Experimental Study on Enhanced Phosphorus Removal Using Zirconium Oxychloride Octahydrate-Modified Efficient Phosphorus Removal Composite
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Materials
2.2. Preparation Process
2.3. Research Method
2.3.1. Comparison of Zr-EPRC Preparation Methods
- Direct modification of EPRC to prepare Zr-EPRC
- Preparation of Zr-EPRC via co-modification of adsorption substrates
- Preparation of Zr-EPRC via separate modification of adsorption substrates
- Investigation of Optimal Modification Conditions
- Determination of Optimal Loading pH
- Determination of Optimal Loading Time
2.3.2. Adsorption Isotherm Model
- Langmuir Adsorption Isotherm Model
- Freundlich Adsorption Isotherm Model:
2.3.3. Adsorption Kinetics Model
- Pseudo-Second-Order Adsorption Kinetic Model
2.3.4. Experimental Setup and Methods for Static Adsorption Phosphorus Removal Tests
- Isothermal Adsorption Experiments
- Adsorption Kinetics Experiments
- One-way Adsorption Experiments
2.3.5. Adsorption Study Methodology
- Experimental Methodology for Phosphorus Analysis
3. Results and Discussion
3.1. Comparison of Zr-EPRC Preparation Methods
3.1.1. Comparison of Modification Methods
3.1.2. Determination of Optimum Loads
3.1.3. Selection of Optimum Loading pH
3.1.4. Determination of Optimum Load Time
3.2. Characterization of Zr-EPRC
3.2.1. Scanning Electron Microscopy (SEM)
3.2.2. Energy-Dispersive X-ray Spectroscopy (EDS)
3.2.3. Brunauer–Emmett–Teller (BET) Analysis
3.2.4. Comparison with EPRC
3.3. Characteristics of Zr-EPRC Particles for Phosphorus Removal via Static Adsorption
3.3.1. Isothermal Adsorption Experiments
3.3.2. Adsorption Kinetics
- Adsorption kinetics at different initial concentrations
- Adsorption kinetics at different initial temperatures
3.3.3. Single Impact Factor Adsorption Experiments
- Dosing
- pH
- Co-existing anions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Le Moal, M.; Gascuel-Odoux, C.; Menesguen, A.; Souchon, Y.; Etrillard, C.; Levain, A.; Moatar, F.; Pannard, A.; Souchu, P.; Lefebvre, A.; et al. Eutrophication: A new wine in an old bottle? Sci. Total Environ. 2019, 651, 1–11. [Google Scholar] [CrossRef]
- Li, Y.; Shang, J.H.; Zhang, C.; Zhang, W.L.; Niu, L.H.; Wang, L.F.; Zhang, H.J. The role of freshwater eutrophication in greenhouse gas emissions: A review. Sci. Total Environ. 2021, 768, 144582. [Google Scholar] [CrossRef] [PubMed]
- Beaulieu, J.J.; DelSontro, T.; Downing, J.A. Eutrophication will increase methane emissions from lakes and impoundments during the 21st century. Nat. Commun. 2019, 10, 1375. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, M.X.; Dong, J.F.; Yang, H.; Van Zwieten, L.; Lu, H.; Alshameri, A.; Zhan, Z.H.; Chen, X.; Jiang, X.D.; et al. A Critical Review of Methods for Analyzing Freshwater Eutrophication. Water 2021, 13, 225. [Google Scholar] [CrossRef]
