Fine and Coarse Aggregate. ASTM International: West Conshohocken, PA, USA, 2006.
- ASTM C33/C33M-18; Standard Specification for Concrete Aggregates. ASTM International: West Conshohocken, PA, USA, 2018.
- Witkowska-Dobrev, J.; Szlachetka, O.; Spiek, P. Impact of curing conditions for concrete on its mechanical properties. Bud. Archit. 2020, 19, 101–110. [Google Scholar] [CrossRef]
- ASTM C470/C470M-15; Standard Specification for Molds for Forming Concrete Test Cylinders Vertically. ASTM International: West Conshohocken, PA, USA, 2015.
- ASTM C192/C192M-14; Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory. ASTM International: West Conshohocken, PA, USA, 2014.
- ASTM C39/C39M; Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens. ASTM International: West Conshohocken, PA, USA, 2001.
- ASTM C293/C293M-16; Standard Test Method for Flexural Strength of Concrete (Using Simple Beam With Center-Point Loading). ASTM International: West Conshohocken, PA, USA, 2016.
- ASTM C127-15; Standard Test Method for Relative Density (Specific Gravity) and Absorption of Coarse Aggregate. ASTM International: West Conshohocken, PA, USA, 2015.
- UNE-EN 1097-8:2021; Tests for Mechanical and Physical Properties of Aggregates-Part 8: Determination of the Polished Stone Value. Asociación Española de Normalización [AENOR]: Madrid, Spain, 2021.
- ASTM C128/C128M-22; Standard Test Method for Relative Density (Specific Gravity) and Absorption of Fine Aggregate. ASTM International: West Conshohocken, PA, USA, 2022.
- ASTM C143/C143M -00; Standard Test Method for Slump of Hydraulic Cement Concrete. ASTM International: West Conshohocken, PA, USA, 2000.
- ASTM C231/C231M -09a; Standard Test Method for Air Content of Freshly Mixed Concrete by the Pressure Method. ASTM International: West Conshohocken, PA, USA, 2009.
- ASTM C138/C138M-17a; Standard Test Method for Density (Unit Weight), Yield, and Air Content (Gravimetric) of Concrete. ASTM International: West Conshohocken, PA, USA, 2017.
- Ndoke, P.N. Performance of palm kernel shells as a partial replacement for coarse aggregate in asphalt concrete. Leonardo Electron. J. Pract. Technol. 2006, 5, 145–152. [Google Scholar]
- Azunna, S.U. Compressive strength of concrete with palm kernel shell as a partial replacement for coarse aggregate. SN Appl. Sci. 2019, 1, 1–10. [Google Scholar]
- Divakar, Y.; Manjunath, S.; Aswath, M. Experimental investigation on behaviour of concrete with the use of granite fines. Int. J. Adv. Eng. Res. Stud. 2012, 1, 84–87. [Google Scholar]
- Olanipekun, E.; Olusola, K.; Ata, O. A comparative study of concrete properties using coconut shell and palm kernel shell as coarse aggregates. Build. Environ. 2006, 41, 297–301. [Google Scholar] [CrossRef]
