Characterization of Bending Strength in Similar and Dissimilar Carbon-Fiber-Reinforced Polymer/Aluminum Single-Lap Adhesive Joints
Abstract
:1. Introduction
2. Experimental Procedure
2.1. Materials
2.1.1. Adhesive
2.1.2. Adherends
- Metallic adherend
- Composite adherend
Property | Value |
---|---|
Young’s modulus, E (MPa) | 1850 |
Poisson’s ratio, | 0.33 |
Tensile yield strength, (MPa) | 12.63 |
Tensile strength, (MPa) | 21.63 |
Tensile failure strain, (%) | 4.77 |
Shear modulus, G (MPa) | 700 |
Shear yield strength, (MPa) | 14.6 |
Shear strength, (MPa) | 17.9 |
Shear failure strain, (%) | 43.9 |
Fracture toughness in tension, (N/mm) | 0.43 |
Fracture toughness in shear, (N/mm) | 4.77 |
Property | Value |
---|---|
Young’s modulus, E (GPa) | 68.9 |
Poisson’s ratio, | 0.33 |
Tensile yield strength, (MPa) | 276 |
Tensile ultimate strength, (MPa) | 310 |
Rapture strain, (%) | 17 |
Property | Value |
---|---|
Fiber direction Young’s modulus, (GPa) | 109 |
Perpendicular to the fiber direction Young’s modulus, (GPa) | 92 |
Poisson’s ratio, | 0.037 |
Shear modulus, (GPa) | 8.5 |
Shear modulus, (GPa) | 7.3 |
2.2. Specimen Geometry
2.3. Specimen Fabrication
2.4. Test Procedure
3. Results and Discussion
4. Conclusions
- (1)
- The strength of single-lap joints under three-point bending was related to the type of adherend materials, so that the materials with lower stiffness (polymeric composites) provide better joint strength compared with materials of greater stiffness (metallic materials).
- (2)
- A CFRP/CFRP single-lap adhesive joint exhibits significantly higher joint strength in comparison to an aluminum/aluminum single-lap adhesive joint under three-point bending. This distinction highlights the superior performance and load-bearing capacity of the CFRP/CFRP joint configuration, making it an advantageous choice for applications requiring robust structural integrity and durability.
- (3)
- In the context of a single-lap adhesive joint under three-point bending, it is important to note that the regions located below the neutral axis are subjected to tensile stress. Conversely, the areas situated above the neutral axis experience compressive stress. This stress distribution is a critical consideration in the analysis of joint behavior under three-point bending loading conditions, as it directly influences the structural response and integrity of the adhesive bond.
- (4)
- The strength of dissimilar CFRP/aluminum single-lap joints is usually linked to the placement of the adherends, whether they are positioned at the top or bottom of the joint structure. Notably, when the CFRP adherend is situated at the bottom, it imparts significantly greater joint strength and deformation compared to situations where the aluminum adherend is placed at the bottom. This observation underscores the critical role that adherend positioning plays in determining the overall load-bearing capacity and performance of these joints under three-point bending.