- Gilbert, P.M. Eutrophication, harmful algae and biodiversity—Challenging paradigms in a world of complex nutrient changes. Mar. Pollut. Bull. 2017, 124, 591–606. [Google Scholar] [CrossRef] [PubMed]
- Andersen, J.H.; Carstensen, J.; Conley, D.J.; Dromph, K.; Fleming-Lehtinen, V.; Gustafsson, B.G.; Josefson, A.B.; Norkko, A.; Villnas, A.; Murray, C. Long-term temporal and spatial trends in eutrophication status of the Baltic Sea. Biol. Rev. Camb. Philos. Soc. 2017, 92, 135–149. [Google Scholar] [CrossRef]
- Sinha, E.; Michalak, A.M.; Balaji, V. Eutrophication will increase during the 21st century as a result of precipitation changes. Science 2017, 357, 405–408. [Google Scholar] [CrossRef] [PubMed]
- Carpenter, S.R. Phosphorus control is critical to mitigating eutrophication. Proc. Natl. Acad. Sci. USA 2008, 105, 11039–11040. [Google Scholar] [CrossRef]
- Edmondson, W.T.; Anderson, G.C.; Peterson, D.R. Artificial eutrophication of lake washington. Limnol. Oceanogr. 1956, 1, 47–53. [Google Scholar] [CrossRef]
- Tong, Y.; Zhang, W.; Wang, X.; Couture, R.-M.; Larssen, T.; Zhao, Y.; Li, J.; Liang, H.; Liu, X.; Bu, X. Decline in Chinese lake phosphorus concentration accompanied by shift in sources since 2006. Nat. Geosci. 2017, 10, 507–511. [Google Scholar] [CrossRef]
- Xu, H.; Paerl, H.W.; Qin, B.; Zhu, G.; Gaoa, G. Nitrogen and phosphorus inputs control phytoplankton growth in eutrophic Lake Taihu, China. Limnol. Oceanogr. 2010, 55, 420–432. [Google Scholar] [CrossRef]
- Weiss, C.M. Relation of phosphates to eutrophication. J. Am. Water Work. Assoc. 1969, 61, 387–391. [Google Scholar] [CrossRef]
- De-Bashan, L.E.; Bashan, Y. Recent advances in removing phosphorus from wastewater and its future use as fertilizer (1997–2003). Water Res. 2004, 38, 4222–4246. [Google Scholar] [CrossRef] [PubMed]
- Di Capua, F.; de Sario, S.; Ferraro, A.; Petrella, A.; Race, M.; Pirozzi, F.; Fratino, U.; Spasiano, D. Phosphorous removal and recovery from urban wastewater: Current practices and new directions. Sci. Total Environ. 2022, 823, 153750. [Google Scholar] [CrossRef]
- Loganathan, P.; Vigneswaran, S.; Kandasamy, J.; Bolan, N.S. Removal and recovery of phosphate from water using sorption. Crit. Rev. Environ. Sci. Technol. 2014, 44, 847–907. [Google Scholar] [CrossRef]
- Zhang, C.C.; Guisasola, A.; Baeza, J.A. A review on the integration of mainstream P-recovery strategies with enhanced biological phosphorus removal. Water Res. 2022, 212, 118102. [Google Scholar] [CrossRef]
- Li, Y.J.; He, X.M.; Hu, H.M.; Zhang, T.T.; Qu, J.; Zhang, Q.W. Enhanced phosphate removal from wastewater by using in situ generated fresh trivalent Fe composition through the interaction of Fe(II) on CaCO3. J. Environ. Manag. 2018, 221, 38–44. [Google Scholar] [CrossRef]
- Mitrogiannis, D.; Psychoyou, M.; Baziotis, I.; Inglezakis, V.J.; Koukouzas, N.; Tsoukalas, N.; Palles, D.; Kamitsos, E.; Oikonomou, G.; Markou, G. Removal of phosphate from aqueous solutions by adsorption onto Ca(OH)(2) treated natural clinoptilolite. Chem. Eng. J. 2017, 320, 510–522. [Google Scholar] [CrossRef]