- Dadzie, D.K.; Kaliluthin, A. Implications of Palm Kernel Shell-Filled Plastic Bottles on the Structural Behavior of Concrete Slab. Civ. Eng. J. 2023, 9, 731–751. [Google Scholar] [CrossRef]
- Corbu, O.; Toma, I.O. Progress in Sustainability and Durability of Concrete and Mortar Composites. Coatings 2022, 12, 1024. [Google Scholar]
- Yang, I.H.; Park, J.; Dinh Le, N.; Jung, S. Strength properties of high-strength concrete containing coal bottom ash as a replacement of aggregates. Adv. Mater. Sci. Eng. 2020, 2020, 4246396. [Google Scholar]
- El-Sayed, T.A. Performance of porous slabs using recycled ash. Polymers 2021, 13, 3319. [Google Scholar]
- Ngayakamo, B.; Onwualu, A.P. Recent advances in green processing technologies for valorisation of eggshell waste for sustainable construction materials. Heliyon 2022, 8, e09649. [Google Scholar]
- Memon, S.A.; Javed, U.; Haris, M.; Khushnood, R.A.; Kim, J. Incorporation of Wheat Straw Ash as Partial Sand Replacement for Production of Eco-Friendly Concrete. Materials 2021, 14, 2078. [Google Scholar] [CrossRef]
- Qudoos, A.; Ullah, Z.; Undefined, A.u.R.; Baloch, Z. Performance Evaluation of the Fiber-Reinforced Cement Composites Blended with Wheat Straw Ash. Adv. Mater. Sci. Eng. 2019, 2019, e1835764. [Google Scholar] [CrossRef]
- Arif, E.; Clark, M.W.; Lake, N. Sugar cane bagasse ash from a high-efficiency co-generation boiler as filler in concrete. Constr. Build. Mater. 2017, 151, 692–703. [Google Scholar] [CrossRef]
- NCh170:2016; Hormigón-Requisitos Generales. Instituto Nacional de Normalización: Santiago Downtown, Chile, 2016.
- Zhang, K.; Tang, C.S.; Jiang, N.J.; Pan, X.H.; Liu, B.; Wang, Y.J.; Shi, B. Microbial-induced carbonate precipitation (MICP) technology: A review on the fundamentals and engineering applications. Environ. Earth Sci. 2023, 82, 229. [Google Scholar] [PubMed]
Sieve Testing Results | ||
---|---|---|
Fine Aggregate | Coarse Aggregate | |
Sieve mm | Passing Percentage (%) | Passing Percentage (%) |
25 | 100 | 100 |
19 | 100 | 94 |
12.5 | 100 | 48 |
9.5 | 100 | 23 |
4.75 | 99 | 1 |
2.36 | 74 | 0 |
1.18 | 50 | 0 |
0.6 | 34 | 0 |
0.3 | 19 | 0 |
0.15 | 7 | 0 |
Mixture | w/c | HS (%) | Specimen Nomenclature | ||
---|---|---|---|---|---|
Compressive Strength at 7 Days | Compressive Strength at 28 Days | Bending Strength at 28 Days | |||
M-0.4-0 | 0.4 | 0 | M-0.4-0-C-7-A | M-0.4-0-C-28-A | M-0.4-0-T-28-A |
M-0.4-0-C-7-B | M-0.4-0-C-28-B | M-0.4-0-T-28-B | |||
M-0.4-0-C-7-C | M-0.4-0-C-28-C | M-0.4-0-T-28-C | |||
M-0.4-2.5 | 0.4 | 2.5 | M-0.4-2.5-C-7-A | M-0.4-2.5-C-28-A | M-0.4-2.5-T-28-A |
M-0.4-2.5-C-7-B | M-0.4-2.5-C-28-B | M-0.4-2.5-T-28-B | |||
