Nanogap Plasmon Resonator: An Analytical Model
Abstract
:1. Introduction
2. Analytical Model
3. Analytical Model vs. Simulations and Experiments
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Garcia-Vidal, F.J.; Pendry, J.B. Collective Theory for Surface Enhanced Raman Scattering. Phys. Rev. Lett. 1996, 77, 1163. [Google Scholar] [CrossRef]
- Grésillon, S.; Aigouy, L.; Boccara, A.C.; Rivoal, J.C.; Quelin, X.; Demarest, C.; Gadenne, P.; Shubin, V.A.; Sarychev, A.K.; Shalaev, V.M. Experimental Observation of Localized Optical Excitations in Random Metal-Dielectric Films. Phys. Rev. Lett. 1999, 82, 4520. [Google Scholar] [CrossRef]
- Ciraci, C.; Hill, R.T.; Mock, J.J.; Urzhumov, Y.; Fernandez-Dominguez, A.I.; Maier, S.A.; Pendry, J.B.; Chilkoti, A.; Smith, D.R. Probing the Ultimate Limits of Plasmonic Enhancement. Science 2012, 337, 1072–1074. [Google Scholar] [CrossRef]
- Moreau, A.; Ciraci, C.; Mock, J.J.; Hill, R.T.; Wang, Q.; Wiley, B.J.; Chilkoti, A.; Smith, D.R. Controlled-Reflectance Surfaces with Film-Coupled Colloidal Nanoantennas. Nature 2012, 492, 86–89. [Google Scholar] [CrossRef]
- Echtermeyer, T.J.; Britnell, L.; Jasnos, P.K.; Lombardo, A.; Gorbachev, R.V.; Grigorenko, A.N.; Geim, A.K.; Ferrari, A.C.; Novoselov, K.S. Strong Plasmonic Enhancement of Photovoltage in Graphene. Nat. Commun. 2011, 2, 458. [Google Scholar] [CrossRef]
- Zhang, Y.; Grady, N.K.; Ayala-Orozco, C.; Halas, N.J. Three-Dimensional Nanostructures as Highly Efficient Generators of Second Harmonic Light. Nano Lett. 2011, 11, 5519–5523. [Google Scholar] [CrossRef]
- Savage, K.J.; Hawkeye, M.M.; Esteban, R.; Borisov, A.G.; Aizpurua, J.; Baumberg, J.J. Revealing the quantum regime in tunnelling plasmonics. Nature 2012, 491, 574–577. [Google Scholar] [CrossRef]
- Mertens, J.; Eiden, A.L.; Sigle, D.O.; Huang, F.; Lombardo, A.; Sun, Z.; Sundaram, R.S.; Colli, A.; Tserkezis, C.; Aizpurua, J.; et al. Controlling Subnanometer Gaps in Plasmonic Dimers Using Graphene. Nano Lett. 2013, 13, 5033–5038. [Google Scholar] [CrossRef]
- Cai, H.; Wu, Y.; Dai, Y.; Pan, N.; Tian, Y.; Luo, Y.; Wang, X. Wafer scale fabrication of highly dense and uniform array of sub-5nm nanogaps for surface enhanced Raman scatting substrates. Opt. Express 2016, 24, 20808–20815. [Google Scholar] [CrossRef] [PubMed]
- Mubeen, S.; Zhang, S.; Kim, N.; Lee, S.; Krämer, S.; Xu, H.; Moskovits, M. Plasmonic Properties of Gold Nanoparticles Separated from a Gold Mirror by an Ultrathin Oxide. Nano Lett. 2012, 12, 2088–2094. [Google Scholar] [CrossRef] [PubMed]
- Chikkaraddy, R.; Zheng, X.; Benz, F.; Brooks, L.J.; de Nijs, B.; Carnegie, C.; Kleemann, M.E.; Mertens, J.; Bowman, R.W.; Vandenbosch, G.; et al. How Ultranarrow Gap Symmetries Control Plasmonic Nanocavity Modes: From Cubes to Spheres in the Nanoparticle-on-Mirror. ACS Photonics 2017, 4, 469–475. [Google Scholar] [CrossRef]
