Recent Advances in Black Silicon Surface Modification for Enhanced Light Trapping in Photodetectors
Abstract
:1. Introduction
2. Wet Methods for Black Silicon Fabrication
2.1. Metal-Assisted Chemical Etching (MACE)
2.1.1. Silver-Assisted Chemical Etching
2.1.2. Copper-Assisted Chemical Etching
2.1.3. Nickel-Assisted Chemical Etching
2.1.4. Aluminum-Assisted Chemical Etching
2.2. Potassium Hydroxide (KOH) Etching
2.3. Electrochemical Etching
Objectives | Method | Findings | Ref. |
---|---|---|---|
Enhance efficiency of multi-crystalline BSi | MACE (Ag) | Significantly increased efficiency and optical performance in multi-crystalline BSi solar cells, demonstrating the effectiveness of MACE in enhancing PV cell capabilities. | [24] |
Investigate etching time effects BSi absorption | MACE (Ag) | Identifying optimal etching durations resulted in a significant reduction in broadband reflectance and a considerable enhancement in absorption efficiency, underscoring the essential influence of etching time on optimizing the optical performance of BSi. | [25] |
Optimize etching time and study Ag concentration effects | MACE (Ag) | Enhanced broadband light absorption achieved through careful optimization of etching times and silver concentrations, resulting in significant improvements in BSi optical efficiency. | [26,27] |
Develop various BSi texturizations and study MACE parameters’ effects. | MACE (Ag) | Development of varied texturizations, including nano-pyramidal and nano-grass structures, improved antireflective properties and overall efficiency of BSi. Adjustments in MACE parameters led to optimized optical properties. | [44,45,46,47,48,49] |
Investigate Ag film thickness effect | MACE (Ag) | Varying the Ag film thickness critically affects BSi optical and morphological properties. Temperature control during etching influenced the formation of large, inverted pyramids, optimizing light trapping on Si surface. | [28,29] |
Achieve high efficiency in Si solar cells with BSi. | MACE (Ag) | Creation of hierarchical BSi textures resulted in ultra-low reflectance and omnidirectional light-trapping capabilities, leading to improvements in the c-Si optical properties. | [50] |
Study Cu-assisted chemical etching and regulate surface texturization | MACE (Cu) | Cu-assisted chemical etching yielded uniform low-reflectance BSi and diverse texturized surfaces, significantly improving the antireflective performance and overall efficiency of Si solar cells. | [31,32] |
Study Ni-assisted chemical etching impact on reflection. | MACE (Ni) | The use of Ni-assisted chemical etching effectively minimized reflectance across UV, visible, and infrared spectrums, demonstrating its effectiveness in creating highly efficient light absorbing BSi films. | [33] |
Study catalyst thickness and annealing effects | MACE (Al) | Investigations into the impact of Al catalyst thickness and annealing on BSi revealed that these factors critically influence surface morphology and reflectivity, leading to optimal conditions for enhanced light absorption suitable for PV applications. | [35,36,37] |
Investigate morphological properties | KOH | The etching process created BSi surfaces with significantly reduced reflectance and high conductivity, thereby enhancing the overall efficiency and performance of solar cells. Optimization of these processes was crucial for improved solar cell applications. | [38,39] |
Study optical properties of Si photonic crystals | Electro-chemical Etching | Porous Si photonic crystals exhibited strong light scattering effects and low reflectance, enhancing their utility in photonic applications. | [40,41] |
3. Dry Methods for Black Silicon Fabrication
3.1. Reactive Ion Etching (RIE)
3.1.1. Deep Reactive Ion Etching (DRIE)
3.1.2. Inductively Coupled Plasma Reactive Ion Etching (ICP-RIE)
3.2. Ion Implantation Process
3.3. Plasma Etching
3.4. Femtosecond Laser Ablation
4. Black Silicon for Light Trapping in Photodetectors
5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Saab, D.A.; Basset, P.; Pierotti, M.J.; Trawick, M.L.; Angelescu, D.E. Static and dynamic aspects of black silicon formation. Phys. Rev. Lett. 2014, 113, 265502. [Google Scholar] [CrossRef] [PubMed]
