Evolutionary Algorithm to Optimize Process Parameters of Al/Steel Magnetic Pulse Welding
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design of the Experiment
2.2. Experimental Procedure
2.3. Results and Discussion
2.3.1. Effects of Process Parameters
2.3.2. Optimization of Process Parameters
- (1)
- Optimization by ICA
- (2)
- Optimization by GA
- (3)
- Comparison of optimization by ICA and GA
3. Conclusions
- (1)
- The maximum load and weld length of Al/Steel joints varied under different welding conditions, as determined by CCD. In all cases, the maximum load was measured, but there were five cases in which no weld zone was observed, indicating a separation between Al tube and the steel rod during cutting. From these results, selected MPW process parameters were found to be closely related to joint quality.
- (2)
- Based on the experimental results, prediction models for maximum load and weld length were developed using RSM. The developed prediction models showed high coefficients of determination (R2) of 96.02% and 95.81% for maximum load and weld length, respectively. The deviation between actual response values and predicted values was less than 10%, indicating reasonable agreement between the developed prediction models and the experimental results.
- (3)
- The peak current was discovered to be a crucial factor in enhancing joint quality, specifically in relation to maximum load and weld length, contributing over 48% to the overall quality. Increasing the peak current and frequency improved the quality because the peak current is closely related to the generation of the Lorentz force needed for the collision of workpieces during MPW.
- (4)
- Optimization was performed using ICA and GA as evolutionary algorithms to select the optimal process parameters. Results from the proposed ICA and GA showed that ICA performed at a slightly faster rate and yielded higher-quality results than GA. This indicates that the evolutionary algorithm was useful for optimizing the MPW process parameters.
- (5)
- The optimal process parameters selected using ICA were verified through a verification test. The maximum load and weld length of the Al/Steel MPW joint were measured and found to be 2.139 kN and 0.8 mm, respectively. These results showed good agreement between the ICA-predicted and experimentally-obtained maximum values of load and weld length, confirming that ICA is an effective and useful method for finding optimal process parameters.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shim, J.Y.; Kim, I.S.; Kang, M.J.; Kim, I.J.; Lee, K.J.; Kang, B.Y. Joining of aluminum to steel pipe by magnetic pulse welding. Mater. Trans. 2011, 52–55, 999–1002. [Google Scholar] [CrossRef]
- Kayode, O.; Akinlabi, E.T. An overview on joining of aluminum and magnesium alloys using friction stir welding (FSW) for automotive lightweight applications. Mater. Res. Express. 2019, 6–11, 112005. [Google Scholar] [CrossRef]
