Statistical Validation of a Physical Prime Random Number Generator Based on Quantum Noise †
Abstract
:1. Introduction
2. Materials and Methods
2.1. QRNG Implementation
2.2. Prime-Searching Algorithm
3. Results and Discussion
3.1. Noise Characterization
3.2. Figures of Merit
3.3. Statistical Validation
3.4. Length-Agnostic Statistical Validation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Statistical Validation
Appendix B. Results from NIST’s Statistical Test Suite
Statistical Test | Uniformized CS | Quantum QS | ||||
---|---|---|---|---|---|---|
p-Value | Proportion | Result | p-Value | Proportion | Result | |
Frequency | 0.000000 | 0/100 | FAILED | 0.000000 | 0/100 | FAILED |
BlockFrequency | 0.000000 | 76/100 | FAILED | 0.000000 | 93/100 | FAILED |
CumulativeSums | 0.000000 | 0/100 | FAILED | 0.000000 | 0/100 | FAILED |
Runs | 0.000000 | 0/100 | FAILED | 0.000000 | 0/100 | FAILED |
LongestRun | 0.010988 | 97/100 | PASSED | 0.000082 | 93/100 | FAILED |
Rank | 0.304126 | 99/100 | PASSED | 0.262249 | 99/100 | PASSED |
FFT | 0.262249 | 98/100 | PASSED | 0.028817 | 100/100 | PASSED |
NonOverlappingTemplate | 0.000000 | 31/100 | FAILED | 0.000000 | 73/100 | FAILED |
OverlappingTemplate | 0.000000 | 57/100 | FAILED | 0.000000 | 81/100 | FAILED |
Universal | 0.319084 | 98/100 | PASSED | 0.304126 | 98/100 | PASSED |
Approximate entropy | 0.000000 | 3/100 | FAILED | 0.000000 | 90/100 | FAILED |
Serial | 0.500000 | 92/100 | FAILED | 0.704474 | 100/100 | PASSED |
LinearComplexity | 0.319084 | 98/100 | PASSED | 0.319084 | 99/100 | PASSED |
References
- Rukhin, A.; Soto, J.; Nechvatal, J.; Smid, M.; Barker, E.; Leigh, S.; Levenson, M.; Vangel, M.; Banks, D.; Heckert, A.; et al. A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications. In NIST Special Publication 800-22; National Institute of Standards and Technology (NIST): Gaithersburg, MD, USA, 2010. [Google Scholar] [CrossRef]
- Herrero-Collantes, M.; Garcia-Escartin, J.C. Quantum random number generators. Rev. Mod. Phys. 2017, 89, 015004. [Google Scholar] [CrossRef]
- Chen, L.; Moody, D.; Regenscheid, A.; Robinson, A. Digital Signature Standard (DSS); National Institute of Standards and Technology: Gaithersburg, MD, USA, 2023. [Google Scholar] [CrossRef]
- Richard Crandall, C.B.P. Prime Numbers: A Computational Perspective, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Sonmez, M.; Barker, E.; Kelsey, J.; McKay, K.; Baish, M.; Boyle, M. Recommendation for the Entropy Sources Used for Random Bit Generation; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2018. [Google Scholar] [CrossRef]
- Markowsky, G. The Sad History of Random Bits. J. Cyber Secur. Mobil. 2014, 3, 1–24. [Google Scholar] [CrossRef]
- Bouda, J.; Pivoluska, M.; Plesch, M.; Wilmott, C. Weak randomness seriously limits the security of quantum key distribution. Phys. Rev. A 2012, 86, 062308. [Google Scholar] [CrossRef]
- Pirandola, S.; Andersen, U.L.; Banchi, L.; Berta, M.; Bunandar, D.; Colbeck, R.; Englund, D.; Gehring, T.; Lupo, C.; Ottaviani, C.; et al. Advances in quantum cryptography. Adv. Opt. Photon. 2020, 12, 1012–1236. [Google Scholar] [CrossRef]
- Kelsey, J.; Schneier, B.; Wagner, D.; Hall, C. Cryptanalytic Attacks on Pseudorandom Number Generators. In Proceedings of the Fast Software Encryption, Paris, France, 23–25 March 1998; pp. 168–188. [Google Scholar]
- Melià-Seguí, J.; Garcia-Alfaro, J.; Herrera-Joancomartí, J. A Practical Implementation Attack on Weak Pseudorandom Number Generator Designs for EPC Gen2 Tags. Wirel. Pers. Commun. 2011, 59, 27–42. [Google Scholar] [CrossRef]