- Chikkaraddy, R.; Turek, V.A.; Kongsuwan, N.; Benz, F.; Carnegie, C.; van de Goor, T.; de Nijs, B.; Demetriadou, A.; Hess, O.; Keyser, U.F.; et al. Mapping Nanoscale Hotspots with Single-Molecule Emitters Assembled into Plasmonic Nanocavities Using DNA Origami. Nano Lett. 2018, 18, 405–411. [Google Scholar] [CrossRef]
- Demetriadou, A.; Hamm, J.M.; Luo, Y.; Pendry, J.B.; Baumberg, J.J.; Hess, O. Spatiotemporal Dynamics and Control of Strong Coupling in Plasmonic Nanocavities. ACS Photonics 2017, 4, 2410–2418. [Google Scholar] [CrossRef]
- Yang, Y.; Kim, H.; Badloe, T.; Rho, J. Gap-plasmon-driven spin angular momentum selection of chiral metasurfaces for intensity-tunable metaholography working at visible frequencies. Nanophotonics 2022, 11, 4123–4133. [Google Scholar] [CrossRef]
- Khorashad, L.K.; Argyropoulos, C. Unraveling the temperature dynamics and hot electron generation in tunable gap-plasmon metasurface absorbers. Nanophotonics 2022, 11, 4037–4052. [Google Scholar] [CrossRef]
- Yezekyan, T.; Zenin, V.A.; Beermann, J.; Bozhevolnyi, S.I. Anapole States in Gap-Surface Plasmon Resonators. Nano Lett. 2022, 22, 6098–6104. [Google Scholar] [CrossRef]
- Fu, Q.; Zhan, Z.; Dou, J.; Zheng, X.; Xu, R.; Wu, M.; Lei, Y. Highly Reproducible and Sensitive SERS Substrates with Ag Inter-Nanoparticle Gaps of 5 nm Fabricated by Ultrathin Aluminum Mask Technique. ACS Appl. Mater. Interfaces 2015, 7, 13322–13328. [Google Scholar] [CrossRef]
- Jiang, T.; Chen, G.; Tian, X.; Tang, S.; Zhou, J.; Feng, Y.; Chen, H. Construction of Long Narrow Gaps in Ag Nanoplates. J. Am. Chem. Soc. 2018, 140, 15560–15563. [Google Scholar] [CrossRef]
- Liu, G.; Liu, Y.; Liu, X.; Chen, J.; Fu, G.; Liu, Z. Large-area, low-cost, ultra-broadband, infrared perfect absorbers by coupled plasmonic-photonic micro-cavities. Sol. Energy Mater. Sol. Cells 2018, 186, 142–148. [Google Scholar] [CrossRef]
- Lu, X.; Huang, Y.; Liu, B.; Zhang, L.; Song, L.; Zhang, J.; Zhang, A.; Chen, T. Light-Controlled Shrinkage of Large-Area Gold Nanoparticle Monolayer Film for Tunable SERS Activity. Chem. Mater. 2018, 30, 1989–1997. [Google Scholar] [CrossRef]
- Ma, C.; Gao, Q.; Hong, W.; Fan, J.; Fang, J. Real-time probing nanopore-in-nanogap plasmonic coupling effect on silver supercrystals with surface-enhanced Raman spectroscopy. Adv. Funct. Mater. 2016, 27, 1–8. [Google Scholar] [CrossRef]
- Nam, J.M.; Oh, J.W.; Lee, H.; Suh, Y.D. Plasmonic Nanogap-Enhanced Raman Scattering with Nanoparticles. Acc. Chem. Res. 2016, 49, 2746–2755. [Google Scholar] [CrossRef]
- Pan, R.; Yang, Y.; Wang, Y.; Li, S.; Liu, Z.; Su, Y.; Quan, B.; Li, Y.; Gu, C.; Li, J. Nanocracking and mettalization doubly-defined large-scale 3D plasmonic sub-10nm-gap arrays as extremely sensitive SERS substrate. Nanoscale 2018, 10, 3171–3180. [Google Scholar] [CrossRef]