- Zhao, D.; Liu, F.; Tan, Y.B.; Shi, W.; Xiang, S. Improving the strength-ductility synergy and corrosion resistance of Inconel 718/316L dissimilar laser beam welding joint via post-weld heat treatment. J. Mater. Res. Technol. 2023, 26, 71–87. [Google Scholar] [CrossRef]
- Chen, L.; Wang, C.; Zhang, X.; Mi, G. Effect of parameters on microstructure and mechanical property of dissimilar joints between 316L stainless steel and GH909 alloy by laser welding. J. Manuf. Process. 2021, 65, 60. [Google Scholar] [CrossRef]
- Pan, B.; Sun, H.; Shang, S.L.; Banu, M.; Wang, P.C.; Carlson, B.E.; Liu, Z.K.; Li, J. Understanding formation mechanisms of intermetallic compounds in dissimilar Al/steel joint processed by resistance spot welding. J. Manuf. Process. 2022, 83, 212–222. [Google Scholar] [CrossRef]
- Yang, C.L.; Wu, C.S.; Lv, X.Q. Numerical analysis of mass transfer and material mixing in friction stir welding of aluminum/magnesium alloys. J. Manuf. Process. 2018, 32, 380–394. [Google Scholar] [CrossRef]
- Bhattacharya, T.K.; Das, H.; Jana, S.S.; Pal, T.K. Numerical and experimental investigation of thermal history, material flow and mechanical properties of friction stir welded aluminium alloy to DHP copper dissimilar joint. Int. J. Adv. Manuf. Technol. 2017, 88, 847–861. [Google Scholar] [CrossRef]
- Joshania, E.; Beidokhtib, B.; Davodib, A.; Amelzadeh, M. Evaluation of dissimilar 7075 aluminum/AISI 304 stainless steel joints using friction stir welding. J. Alloys. Metall. Syst. 2023, 3, 100017. [Google Scholar] [CrossRef]
- Kumar, P.; Ghosh, S.K.; De, J.; Barma, S.; Saravanan, b.; Kumar, J. The joining of magnesium and aluminium alloys by inclined arrangement of explosive welding. Mater. Today Proc. 2023, 76, 536–541. [Google Scholar] [CrossRef]
- Carvalho, G.H.S.F.L.; Mendes, R.; Leal, R.M.; Galvão, I.; Loureiro, A. Effect of the flyer material on the interface phenomena in aluminium and copper explosive welds. Mater. Des. 2017, 122, 172–183. [Google Scholar] [CrossRef]
- Kapil, A.; Sharma, A. Comprehensive Weldability Criterion for Magnetic Pulse Welding of Dissimilar Materials. Metals 2022, 12, 1791. [Google Scholar] [CrossRef]
- Faes, K.; Shotri, R.; De, A. Probing Magnetic Pulse Welding of Thin-Walled Tubes. J. Manuf. Mater. Process. 2020, 4, 118. [Google Scholar] [CrossRef]
- Zhang, W.; Chen, Y.; Xie, J.; Zhang, T.; Wang, S.; Song, X.; Yin, L. Interfacial microstructure of Al/Ta dissimilar joints by magnetic pulse welding. J. Mater. Res. Technol. 2023, 23, 4167–4172. [Google Scholar] [CrossRef]
- Geng, H.; Sun, L.; Li, G.; Cui, J.; Huang, L.; Xu, Z. Fatigue fracture properties of magnetic pulse welded dissimilar Al-Fe lap joints. Int. J. Fatigue 2019, 121, 146–154. [Google Scholar] [CrossRef]
- Patra, S.; Singh, G.; Mandal, M.; Chakraborty, R.; Arora, K.S. Non-destructive evaluation and corrosion study of magnetic pulse welded Al and low C steel joints. Mater. Chem. Phys. 2023, 309, 128315. [Google Scholar] [CrossRef]
- Yao, Y.; Chen, A.; Wang, F.; Jiang, H.; Li, G.; Cui, J. Mechanical properties and joining mechanisms of magnetic pulse welding joints of additively manufactured 316L and conventional AA5052 aluminum alloy. J. Mater. Res. Technol. 2023, 26, 6146–6161. [Google Scholar] [CrossRef]