- (5)
- In addition to its superior bending strength, the CFRP/CFRP joint configuration also displayed the largest displacement at failure, surpassing the aluminum/aluminum single-lap adhesive joints by 167%.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shishesaz, M.; Ghamarian, A.H.; Moradi, S. Stress distribution in laminated composite tubular joints with damaged adhesive layer under torsion. J. Adhes. 2023, 99, 930–971. [Google Scholar] [CrossRef]
- Liu, J.; Guo, T.; Hebdon, M.H.; Liu, Z.; Wang, L. Bonding Behaviors of GFRP/Steel Bonded Joints after Wet–Dry Cyclic and Hygrothermal Curing. Appl. Sci. 2020, 10, 5411. [Google Scholar] [CrossRef]
- Barile, C.; Casavola, C.; Moramarco, V.; Pappalettere, C.; Vimalathithan, P.K. Bonding Characteristics of Single- and Joggled-Lap CFRP Specimens: Mechanical and Acoustic Investigations. Appl. Sci. 2020, 10, 1782. [Google Scholar] [CrossRef]
- Tan, W.; Na, J.X.; Zhou, Z.F. Effect of temperature and humidity on the creep and aging behavior of adhesive joints under static loads. J. Adhes. 2023, 99, 672–690. [Google Scholar] [CrossRef]
- Marannano, G.; Zuccarello, B. Numerical experimental analysis of hybrid double lap aluminum-CFRP joints. Compos. Part B Eng. 2015, 71, 28–39. [Google Scholar] [CrossRef]
- Maggiore, S.; Banea, M.D.; Stagnaro, P.; Luciano, G. A review of structural adhesive joints in hybrid joining processes. Polymers 2021, 13, 3961. [Google Scholar] [CrossRef]
- Ambroziak, A.; Korzeniowski, M. Using resistance spot welding for joining aluminium elements in automotive industry. Arch. Civ. Mech. Eng. 2010, 10, 5–13. [Google Scholar] [CrossRef]
- Pouranvari, M.; Marashi, S.P.H. Critical review of automotive steels spot welding: Process, structure and properties. Sci. Technol. Weld. Join. 2013, 18, 361–403. [Google Scholar] [CrossRef]
- Bidadi, J.; Miandowab, H.H.; Googarchin, H.S. Experimental and Numerical Investigation of the Performance of Automotive Adhesively Bonded Crash Box Beams Under Transverse Loading. Automot. Sci. Eng. 2023, 13, 4085–4091. [Google Scholar]
- Obayashi, K.; Kamitani, K.; Chu, C.-W.; Kawatoko, R.; Cheng, C.-H.; Takahara, A.; Kojio, K. Deformation Behavior of Polyurethane Adhesive in the Single-Lap Joint Based on the Microbeam X-ray Scattering Method. ACS Appl. Polym. Mater. 2022, 4, 5387–5394. [Google Scholar] [CrossRef]
- Chen, H.; Wang, D.; Na, J.; Chen, X.; Meng, H. Strength evaluation of polyurethane elastomeric bonded joints under extreme service conditions. Int. J. Adhes. Adhes. 2023, 123, 103344. [Google Scholar] [CrossRef]
- Bidadi, J.; Googarchin, H.S.; Akhavan-Safar, A.; da Silva, L.F.M. Loading rate effects on mixed-mode I/II fracture envelope of epoxy resins with nonlinear behavior. Theor. Appl. Fract. Mech. 2023, 125, 103858. [Google Scholar] [CrossRef]
- da Silva, L.F.M.; Neves, P.J.C.D.; Adams, R.D.; Spelt, J.K. Analytical models of adhesively bonded joints-Part I: Literature survey. Int. J. Adhes. Adhes. 2009, 29, 319–330. [Google Scholar] [CrossRef]
- Wang, R.X.; Cui, J.; Sinclair, A.N.; Spelt, J.K. Strength of adhesive joints with adherend yielding: I. Analytical model. J. Adhes. 2003, 79, 23–48. [Google Scholar] [CrossRef]
- Stein, N.; Felger, J.; Becker, W. Analytical models for functionally graded adhesive single lap joints: A comparative study. Int. J. Adhes. Adhes. 2017, 76, 70–82. [Google Scholar] [CrossRef]
- Zhang, K.; Li, L.; Duan, Y.; Li, Y. Experimental and theoretical stress analysis for an interface stress model of single-L adhesive joints between CFRP and aluminum components. Int. J. Adhes. Adhes. 2014, 50, 37–44. [Google Scholar] [CrossRef]
- Ruiz, P.D.; Jumbo, F.; Huntley, J.M.; Ashcroft, I.A.; Swallowe, G.M. Experimental and Numerical Investigation of Strain Distributions within the Adhesive Layer in Bonded Joints. Strain 2011, 47, 88–104. [Google Scholar] [CrossRef]