- Shin, Y.; Song, J.; Kim, D.; Kang, T. Facile preparation of ultrasmall void metallic nanogap from self-assembled gold-silica core-shell nanoparticles monolayer via kinetic control. Adv. Mater. 2015, 27, 4344–4350. [Google Scholar] [CrossRef]
- Sigle, D.O.; Mertens, J.; Herrmann, L.O.; Bowman, R.W.; Ithurria, S.; Dubertret, B.; Shi, Y.; Yang, H.; Tserkezis, C.; Aizpurua, J.; et al. Monitoring Morphological Changes in 2D Monolayer Semiconductors Using Atom-Thick Plasmonic Nanocavities. ACS Nano 2015, 9, 825–830. [Google Scholar] [CrossRef]
- Yoo, D.; Mohr, D.A.; Vidal-Codina, F.; John-Herpin, A.; Jo, M.; Kim, S.; Matson, J.; Caldwell, J.D.; Jeon, H.; Nguyen, N.-C.; et al. High-Contrast Infrared Absorption Spectroscopy via Mass-Produced Coaxial Zero-Mode Resonators with Sub-10 nm Gaps. Nano Lett. 2018, 18, 1930–1936. [Google Scholar] [CrossRef]
- Zhou, J.; Xiong, Q.; Ma, J.; Ren, J.; Messersmith, P.B.; Chen, P.; Duan, H. A Polydopamine-Enabled Approach Toward Tailored Plasmonic Nanogapped Nanoparticles: From Nanogap Engineering to Multifunctionality. ACS Nano 2016, 10, 11066–11075. [Google Scholar] [CrossRef]
- Bedingfield, K.; Elliott, E.; Gisdakis, A.; Kongsuwan, N.; Baumberg, J.J.; Demetriadou, A. Multi-faceted plasmonic nanocavities. Nanophotonics 2023, 12, 3931–3944. [Google Scholar] [CrossRef]
- Gu, P.; Zheng, T.; Zhang, W.; Ai, B.; Zhao, Z.; Zhang, G. Sub-10 nm Au–Ag Heterogeneous Plasmonic Nanogaps. Adv. Mater. Interfaces 2020, 7, 1902021. [Google Scholar] [CrossRef]
- Xomalis, A.; Zheng, X.; Demetriadou, A.; Martínez, A.; Chikkaraddy, R.; Baumberg, J.J. Interfering Plasmons in Coupled Nanoresonators to Boost Light Localization and SERS. Nano Lett. 2021, 21, 2512–2518. [Google Scholar] [CrossRef]
- Li, Y.; Tang, S.; Xu, S.; Duan, Z.; Wang, Z.; Zhang, Y. Ag Nanoframes Deposited on Au Films Generate Optical Cavities for Surface-Enhanced Raman Scattering. ACS Appl. Nano Mater. 2020, 3, 5116–5122. [Google Scholar] [CrossRef]
- Jagathpriya, L.; Pillanagrovi, J.; Dutta-Gupta, S. Tailoring cavity coupled plasmonic substrates for SERS applications. Nanotechnology 2023, 34, 335501. [Google Scholar]
- Zhang, W.; Zheng, T.; Ai, B.; Gu, P.; Guan, Y.; Wang, Y.; Zhao, Z.; Zhang, G. Multiple plasmonic hot spots platform: Nanogap coupled gold nanoparticles. Appl. Surf. Sci. 2022, 593, 153388. [Google Scholar] [CrossRef]
- Sarychev, A.K.; Sukhanova, A.; Ivanov, A.V.; Bykov, I.V.; Bakholdin, N.V.; Vasina, D.V.; Gushchin, V.A.; Tkachuk, A.P.; Nifontova, G.; Samokhvalov, P.S.; et al. Label-Free Detection of the Receptor-Binding Domain of the SARS-CoV-2 Spike Glycoprotein at Physiologically Relevant Concentrations Using Surface-Enhanced Raman Spectroscopy. Biosensors 2022, 12, 300. [Google Scholar] [CrossRef]