- Shim, J.Y.; Kang, B.Y.; Kim, I.S. Characteristics of Al/steel magnetic pulse tubular joint according to discharging time. J. Mech. Sci. Technol. 2017, 31, 3793–3801. [Google Scholar] [CrossRef]
- Bembalge, O.B.; Singh, B.; Panigrahi, S.K. Magnetic pulse welding of AA6061 and AISI 1020 steel tubes: Numerical and experimental investigation. J. Manuf. Process. 2023, 101, 128–140. [Google Scholar] [CrossRef]
- Yan, Z.; Xiao, A.; Cui, X.; Guo, Y.; Lin, Y.; Zhang, L.; Zhao, P. Magnetic pulse welding of aluminum to steel tubes using a field-shaper with multiple seams. J. Manuf. Process. 2021, 65, 214–227. [Google Scholar] [CrossRef]
- Huang, M.L.; Hung, Y.H.; Yang, Z.S. Validation of a method using Taguchi, response surface, neural network, and genetic algorithm. Measurement 2016, 94, 284–294. [Google Scholar] [CrossRef]
- Muhammad, W.; Husain, W.; Tauqir, A.; Wadood, A. Optimization of friction stir welding parameters of AA2014-T6 alloy using Taguchi statistical approach. J. Weld. Join. 2020, 38–35, 493–501. [Google Scholar] [CrossRef]
- Ayaz, M.; Khandaei, M.; Vahidshad, Y. Investigating the effect of electromagnetic impact welding parameters on the microstructure evolution and mechanical properties of SS-Cu joint. Mater. Today Commun. 2023, 35, 105404. [Google Scholar] [CrossRef]
- Liu, B.; Jin, W.; Lu, A.; Liu, K.; Wang, C.; Mi, G. Optimal design for dual laser beam butt welding process parameter using artificial neural networks and genetic algorithm for SUS316L austenitic stainless steel. Opt. Laser Technol. 2020, 125, 106027. [Google Scholar] [CrossRef]
- Ye, G.Z.; Kang, D.K. Extended Evolutionary Algorithms with Stagnation-Based Extinction Protocol. Appl. Sci. 2021, 11, 3461. [Google Scholar] [CrossRef]
- Li, Y.B.; Sang, H.B.; Xiong, X.; Li, Y.R. An Improved Adaptive Genetic Algorithm for Two-Dimensional Rectangular Packing Problem. Appl. Sci. 2021, 11, 413. [Google Scholar] [CrossRef]
- Holland, J.H. Adaptation in Natural and Artificial Systems; The University of Michigan Press: Ann Arbor, MI, USA, 1975. [Google Scholar]
- Katoch, S.; Chauhan, S.S.; Kumar, V. A review on genetic algorithm: Past, present, and future. Multimed. Tools Appl. 2021, 80, 8091–8126. [Google Scholar] [CrossRef] [PubMed]
- Moghari, S.M.H.; Morovati, R.; Moghadas, M.; Araghinejad, S. Optimum Operation of Reservoir Using Two Evolutionary Algorithms: Imperialist Competitive Algorithm (ICA) and Cuckoo Optimization Algorithm (COA). Water Resour. Manag. 2015, 29, 3749–3769. [Google Scholar] [CrossRef]
- Hemmati, A.; Bahrami, S.; Alaghebandha, M.; Ahmadifard, M. Solving Combined Model Inventory Control with Queuing Theory Approach Using Meta-Heuristic Algorithms. Middle-East J. Sci. Res. 2011, 10–13, 374–388. [Google Scholar]
- Gargari, E.A.; Lucas, C. Imperialist Competitive Algorithm: An Algorithm for Optimization Inspired by Imperialistic Competition. In Proceedings of the 2007 IEEE Congress on Evolutionary Computation, Singapore, 25–28 September 2007; pp. 4661–4667. [Google Scholar] [CrossRef]