- Truong, N.D.; Haw, J.Y.; Assad, S.M.; Lam, P.K.; Kavehei, O. Machine Learning Cryptanalysis of a Quantum Random Number Generator. IEEE Trans. Inf. Forensics Secur. 2019, 14, 403–414. [Google Scholar] [CrossRef]
- Bernstein, D.J.; Lange, T.; Niederhagen, R. Dual EC: A standardized back door. In The New Codebreakers: Essays Dedicated to David Kahn on the Occasion of His 85th Birthday; Springer: Berlin/Heidelberg, Germany, 2016; pp. 256–281. [Google Scholar]
- Hastings, M.; Fried, J.; Heninger, N. Weak keys remain widespread in network devices. In Proceedings of the 2016 Internet Measurement Conference, Santa Monica, CA, USA, 14–16 November 2016; pp. 49–63. [Google Scholar]
- Gong, L.; Zhang, J.; Liu, H.; Sang, L.; Wang, Y. True Random Number Generators Using Electrical Noise. IEEE Access 2019, 7, 125796–125805. [Google Scholar] [CrossRef]
- Marangon, D.G.; Vallone, G.; Villoresi, P. Random bits, true and unbiased, from atmospheric turbulence. Sci. Rep. 2014, 4, 5490. [Google Scholar] [CrossRef]
- Hsueh, J.C.; Chen, V.H.C. An ultra-low voltage chaos-based true random number generator for IoT applications. Microelectron. J. 2019, 87, 55–64. [Google Scholar] [CrossRef]
- Kollmitzer, C.; Schauer, S.; Rass, S.; Rainer, B. (Eds.) Quantum Random Number Generation Theory and Practice: Theory and Practice; Springer International Publishing: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Ma, X.; Xu, F.; Xu, H.; Tan, X.; Qi, B.; Lo, H.K. Postprocessing for quantum random-number generators: Entropy evaluation and randomness extraction. Phys. Rev. A 2013, 87, 062327. [Google Scholar] [CrossRef]
- Guo, Y.; Cai, Q.; Li, P.; Jia, Z.; Xu, B.; Zhang, Q.; Zhang, Y.; Zhang, R.; Gao, Z.; Shore, K.A.; et al. 40 Gb/s quantum random number generation based on optically sampled amplified spontaneous emission. APL Photonics 2021, 6, 066105. [Google Scholar] [CrossRef]
- Martin, A.; Sanguinetti, B.; Lim, C.C.W.; Houlmann, R.; Zbinden, H. Quantum Random Number Generation for 1.25-GHz Quantum Key Distribution Systems. J. Light. Technol. 2015, 33, 2855–2859. [Google Scholar] [CrossRef]
- Huang, M.; Chen, Z.; Zhang, Y.; Guo, H. A Phase Fluctuation Based Practical Quantum Random Number Generator Scheme with Delay-Free Structure. Appl. Sci. 2020, 10, 2431. [Google Scholar] [CrossRef]
- Avesani, M.; Marangon, D.G.; Vallone, G.; Villoresi, P. Secure heterodyne-based quantum random number generator at 17 Gbps. Nat. Commun. 2018, 9, 1–8. [Google Scholar] [CrossRef]
- Nie, Y.Q.; Zhang, H.F.; Zhang, Z.; Wang, J.; Ma, X.; Zhang, J.; Pan, J.W. Practical and fast quantum random number generation based on photon arrival time relative to external reference. Appl. Phys. Lett. 2014, 104, 051110. [Google Scholar] [CrossRef]
- Wahl, M.; Leifgen, M.; Berlin, M.; Röhlicke, T.; Rahn, H.J.; Benson, O. An ultrafast quantum random number generator with provably bounded output bias based on photon arrival time measurements. Appl. Phys. Lett. 2011, 98, 171105. [Google Scholar] [CrossRef]
- Gehring, T.; Lupo, C.; Kordts, A.; Solar Nikolic, D.; Jain, N.; Rydberg, T.; Pedersen, T.; Pirandola, S.; Andersen, U. Homodyne-based quantum random number generator at 2.9 Gbps secure against quantum side-information. Nat. Commun. 2021, 12, 605. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Cheng, C.; Wu, M.; Gao, Q.; Li, P.; Guo, Y. Parallel real-time quantum random number generator. Opt. Lett. 2019, 44, 5566–5569. [Google Scholar] [CrossRef]
- Huang, W.; Zhang, Y.; Zheng, Z.; Li, Y.; Xu, B.; Yu, S. Practical security analysis of a continuous-variable quantum random-number generator with a noisy local oscillator. Phys. Rev. A 2020, 102, 012422. [Google Scholar] [CrossRef]