- Ivanov, A.; Shalygin, A.; Lebedev, V.; Vorobev, V.; Vergiles, S.; Sarychev, A.K. Plasmonic extraordinary transmittance in array of metal nanorods. Appl. Phys. A 2012, 107, 17–21. [Google Scholar] [CrossRef]
- Frumin, L.L.; Nemykin, A.V.; Perminov, S.V.; Shapiro, D.A. Plasmons excited by an evanescent wave in a periodic array of nanowires. J. Opt. 2013, 15, 085002. [Google Scholar] [CrossRef]
- Liu, Z.Q.; Liu, G.Q.; Liu, X.S.; Huang, K.; Chen, Y.H.; Hu, Y.; Fu, G.L. Tunable plasmon-induced transparency of double continuous metal films sandwiched with a plasmonic array. Plasmonics 2013, 8, 1285–1292. [Google Scholar] [CrossRef]
- Liu, G.Q.; Hu, Y.; Liu, Z.Q.; Chen, Y.H.; Cai, Z.J.; Zhang, X.N.; Huang, K. Robust multispectral transparency in continuous metal film structures via multiple near-field plasmon coupling by a finite-difference time-domain method. Phys. Chem. Chem. Phys. 2014, 16, 4320–4328. [Google Scholar] [CrossRef]
- Liu, G.Q.; Hu, Y.; Liu, Z.Q.; Cai, Z.J.; Zhang, X.N.; Chen, Y.H.; Huang, K. Multispectral optical enhanced transmission of a continuous metal film coated with a plasmonic core-shell nanoparticle array. Opt. Commun. 2014, 316, 111–119. [Google Scholar] [CrossRef]
- Rasskazov, I.L.; Markel, V.A.; Karpov, S.V. Transmission and spectral properties of short opitcal plasmon waveguides. Opt. Spectrosc. 2013, 115, 666–674. [Google Scholar] [CrossRef]
- Klimov, V.V.; Guzatov, D.V. Strongly localized plasmon oscillations in a cluster of two metallic nanospheres and their influence on spontaneous emission of an atom. Phys. Rev. B 2007, 75, 24303. [Google Scholar] [CrossRef]
- Klimov, V.; Guzatov, D. Plasmonic atoms and plasmonic molecules. Appl. Phys. A 2007, 89, 305–314. [Google Scholar] [CrossRef]
- Guzatov, D.V.; Klimov, V.V. Optical properties of a plasmonic nano-antenna: An analytical approach. New J. Phys. 2011, 13, 053034. [Google Scholar] [CrossRef]
- Lu, B.; Vegso, K.; Micky, S.; Ritz, C.; Bodik, M.; Fedoryshyn, Y.M.; Siffalovic, P.; Stemmer, A. Tunable Subnanometer Gaps in Self-Assembled Monolayer Gold Nanoparticle Superlattices Enabling Strong Plasmonic Field Confinement. ACS Nano 2023, 17, 12774–12787. [Google Scholar] [CrossRef]
- Ding, F.; Yang, Y.; Deshpande, R.A.; Bozhevoinyi, S.I. A review of gap-surface plasmon metasurfaces: Fundamentals and applications. Nanophotonics 2018, 7, 1129–1156. [Google Scholar] [CrossRef]
- Liu, W.; Lee, B.; Naylor, C.H.; Ee, H.S.; Park, J.; Johnson, A.C.; Agarwal, R. Strong Exciton–Plasmon Coupling in MoS2 Coupled with Plasmonic Lattice. Nano Lett. 2016, 16, 1262–1269. [Google Scholar] [CrossRef]