- Wang, Z.S.; Lee, J.; Song, C.G.; Kim, S.J. Efficient Chaotic Imperialist Competitive Algorithm with Dropout Strategy for Global Optimization. Symmetry 2020, 12, 635. [Google Scholar] [CrossRef]
- Luo, J.; Zhou, J.; Jiang, X. A Modification of the Imperialist Competitive Algorithm With Hybrid Methods for Constrained Optimization Problems. IEEE Access 2021, 9, 161745–161760. [Google Scholar] [CrossRef]
- Madani, T.; Boukraa, M.; Aissani, M.; Chekifi, T.; Ziadi, A.; Zirari, M. Experimental investigation and numerical analysis using Taguchi and ANOVA methods for underwater friction stir welding of aluminium alloy 2017 process improvement. Int. J. Press. Vessel. Pip. 2023, 201, 104879. [Google Scholar] [CrossRef]
Parameter | Unit | Symbol | Level | ||||
---|---|---|---|---|---|---|---|
−2 | −1 | 0 | 1 | +2 | |||
Peak current | kA | C | 316 | 350 | 400 | 450 | 484 |
Gap between workpieces | mm | G | 0.2 | 0.4 | 0.7 | 1.0 | 1.2 |
Frequency | kHz | F | 16.0 | 17 | 18.5 | 20 | 21.0 |
Run | Input Parameters | Run | Input Parameters | ||||
---|---|---|---|---|---|---|---|
C | G | F | C | G | F | ||
1 | 400 | 0.7 | 18.5 | 11 | 400 | 0.7 | 18.5 |
2 | 400 | 0.7 | 18.5 | 12 | 450 | 1.0 | 20.0 |
3 | 400 | 0.2 | 18.5 | 13 | 350 | 1.0 | 20.0 |
4 | 450 | 0.4 | 17.0 | 14 | 400 | 0.7 | 18.5 |
5 | 316 | 0.7 | 18.5 | 15 | 400 | 0.7 | 16.0 |
6 | 484 | 0.7 | 18.5 | 16 | 350 | 0.4 | 20.0 |
7 | 350 | 0.4 | 17.0 | 17 | 400 | 0.7 | 18.5 |
8 | 400 | 1.2 | 18.5 | 18 | 400 | 0.7 | 18.5 |
9 | 450 | 1.0 | 17.0 | 19 | 450 | 0.4 | 20.0 |
10 | 350 | 1.0 | 17.0 | 20 | 400 | 0.7 | 21.0 |
Material | Si | Ga | Ti | Fe | Zn | Al | P | Mn | Cr | C | Fe |
---|---|---|---|---|---|---|---|---|---|---|---|
A1070 | 0.07 | 0.01 | 0.01 | 0.20 | 0.01 | Bal | - | - | - | - | - |
S45C | 0.23 | - | - | - | - | - | 0.02 | 0.02 | 0.08 | 0.48 | Bal |
400 kA, 18.5 kHz | 450 kA 17 kHz | 316 kA 18.5 kHz |
484 kA 18.5 kHz | 370 kA 17 kHz | 450 kA 20 kHz |
350 kA 20 kHz | 450 kA 16 kHz | 400 kA 21 kHz |
No. | Cross Section | No. | Cross Section | No. | Cross Section | No. | Cross Section |
---|---|---|---|---|---|---|---|
1 | 6 | 11 | 16 | ||||
2 | 7 | Separation | 12 | 17 | |||
3 | Separation | 8 | Separation | 13 | 18 | ||
4 | 9 | 14 | 19 | ||||
5 | 10 | Separation | 15 | 20 |
Trial No. | Input Parameters | Responses | |||
---|---|---|---|---|---|
C | G | F | Max. Load | Weld Length | |
1 | 400 | 0.7 | 18.5 | 1.079 | 0.27 |
2 | 400 | 0.7 | 18.5 | 1.140 | 0.23 |
3 | 400 | 0.2 | 18.5 | 0.043 | - |
4 | 450 | 0.4 | 17.0 | 0.785 | 0.20 |
5 | 316 | 0.7 | 18.5 | 0.260 | - |
6 | 484 | 0.7 | 18.5 | 1.825 | 0.54 |
7 | 350 | 0.4 | 17.0 | 0.120 | - |
8 | 400 | 1.2 | 18.5 | 0.192 | - |
9 | 450 | 1.0 | 17.0 | 1.055 | 0.17 |
10 | 350 | 1.0 | 17.0 | 0.042 | - |
11 | 400 | 0.7 | 18.5 | 1.143 | 0.29 |
12 | 450 | 1.0 | 20.0 | 1.309 | 0.50 |
13 | 350 | 1.0 | 20.0 | 0.501 | 0.09 |
14 | 400 | 0.7 | 18.5 | 1.069 | 0.25 |