M-0.4-2.5-C-7-C | M-0.4-2.5-C-28-C | M-0.4-2.5-T-28-C | |||
M-0.4-5 | 0.4 | 5 | M-0.4-5-C-7-A | M-0.4-5-C-28-A | M-0.4-5-T-28-A |
M-0.4-5-C-7-B | M-0.4-5-C-28-B | M-0.4-5-T-28-B | |||
M-0.4-5-C-7-C | M-0.4-5-C-28-C | M-0.4-5-T-28-C | |||
M-0.4-10 | 0.4 | 10 | M-0.4-10-C-7-A | M-0.4-10-C-28-A | M-0.4-10-T-28-A |
M-0.4-10-C-7-B | M-0.4-10-C-28-B | M-0.4-10-T-28-B | |||
M-0.4-10-C-7-C | M-0.4-10-C-28-C | M-0.4-10-T-28-C | |||
M-0.5-0 | 0.5 | 0 | M-0.5-0-C-7-A | M-0.5-0-C-28-A | M-0.5-0-T-28-A |
M-0.5-0-C-7-B | M-0.5-0-C-28-B | M-0.5-0-T-28-B | |||
M-0.5-0-C-7-C | M-0.5-0-C-28-C | M-0.5-0-T-28-C | |||
M-0.5-2.5 | 0.5 | 2.5 | M-0.5-2.5-C-7-A | M-0.5-2.5-C-28-A | M-0.5-2.5-T-28-A |
M-0.5-2.5-C-7-B | M-0.5-2.5-C-28-B | M-0.5-2.5-T-28-B | |||
M-0.5-2.5-C-7-C | M-0.5-2.5-C-28-C | M-0.5-2.5-T-28-C | |||
M-0.5-5 | 0.5 | 5 | M-0.5-5-C-7-A | M-0.5-5-C-28-A | M-0.5-5-T-28-A |
M-0.5-5-C-7-B | M-0.5-5-C-28-B | M-0.5-5-T-28-B | |||
M-0.5-5-C-7-C | M-0.5-5-C-28-C | M-0.5-5-T-28-C | |||
M-0.5-10 | 0.5 | 10 | M-0.5-10-C-7-A | M-0.5-10-C-28-A | M-0.5-10-T-28-A |
M-0.5-10-C-7-B | M-0.5-10-C-28-B | M-0.5-10-T-28-B | |||
M-0.5-10-C-7-C | M-0.5-10-C-28-C | M-0.5-10-T-28-C |
Property | Coarse Aggregates | Fine Aggregates |
---|---|---|
Absorption (%) | 1.4 | 1.9 |
Density (kg/m) | 2630 | 2660 |
Property | Value |
---|---|
Density (saturated-surface-dry) (kg/m) | 1316 |
Density (oven-dry) (kg/m) | 999 |
Apparent relative density (kg/m) | 1462 |
Water absorption (% of mass/mass) | 38 |
Mixture | Slump (cm) | Consolidation Method | Air Content (%) | Bulk Density (kg/m) |
---|---|---|---|---|
M-0.4-0 | 10.5 | Rodding | 1.40 | 2426 |
M-0.4-2.5 | 14.0 | Rodding | 1.50 | 2394 |
M-0.4-5 | 8.5 | Rodding | 1.10 | 2394 |
M-0.4-10 | 3.5 | Vibration | 1.70 | 2377 |
M-0.5-0 | 4.5 | Vibration | 1.00 | 2419 |
M-0.5-2.5 | - | Rodding | 1.30 | 2374 |
M-0.5-5 | 11.0 | Rodding | 1.90 | 2377 |
M-0.5-10 | 11.0 | Rodding | 2.50 | 2347 |
Variable | Correlation Analysis | Regression Analysis | |||||
---|---|---|---|---|---|---|---|
Dependent | w/c | Independent | p-Value | rs | Coefficients | Equation | |
Compressive strength at 28 days—CS (MPa) | 0.4 | Docility— D (cm) | 0.05 | 0.8 | a = 0.0635 | CS = a(D)2 + b(D) + c | 0.595 |
b = −0.645 | |||||||
c = 14.447 | |||||||
0.5 | Air content— AC (%) | 0.05 | −0.6 | a = 10027 | CS = a(AC)2 + b(AC) + c | 0.606 | |
b = 245.32 | |||||||
c = 12.223 | |||||||
0.4 | Hazelnut shell content— HS (%) | 0.05 | −0.6 | a = 322.18 | CS = a(HS)2 + b(HS) + c | 0.366 | |
b = −72.321 | |||||||
c = 16.873 | |||||||
0.5 | 0.05 | −0.6 | a = −145.21 | CS = a(HS)2 + b(HS) + c | 0.670 | ||
b = −3.143 | |||||||
c = 13.8 | |||||||
Bending strength— TS (MPa) | 0.5 | Air content— AC (%) | 0.05 | −0.8 | a = −54.05 | TS = a(AC) + b | 0.618 |