- Bruynsteen, C.; Gehring, T.; Lupo, C.; Bauwelinck, J.; Yin, X. 100-Gbit/s Integrated Quantum Random Number Generator Based on Vacuum Fluctuations. PRX Quantum 2023, 4, 010330. [Google Scholar] [CrossRef]
- Gabriel, C.; Wittmann, C.; Sych, D.; Dong, R.; Mauerer, W.; Andersen, U.L.; Marquardt, C.; Leuchs, G. A generator for unique quantum random numbers based on vacuum states. Nat. Photonics 2010, 4, 711–715. [Google Scholar] [CrossRef]
- Bai, B.; Huang, J.; Qiao, G.R.; Nie, Y.Q.; Tang, W.; Chu, T.; Zhang, J.; Pan, J.W. 18.8 Gbps real-time quantum random number generator with a photonic integrated chip. Appl. Phys. Lett. 2021, 118, 264001. [Google Scholar] [CrossRef]
- Ferreira, M.J.; Silva, N.A.; Pinto, A.N.; Muga, N.J. Characterization of a Quantum Random Number Generator Based on Vacuum Fluctuations. Appl. Sci. 2021, 11, 7413. [Google Scholar] [CrossRef]
- Liu, Y.; Yuan, X.; Li, M.H.; Zhang, W.; Zhao, Q.; Zhong, J.; Cao, Y.; Li, Y.H.; Chen, L.K.; Li, H.; et al. High-Speed Device-Independent Quantum Random Number Generation without a Detection Loophole. Phys. Rev. Lett. 2018, 120, 010503. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Fei, Y.; Wang, W.; Meng, X.; Wang, H.; Duan, Q.; Ma, Z. Analysis of the effects of temperature increase on quantum random number generator. Eur. Phys. J. D 2021, 75, 69. [Google Scholar] [CrossRef]
- Ferreira, M.J.; Carvalho, A.; Silva, N.A.; Pinto, A.N.; Muga, N.J. Probable Prime Generation from a Quantum Randomness Source. In Proceedings of the 2023 23rd International Conference on Transparent Optical Networks (ICTON), Bucharest, Romania, 2–6 July 2023; pp. 1–4. [Google Scholar] [CrossRef]
- Clavier, C.; Feix, B.; Thierry, L.; Paillier, P. Generating Provable Primes Efficiently on Embedded Devices. In Proceedings of the 15th International Conference on Practice and Theory in Public Key Cryptography, Darmstadt, Germany, 21–23 May 2012; pp. 372–389. [Google Scholar]
- Shen, Y.; Tian, L.; Zou, H. Practical quantum random number generator based on measuring the shot noise of vacuum states. Phys. Rev. A 2010, 81, 063814. [Google Scholar] [CrossRef]
- Haw, J.Y.; Assad, S.M.; Lance, A.M.; Ng, N.H.Y.; Sharma, V.; Lam, P.K.; Symul, T. Maximization of Extractable Randomness in a Quantum Random-Number Generator. Phys. Rev. Appl. 2015, 3, 054004. [Google Scholar] [CrossRef]
- Dusart, P. Autour de la Fonction qui Compte le Nombre de Nombres Premiers. Ph.D. Thesis, Université de Limoges, Limoges, France, 1998. [Google Scholar]
- Axler, C. New Estimates for the nth Prime Number. J. Integer Seq. 2019, 22, 3. [Google Scholar]
Prime Length (Bit) | QS (CS) | Uniformized CS (CS) | Uniformized QS (CS) | Uniformized QS (Uniformized CS) |
---|---|---|---|---|
32 | 890.7 | 837.1 | 8749.0 | 844.3 |
64 | 53.7 | 33.4 | 54.0 | 15.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferreira, M.J.; Silva, N.A.; Pinto, A.N.; Muga, N.J. Statistical Validation of a Physical Prime Random Number Generator Based on Quantum Noise. Appl. Sci. 2023, 13, 12619. https://doi.org/10.3390/app132312619
Ferreira MJ, Silva NA, Pinto AN, Muga NJ. Statistical Validation of a Physical Prime Random Number Generator Based on Quantum Noise. Applied Sciences. 2023; 13(23):12619. https://doi.org/10.3390/app132312619
Chicago/Turabian StyleFerreira, Maurício J., Nuno A. Silva, Armando N. Pinto, and Nelson J. Muga. 2023. "Statistical Validation of a Physical Prime Random Number Generator Based on Quantum Noise" Applied Sciences 13, no. 23: 12619. https://doi.org/10.3390/app132312619
APA StyleFerreira, M. J., Silva, N. A., Pinto, A. N., & Muga, N. J. (2023). Statistical Validation of a Physical Prime Random Number Generator Based on Quantum Noise. Applied Sciences, 13(23), 12619. https://doi.org/10.3390/app132312619