- Peres, L.M.C.; Arnaud, M.F.T.D.; Silva, A.F.M.V.; Icon, R.D.S.G.C.; Machado, J.J.M.; Marques, E.A.S.; Da Silva, L.F.M. Geometry and adhesive optimization of single-lap adhesive joints under impact. J. Adhes. 2022, 98, 677–703. [Google Scholar] [CrossRef]
- Lou, S.; Cheng, B.; Ren, G.; Li, Y.; Bai, X.; Chen, P. Effect of adhesive modification and surface treatment of laminates on the single lap bonding joint properties of carbon fibre composites. J. Adhes. 2023, 99, 1916–1932. [Google Scholar] [CrossRef]
- Ma, G.; Han, X.; Ying, L.; Wang, D.; Wu, C. Mechanical performance of adhesively bonded carbon fiber reinforced boron-modified phenolic resin plastic-titanium single-lap joints at high temperature. Polym. Compos. 2023. [Google Scholar] [CrossRef]
- Chen, Q.; Du, B.; Zhang, X.; Zhong, H.; Ning, C.; Bai, H.; Li, Q.; Pan, R.; Zhou, B.; Hu, H. Parametric Investigation into the Shear Strength of Adhesively Bonded Single-Lap Joints. Materials 2022, 15, 8013. [Google Scholar] [CrossRef]
- Papanicolaou, G.C.; Kontaxis, L.C.; Portan, D.V.; Petropoulos, G.N.; Valeriou, E.; Alexandropoulos, D. Mechanical Performance Enhancement of Aluminum Single-Lap Adhesive Joints Due to Organized Alumina Nanotubes Layer Formation on the Aluminum Adherends. Appl. Nano 2021, 2, 206–221. [Google Scholar] [CrossRef]
- Goland, M.; Reissner, E. The Stresses in Cemented Joints. J. Appl. Mech. Trans. ASME 1944, 11, A17–A27. [Google Scholar] [CrossRef]
- Volkersen, O. Die Nietkraftverteilung in zugbeanspruchten Nietverbindungen mit konstanten Laschenquerschnitten. Luftfahrtforschung 1938, 15, 41–47. Available online: https://cir.nii.ac.jp/crid/1570009751444198272 (accessed on 12 October 2023).
- Crocombe, A.D.; Bigwood, D.A. Development of a full elasto-plastic adhesive joint design analysis. J. Strain Anal. Eng. Des. 1992, 27, 211–218. [Google Scholar] [CrossRef]
- Mortensen, F.; Thomsen, O.T. Analysis of adhesive bonded joints: A unified approach. Compos. Sci. Technol. 2002, 62, 1011–1031. [Google Scholar] [CrossRef]
- Wu, W.; Liu, Q.; Zong, Z.; Sun, G.; Li, Q. Experimental investigation into transverse crashworthiness of CFRP adhesively bonded joints in vehicle structure. Compos. Struct. 2013, 106, 581–589. [Google Scholar] [CrossRef]
- Silva, M.R.G.; Marques, E.A.S.; da Silva, L.F.M. Behaviour under Impact of Mixed Adhesive Joints for the Automotive Industry. Lat. Am. J. Solids Struct. 2016, 13, 835–853. [Google Scholar] [CrossRef]
- Liu, J.; Sawa, T.; Toratani, H. A two-dimensional stress analysis and strength of single-lap adhesive joints of dissimilar adherends subjected to external bending moments. J. Adhes. 1999, 69, 263–291. [Google Scholar] [CrossRef]
- Özel, A.; Aydin, M.D.; Temiz, Ş. The effects of overlap length and adherend thickness on the strength of adhesively bonded joints subjected to bending moment. J. Adhes. Sci. Technol. 2004, 18, 313–325. [Google Scholar] [CrossRef]
- Aydin, M.D.; Özel, A.; Temiz, Ş. Non-linear stress and failure analyses of adhesively-bonded joints subjected to a bending moment. J. Adhes. Sci. Technol. 2004, 18, 1589–1602. [Google Scholar] [CrossRef]
- Akpinar, S.; Aydin, M.D. 3-D non-linear stress analysis on the adhesively bonded composite joint under bending moment. Int. J. Mech. Sci. 2014, 81, 149–157. [Google Scholar] [CrossRef]
- Kadioglu, F.; Demiral, M. Failure behaviour of the single lap joints of angle-plied composites under three point bending tests. J. Adhes. Sci. Technol. 2020, 34, 531–548. [Google Scholar] [CrossRef]
- Demiral, M.; Kadioglu, F. Damage Characteristics of a Step Lap Joint Exposed to Flexural Loading for Its Different Configurations. Polymers 2023, 15, 2458. [Google Scholar] [CrossRef]
- D3039/D3039M; Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials. Annual Book of ASTM Standards. ASTM International: West Conshohocken, PA, USA, 2017. Available online: http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Standard+Test+Method+for+Tensile+Properties+of+Polymer+Matrix+Composite+Materials#1 (accessed on 20 October 2023).