- Yang, L.; Xie, X.; Yang, J.; Xue, M.; Wu, S.; Xiao, S.; Song, F.; Dang, J.; Sun, S.; Zuo, Z.; et al. Strong Light–Matter Interactions between Gap Plasmons and Two-Dimensional Excitons under Ambient Conditions in a Deterministic Way. Nano Lett. 2022, 22, 2177–2186. [Google Scholar] [CrossRef]
- Dong, L.; Yang, X.; Zhang, C.; Cerjan, B.; Zhou, L.; Tseng, M.L.; Zhang, Y.; Alabastri, A.; Nordlander, P.; Halas, N.J. Nanogapped Au Antennas for Ultrasensitive Surface-Enhanced Infrared Absorption Spectroscopy. Nano Lett. 2017, 17, 5768–5774. [Google Scholar] [CrossRef]
- Paoletta, A.L.; Fung, E.-D.; Venkataraman, L. Gap Size-Dependent Plasmonic Enhancement in Electroluminescent Tunnel Junctions. ACS Photonics 2022, 9, 688–693. [Google Scholar] [CrossRef]
- Dmitriev, P.A.; Lassalle, E.; Ding, L.; Pan, Z.; Neo, D.C.J.; Valuckas, V.; Paniagua-Dominguez, R.; Yang, J.K.W.; Demir, H.V.; Kuznetsov, A.I. Hybrid Dielectric-Plasmonic Nanoantenna with Multiresonances for Subwavelength Photon Sources. ACS Photonics 2023, 10, 582–594. [Google Scholar] [CrossRef]
- Boroviks, S.; Lin, Z.-H.; Zenin, V.A.; Ziegler, M.; Dellith, A.; Gonçalves, P.A.D.; Wolff, C.; Bozhevolnyi, S.I.; Huang, J.-S.; Mortensen, N.A. Extremely confined gap plasmon modes: When nonlocality matters. Nat. Commun. 2022, 13, 3105. [Google Scholar] [CrossRef] [PubMed]
- Kim, I.; Kim, H.; Han, S.; Kim, J.; Kim, Y.; Eom, S.; Barulin, A.; Choi, I.; Rho, J.; Lee, L.P. Metasurfaces-Driven Hyperspectral Imaging via Multiplexed Plasmonic Resonance Energy Transfer. Adv. Mater. 2023, 35, 2300229. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Valentine, J.G. Harvesting the loss: Surface plasmon-based hot electron photodetection. Nanophotonics 2017, 6, 177–191. [Google Scholar] [CrossRef]
- Barbillon, G.; Ivanov, A.; Sarychev, A.K. SERS Amplification in Au/Si Asymmetric Dimer Array Coupled to Efficient Adsorption of Thiophenol Molecules. Nanomaterials 2021, 11, 1521. [Google Scholar] [CrossRef]
- Kneipp, J. Interrogating Cells, Tissues, and Live Animals with New Generations of Surface-Enhanced Raman Scattering Probes and Labels. ACS Nano 2017, 11, 1136–1141. [Google Scholar] [CrossRef]
- Hu, Y.; Cheng, H.; Zhao, X.; Wu, J.; Muhammad, F.; Lin, S.; He, J.; Zhou, L.; Zhang, C.; Deng, Y.; et al. Surface-Enhanced Raman Scattering-Active Gold Nanoparticles with Enzyme Mimicking Activities for Measuring Glucose and Lactate in Living Tissues. ACS Nano 2017, 11, 5558–5566. [Google Scholar] [CrossRef]
- Andreou, C.; Neuschmelting, V.; Tschaharganeh, D.F.; Huang, C.H.; Oseledchyk, A.; Iacono, P.; Karabeber, H.; Colen, R.R.; Mannelli, L.; Lowe, S.W.; et al. Imaging of Liver Tumors Using Surface-Enhanced Raman Scattering Nanoparticles. ACS Nano 2016, 10, 5015–5026. [Google Scholar] [CrossRef]