15 | 400 | 0.7 | 16.0 | 0.657 | 0.10 |
16 | 350 | 0.4 | 20.0 | 0.428 | 0.02 |
17 | 400 | 0.7 | 18.5 | 1.067 | 0.25 |
18 | 400 | 0.7 | 18.5 | 1.080 | 0.27 |
19 | 450 | 0.4 | 20.0 | 1.106 | 0.41 |
20 | 400 | 0.7 | 21.0 | 1.467 | 0.41 |
Source | DF | Adj SS | Adj MS | F-Value | p-Value |
---|---|---|---|---|---|
Model | 9 | 4.98741 | 0.55416 | 101.40 | 0.000 |
Linear | 3 | 3.02280 | 1.00760 | 184.37 | 0.000 |
C | 1 | 2.45984 | 2.45984 | 450.09 | 0.000 |
G | 1 | 0.02748 | 0.02748 | 5.03 | 0.049 |
F | 1 | 0.53548 | 0.53548 | 97.98 | 0.000 |
Square | 3 | 1.93055 | 0.64352 | 117.75 | 0.000 |
Interaction | 3 | 0.03405 | 0.01135 | 2.08 | 0.167 |
Error | 10 | 0.05465 | 0.00547 | ||
Total | 19 | 5.04206 |
Source | DF | Adj SS | Adj MS | F-Value | p-Value |
---|---|---|---|---|---|
Model | 9 | 0.568492 | 0.063166 | 140.12 | 0.000 |
Linear | 3 | 0.417941 | 0.139314 | 309.04 | 0.000 |
C | 1 | 0.316236 | 0.316236 | 701.52 | 0.000 |
G | 1 | 0.001237 | 0.001237 | 2.75 | 0.129 |
F | 1 | 0.100468 | 0.100468 | 222.87 | 0.000 |
Square | 3 | 0.122914 | 0.040971 | 90.89 | 0.000 |
Interaction | 3 | 0.027637 | 0.009212 | 20.44 | 0.000 |
C × G | 1 | 0.000012 | 0.000012 | 0.03 | 0.871 |
C × F | 1 | 0.023112 | 0.023112 | 51.27 | 0.000 |
G × F | 1 | 0.004512 | 0.004512 | 10.01 | 0.010 |
Error | 10 | 0.004508 | 0.000451 | ||
Total | 19 | 0.573000 |
ICA Parameters | Al/Steel MPW |
---|---|
Revolution rate | 0.3 |
Number of Countries | 100 |
Number of Initial Imperialists | 6 |
Number of decades | 100 |
Assimilation Coefficient | 1.5 |
Assimilation Angle Coefficient | 0.5 |
Variable min (C, G, F) (kA, mm, kHz) | (316, 0.2, 16) |
Variable max (C, G, F) (kA, mm, kHz) | (484, 1.2, 21) |
GA Parameters | Al/Steel MPW |
---|---|
Population size | 100 |
Number of generations allowed | 100 |
Mutation rate | 100 |
Crossover rate | 0.5 |
Type of crossover | 0.5 |
Method | Model | Peak Current (kA) | Gap between Workpieces (mm) | Frequency (kHz) | Cost | CPU Time (s) |
---|---|---|---|---|---|---|
ICA | Maximum load (kN) | 484 | 0.77498 | 21 | 2.00012 | 2.9 |
Weld length (mm) | 483.9 | 0.73533 | 21 | 0.78892 | 3 | |
GA | Maximum load (kN) | 483.9 | 0.77485 | 20.9 | 1.99929 | 8 |
Weld length (mm) | 483.9 | 0.73529 | 20.9 | 0.78551 | 9.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shim, J.; Kim, I. Evolutionary Algorithm to Optimize Process Parameters of Al/Steel Magnetic Pulse Welding. Appl. Sci. 2023, 13, 12881. https://doi.org/10.3390/app132312881
Shim J, Kim I. Evolutionary Algorithm to Optimize Process Parameters of Al/Steel Magnetic Pulse Welding. Applied Sciences. 2023; 13(23):12881. https://doi.org/10.3390/app132312881
Chicago/Turabian StyleShim, Jiyeon, and Illsoo Kim. 2023. "Evolutionary Algorithm to Optimize Process Parameters of Al/Steel Magnetic Pulse Welding" Applied Sciences 13, no. 23: 12881. https://doi.org/10.3390/app132312881
APA StyleShim, J., & Kim, I. (2023). Evolutionary Algorithm to Optimize Process Parameters of Al/Steel Magnetic Pulse Welding. Applied Sciences, 13(23), 12881. https://doi.org/10.3390/app132312881