- D3518; Standard Test Method for In-Plane Shear Response of Polymer Matrix Composite Materials by Tensile Test of a 645° Laminate 1. Annual Book of ASTM Standards. ASTM International: West Conshohocken, PA, USA, 2007. Available online: https://www.astm.org/d3518_d3518m-13.html (accessed on 20 October 2023).
- Öz, Ö.; Özer, H. An experimental investigation on the failure loads of the mono and bi-adhesive joints. J. Adhes. Sci. Technol. 2017, 31, 2251–2270. [Google Scholar] [CrossRef]
- Grant, L.D.R.; Adams, R.D.; da Silva, L.F.M. Effect of the temperature on the strength of adhesively bonded single lap and T joints for the automotive industry. Int. J. Adhes. Adhes. 2009, 29, 535–542. [Google Scholar] [CrossRef]
Top/Bottom Adherend Materials | Average Peak Load (N) | Maximum Bending Moment at the Edge of the Overlap (N m) | Displacement at Peak Load (mm) |
---|---|---|---|
Aluminum/Aluminum | 125.1 ± 7.9 | 7.5 | 4.5 ± 0.3 |
CFRP/CFRP | 242.8 ± 18.2 | 14.5 | 12 ± 1.3 |
CFRP/Aluminum | 147.2 ± 17.7 | 8.8 | 5.2 ± 0.9 |
Aluminum/CFRP | 154.5 ± 19.1 | 9.25 | 8 ± 1.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bidadi, J.; Saeidi Googarchin, H.; Akhavan-Safar, A.; Carbas, R.J.C.; da Silva, L.F.M. Characterization of Bending Strength in Similar and Dissimilar Carbon-Fiber-Reinforced Polymer/Aluminum Single-Lap Adhesive Joints. Appl. Sci. 2023, 13, 12879. https://doi.org/10.3390/app132312879
Bidadi J, Saeidi Googarchin H, Akhavan-Safar A, Carbas RJC, da Silva LFM. Characterization of Bending Strength in Similar and Dissimilar Carbon-Fiber-Reinforced Polymer/Aluminum Single-Lap Adhesive Joints. Applied Sciences. 2023; 13(23):12879. https://doi.org/10.3390/app132312879
Chicago/Turabian StyleBidadi, Jamal, Hamed Saeidi Googarchin, Alireza Akhavan-Safar, Ricardo J. C. Carbas, and Lucas F. M. da Silva. 2023. "Characterization of Bending Strength in Similar and Dissimilar Carbon-Fiber-Reinforced Polymer/Aluminum Single-Lap Adhesive Joints" Applied Sciences 13, no. 23: 12879. https://doi.org/10.3390/app132312879
APA StyleBidadi, J., Saeidi Googarchin, H., Akhavan-Safar, A., Carbas, R. J. C., & da Silva, L. F. M. (2023). Characterization of Bending Strength in Similar and Dissimilar Carbon-Fiber-Reinforced Polymer/Aluminum Single-Lap Adhesive Joints. Applied Sciences, 13(23), 12879. https://doi.org/10.3390/app132312879