- Chon, H.; Lee, S.; Yoon, S.Y.; Lee, E.K.; Chang, S.L.; Choo, J. SERS-based competitive immunoassay of troponin I and CK-MB markers for early diagnosis of acute myocardial infarction. Chem. Commun. 2014, 50, 1058–1060. [Google Scholar] [CrossRef]
- Boginskaya, I.A.; Slipchenko, E.A.; Sedova, M.V.; Zvyagina, J.Y.; Maximov, A.D.; Baburin, A.S.; Rodionov, I.A.; Merzlikin, A.M.; Ryzhikov, I.A.; Lagarkov, A.N. Additional Enhancement of Surface-Enhanced Raman Scattering Spectra of Myoglobin Precipitated under Action of Laser Irradiation on Self-Assembled Nanostructured Surface of Ag Films. Chemosensors 2023, 11, 321. [Google Scholar] [CrossRef]
- Kraft, M.; Luo, Y.; Maier, S.A.; Pendry, J.B. Designing Plasmonic Gratings with Transformation Optics. Phys. Rev. X 2015, 5, 031029. [Google Scholar] [CrossRef]
- Johnson, P.B.; Christy, R.W. Optical constants of the noble metals. Phys. Rev. B 1972, 6, 4370–4379. [Google Scholar] [CrossRef]
- Luo, Y.; Fernandez-Dominguez, A.I.; Wiener, A.; Maier, S.A.; Pendry, J.B. Surface Plasmons and Nonlocality: A Simple Model. Phys. Rev. Lett. 2013, 111, 093901. [Google Scholar] [CrossRef]
- Yue, W.; Wang, Z.; Whittaker, J.; Lopez-Royo, F.; Yang, Y.; Zayats, A.V. Amplification of surface-enhanced Raman scattering due to substrate-mediated localized surface plasmons in gold nanodimers. J. Mater. Chem. C 2017, 5, 4075–4084. [Google Scholar] [CrossRef]
- Li, Z.; You, Q.; Li, J.; Zhu, C.; Zhang, L.; Yang, L.; Fang, Y.; Wang, P. Boosting Light–Matter Interaction in a Longitudinal Bonding Dipole Plasmon Hybrid Anapole System. J. Phys. Chem. C 2023, 127, 3594–3601. [Google Scholar] [CrossRef]
- Chowdhury, S.N.; Simon, J.; Nowak, M.P.; Pagadala, K.; Nyga, P.; Fruhling, C.; Bravo, E.G.; Maćkowski, S.; Shalaev, V.M.; Kildishev, A.V.; et al. Wide-Range Angle-Sensitive Plasmonic Color Printing on Lossy-Resonator Substrates. Adv. Opt. Mater. 2023, 2301678. [Google Scholar] [CrossRef]
- Kanipe, K.; Chidester, P.; Stucky, G.; Meinhart, C.; Moskovits, M. Properly Structured, Any Metal Can Produce Intense Surface Enhanced Raman Spectra. J. Phys. Chem. C 2017, 121, 14269–14273. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarychev, A.K.; Barbillon, G.; Ivanov, A. Nanogap Plasmon Resonator: An Analytical Model. Appl. Sci. 2023, 13, 12882. https://doi.org/10.3390/app132312882
Sarychev AK, Barbillon G, Ivanov A. Nanogap Plasmon Resonator: An Analytical Model. Applied Sciences. 2023; 13(23):12882. https://doi.org/10.3390/app132312882
Chicago/Turabian StyleSarychev, Andrey K., Grégory Barbillon, and Andrey Ivanov. 2023. "Nanogap Plasmon Resonator: An Analytical Model" Applied Sciences 13, no. 23: 12882. https://doi.org/10.3390/app132312882
APA StyleSarychev, A. K., Barbillon, G., & Ivanov, A. (2023). Nanogap Plasmon Resonator: An Analytical Model. Applied Sciences, 13(23), 12882. https://doi.org/10.3390/app132312882