- Mikhak, A.; Sohrabi, A.; Kassaee, M.Z.; Feizian, M.; Disfani, M.N. Removal of Nitrate and Phosphate from Water by Clinoptilolite-Supported Iron Hydroxide Nanoparticle. Arab. J. Sci. Eng. 2017, 42, 2433–2439. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, L.M.; Singh, R.P. Enhanced Phosphorus Removal from Wastewater Using RSPRC and a Novel Reactor. Appl. Sci. 2020, 10, 3629. [Google Scholar] [CrossRef]
- Chmielewská, E.; Hodossyová, R. Removal of phosphate from aqueous solutions. Kinetics, thermodynamics and isotherm calculations. Fresenius Environ. Bull. 2013, 22, 598–603. [Google Scholar]
- Lakshmi, V.; Resmi, V.G.; Raju, A.; Deepa, J.P.; Rajan, T.P.D.; Pavithran, C.; Pai, B.C. Concentration dependent pore morphological tuning of kaolin clay foams using sodium dodecyl sulfate as foaming agent. Ceram. Int. 2015, 41, 14263–14269. [Google Scholar] [CrossRef]
- Jiang, C.; Jia, L.Y.; He, Y.L.; Zhang, B.; Kirumba, G.; Xie, J. Adsorptive removal of phosphorus from aqueous solution using sponge iron and zeolite. J. Colloid Interface Sci. 2013, 402, 246–252. [Google Scholar] [CrossRef] [PubMed]
- Foo, K.Y.; Hameed, B.H. Insights into the modeling of adsorption isotherm systems. Chem. Eng. J. 2010, 156, 2–10. [Google Scholar] [CrossRef]
- Krishna, R.H.; Swamy, A. Physico-Chemical Key Parameters, Langmuir and Freundlich isotherm and Lagergren Rate Constant Studies on the removal of divalent nickel from the aqueous solutions onto powder of calcined brick. Int. J. Eng. Res. Dev 2012, 4, 29–38. [Google Scholar]
- Chung, H.-K.; Kim, W.-H.; Park, J.; Cho, J.; Jeong, T.-Y.; Park, P.-K. Application of Langmuir and Freundlich isotherms to predict adsorbate removal efficiency or required amount of adsorbent. J. Ind. Eng. Chem. 2015, 28, 241–246. [Google Scholar] [CrossRef]
Name of Material | Density (g/cm3) | Specific Surface Area (cm2/g) | Grain Size | Color |
---|---|---|---|---|
steel slag | 2.10 | 3633 | 70 mesh and above | sepia |
coal ash | 2.91 | 580 | 100 mesh and above | pessimistic |
Chemical Composition | Steel Slag | Coal Ash |
---|---|---|
CaO | 55.0 | 1.31 |
Fe2O3 | 21.5 | 4.39 |
Al2O3 | 1.51 | 45.9 |
SiO2 | 13.4 | 44.4 |
MgO | 3.65 | 0.261 |
MnO | 1.72 | 260 ppm |
SO3 | 0.512 | 0.666 |
V2O5 | 0.417 | 0.380 ppm |
TiO2 | 0.296 | 1.26 |
Na2O | 770 ppm | 940 ppm |
ZnO | 210 ppm | |
CuO | 200 ppm |
Steel slag particle size range/mesh | <12 | 12–80 | 80–320 | >320 | |
Proportion/per cent | 2.49 | 7.68 | 32.40 | 57.36 | |
Fly ash particle size range/mesh | <6 | 6–18 | 18–45 | 45–70 | >70 |
Proportion/per cent | 7.45 | 12.76 | 42.93 | 23.55 | 11.87 |
Name of Material | SiO2 | CaO | Al2O3 | Fe2O3 | MgO | SO3 |
---|---|---|---|---|---|---|
Clinker | 20.86 | 56.77 | 5.90 | 3.61 | 3.50 | 2.43 |
Groups | Residual Liquid State | Material State after Adsorption |
---|---|---|
Former EPRC | limpid | No anomalies |