b = 5.9968 | |||||||
Docility— D (cm) | 0.05 | −0.8 | a = −0.1362 | TS = a(AC) + b | 0.8874 | ||
b = 6.3363 | |||||||
Hazelnut shell content— HS (%) | 0.05 | −0.9 | a = 150.1 | TS = a(HS)2 + b(HS) + c | 0.8237 | ||
b = −24.163 | |||||||
c = 5.6561 |
Variable | Correlation Analysis | Regression Analysis | |||||
---|---|---|---|---|---|---|---|
Dependent | w/c | Independent | p-Value | rs | Coefficients | Equation | |
Hardened density at 7 days (for compressive strength)—HD (kg/m) | 0.4 | Hazelnut shell content —HS (%) | 0.05 | −0.8 | a = 483.8 | HD = a(HS)2 + b(HS) + c | 0.765 |
b = −654.81 | |||||||
c = 2407 | |||||||
0.5 | 0.05 | −0.8 | a = 1469.2 | HD = a(HS)2 + b(HS) + c | 0.605 | ||
b = −511.74 | |||||||
c = 2379.4 | |||||||
Hardened density at 28 days (for compressive strength)—HD (kg/m) | 0.4 | 0.05 | −0.6 | a = 6976.9 | HD = a(HS)2 + b(HS) + c | 0.520 | |
b = 360.02 | |||||||
c = 2381.4 | |||||||
0.5 | 0.05 | −0.8 | a = 224.29 | HD = a(HS)2 + b(HS) + c | 0.620 | ||
b = −493.74 | |||||||
c = 2384 | |||||||
Hardened density at 28 days (for bending tensile strength)—HD (kg/m) | 0.4 | 0.05 | −0.6 | a = 10,101 | HD = a(HS)2 + b(HS) + c | 0.639 | |
b = −1587.6 | |||||||
c = 2405 | |||||||
0.5 | 0.05 | −0.6 | a = 52,653 | HD = a(HS)2 + b(HS) + c | 0.434 | ||
b = 1364.7 | |||||||
c = 2375.2 | |||||||
Bulk density—BD (kg/m) | 0.4 | 0.05 | −0.9 | a = 5078.2 | BD = a(HS)2 + b(HS) + c | 0.908 | |
b = −964.86 | |||||||
c = 2423.3 | |||||||
0.5 | 0.05 | −0.8 | a = 5713 | BD = a(HS)2 + b(HS) + c | 0.894 | ||
b = 1230.1 | |||||||
c = 2414.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gálvez Cartagena, N.; Muñoz Araya, G.; Yanez, S.J.; González Sepúlveda, S.; Pina, J.C. Influence on Physical and Mechanical Properties of Concrete Using Crushed Hazelnut Shell. Appl. Sci. 2023, 13, 12159. https://doi.org/10.3390/app132212159
Gálvez Cartagena N, Muñoz Araya G, Yanez SJ, González Sepúlveda S, Pina JC. Influence on Physical and Mechanical Properties of Concrete Using Crushed Hazelnut Shell. Applied Sciences. 2023; 13(22):12159. https://doi.org/10.3390/app132212159
Chicago/Turabian StyleGálvez Cartagena, Nicole, Grissel Muñoz Araya, Sergio J. Yanez, Sandra González Sepúlveda, and Juan Carlos Pina. 2023. "Influence on Physical and Mechanical Properties of Concrete Using Crushed Hazelnut Shell" Applied Sciences 13, no. 22: 12159. https://doi.org/10.3390/app132212159
APA StyleGálvez Cartagena, N., Muñoz Araya, G., Yanez, S. J., González Sepúlveda, S., & Pina, J. C. (2023). Influence on Physical and Mechanical Properties of Concrete Using Crushed Hazelnut Shell. Applied Sciences, 13(22), 12159. https://doi.org/10.3390/app132212159