No. 1 Zr-EPRC | limpid | No anomalies |
No. 2 Zr-EPRC | slight precipitation, turbidity | Chalking, surface peeling |
No. 3 Zr-EPRC | limpid | No anomalies |
Material | Specific Surface Area (m²/g) | Pore Volume (cm³/g) | Average Pore Diameter (nm) | Adsorption Capacity (mg/g) (25 °C) |
---|---|---|---|---|
Zr-EPRC | 39.154 | 0.142 | 3.924 | 12.550 |
EPRC | 3.150 | - | 1.250 | 3.180 |
Temp (°C) | Langmuir | Freundlich | ||||
---|---|---|---|---|---|---|
KL | Qm | RL2 | KF | 1/n | RF2 | |
15 | 0.0082 | 11.833 | 0.993 | 0.661 | 0.495 | 0.974 |
25 | 0.0088 | 12.550 | 0.993 | 0.487 | 0.523 | 0.976 |
35 | 0.0112 | 13.462 | 0.996 | 0.425 | 0.533 | 0.983 |
Initial Concentration (mg/L) | qe, exp (mg/g) | Pseudo-First-Order Kinetics | Pseudo-Second-Order Kinetics | ||||
---|---|---|---|---|---|---|---|
qe (mg/g) | k1 | R12 | qe (mg/g) | k2 | R22 | ||
5 | 0.392 | 0.383 | 0.112 | 0.981 | 0.446 | 0.298 | 0.990 |
10 | 0.675 | 0.660 | 0.098 | 0.987 | 0.787 | 0.138 | 0.991 |
15 | 0.991 | 0.956 | 0.092 | 0.970 | 1.151 | 0.090 | 0.990 |
20 | 1.335 | 1.293 | 0.113 | 0.986 | 1.511 | 0.087 | 0.994 |
Initial Temperature (°C) | Initial Concentration (mg/L) | Pseudo-First-Order Kinetics | Pseudo-Second-Order Kinetics | ||||
---|---|---|---|---|---|---|---|
qe (mg/g) | k1 | R12 | qe (mg/g) | k2 | R22 | ||
15 | 20 | 1.092 | 0.158 | 0.963 | 1.236 | 0.163 | 0.992 |
25 | 20 | 1.219 | 0.169 | 0.958 | 1.370 | 0.161 | 0.992 |
35 | 20 | 1.262 | 0.222 | 0.962 | 1.402 | 0.211 | 0.993 |
Dosage (g) | Initial Concentration (mg/L) | Residual Concentration (mg/L) | Unit adsorption Capacity (g) | Removal Rate (Percent) |
---|---|---|---|---|
0.5 g | 5 | 1.397 | 1.441 | 72.06 |
1.0 g | 5 | 0.851 | 0.830 | 82.99 |
1.5 g | 5 | 0.304 | 0.626 | 93.92 |
2.0 g | 5 | 0.184 | 0.482 | 96.32 |
2.5 g | 5 | 0.162 | 0.387 | 96.76 |
3.0 g | 5 | 0.118 | 0.325 | 97.63 |
3.5 g | 5 | 0.075 | 0.281 | 98.51 |
4.0 g | 5 | 0.053 | 0.247 | 98.94 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Su, J. Experimental Study on Enhanced Phosphorus Removal Using Zirconium Oxychloride Octahydrate-Modified Efficient Phosphorus Removal Composite. Appl. Sci. 2023, 13, 12578. https://doi.org/10.3390/app132312578
Liu Y, Su J. Experimental Study on Enhanced Phosphorus Removal Using Zirconium Oxychloride Octahydrate-Modified Efficient Phosphorus Removal Composite. Applied Sciences. 2023; 13(23):12578. https://doi.org/10.3390/app132312578
Chicago/Turabian StyleLiu, Yan, and Junjun Su. 2023. "Experimental Study on Enhanced Phosphorus Removal Using Zirconium Oxychloride Octahydrate-Modified Efficient Phosphorus Removal Composite" Applied Sciences 13, no. 23: 12578. https://doi.org/10.3390/app132312578
APA StyleLiu, Y., & Su, J. (2023). Experimental Study on Enhanced Phosphorus Removal Using Zirconium Oxychloride Octahydrate-Modified Efficient Phosphorus Removal Composite. Applied Sciences, 13(23), 12578. https://doi.org/10.3390/app132312578