- Tan, X.; Tao, Z.; Yu, M.; Wu, H.; Li, H. Anti-reflectance optimization of secondary nanostructured black silicon grown on micro-structured arrays. Micromachines 2018, 9, 385. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Wang, Y.; Hansen, P.A.S.; Du, K.; Gustavsen, K.R.; Liu, G.; Karlsen, F.; Nilsen, O.; Xue, C.; Wang, K. Black silicon with order-disordered structures for enhanced light trapping and photothermic conversion. Nano Energy 2019, 65, 103992. [Google Scholar] [CrossRef]
- Teo, A.L.; Shearwood, C.; Ng, K.C.; Lu, J.; Moochhala, S. Transdermal microneedles for drug delivery applications. Mater. Sci. Eng. B 2006, 132, 151–154. [Google Scholar] [CrossRef]
- Langer, C.; Prommesberger, C.; Ławrowski, R.; Schreiner, R.; Serbun, P.; Müller, G.; Düsberg, F.; Hofmann, M.; Bachmann, M.; Pahlke, A. Field emission properties of p-type black silicon on pillar structures. J. Vac. Sci. Technol. B 2016, 34, 02G107. [Google Scholar] [CrossRef]
- Zhong, S.; Liu, B.; Xia, Y.; Liu, J.; Liu, J.; Shen, Z.; Xu, Z.; Li, C. Influence of the texturing structure on the properties of black silicon solar cell. Sol. Energy Mater. Sol. Cells 2013, 108, 200–204. [Google Scholar] [CrossRef]
- Scheul, T.E.; Khorani, E.; Rahman, T.; Charlton, M.D.; Boden, S.A. Light scattering from black silicon surfaces and its benefits for encapsulated solar cells. Sol. Energy Mater. Sol. Cells 2022, 235, 111448. [Google Scholar] [CrossRef]
- Jia, Z.; Wu, Q.; Jin, X.; Huang, S.; Li, J.; Yang, M.; Huang, H.; Yao, J.; Xu, J. Highly responsive tellurium-hyperdoped black silicon photodiode with single-crystalline and uniform surface microstructure. Opt. Express 2020, 28, 5239–5247. [Google Scholar] [CrossRef]
- Tyson, J.J.; Scheul, T.E.; Rahman, T.; Boden, S.A. Characterising the broadband, wide–angle reflectance properties of black silicon surfaces for photovoltaic applications. Opt. Express 2023, 31, 28295–28307. [Google Scholar] [CrossRef]
- Jansen, H.; De Boer, M.; Legtenberg, R.; Elwenspoek, M. The black silicon method: A universal method for determining the parameter setting of a fluorine-based reactive ion etcher in deep silicon trench etching with profile control. J. Micromech. Microeng. 1995, 5, 115–120. [Google Scholar] [CrossRef]
- Her, T.-H.; Finlay, R.J.; Wu, C.; Deliwala, S.; Mazur, E. Microstructuring of silicon with femtosecond laser pulses. Appl. Phys. Lett. 1998, 73, 1673–1675. [Google Scholar] [CrossRef]
- Mokkapati, S.; Catchpole, K.R. Nanophotonic light trapping in solar cells. J. Appl. Phys. 2012, 112, 101101. [Google Scholar] [CrossRef]
- Niu, C.; Zhu, T.; Lv, Y. Influence of Surface Morphology on Absorptivity of Light-Absorbing Materials. Int. J. Photoenergy 2019, 2019, 1–9. [Google Scholar] [CrossRef]
- Southwell, W.H. Pyramid-array surface-relief structures producing antireflection index matching on optical surfaces. J. Opt. Soc. Am. A 1991, 8, 549–553. [Google Scholar] [CrossRef]
- Hobbs, D.S.; MacLeod, B.D.; Riccobono, J.R. Update on the development of high performance anti-reflecting surface relief micro-structures. In Window and Dome Technologies and Materials X; SPIE: Bellingham, WA, USA, 2007; Volume 6545, pp. 242–255. [Google Scholar] [CrossRef]
- Kolasinski, K.W. Silicon nanostructures from electroless electrochemical etching. Curr. Opin. Solid State Mater. Sci. 2005, 9, 73–83. [Google Scholar] [CrossRef]
- Liu, X.; Radfar, B.; Chen, K.; Setala, O.E.; Pasanen, T.P.; Yli-Koski, M.; Savin, H.; Vähänissi, V. Perspectives on Black Silicon in Semiconductor Manufacturing: Experimental Comparison of Plasma Etching, MACE, and Fs-Laser Etching. IEEE Trans. Semicond. Manuf. 2022, 35, 504–510. [Google Scholar] [CrossRef]
- Tan, X.; Tao, Z.; Yu, M.; Wu, H.; Li, H. Anti-reflectance investigation of a micro-nano hybrid structure fabricated by dry/wet etching methods. Sci. Rep. 2018, 8, 7863. [Google Scholar] [CrossRef]
- Koynov, S.; Brandt, M.S.; Stutzmann, M. Black thin film silicon. J. Appl. Phys. 2011, 110, 043537. [Google Scholar] [CrossRef]
- Ma, S.; Liu, S.; Xu, Q.; Xu, J.; Lu, R.; Liu, Y.; Zhong, Z. A theoretical study on the optical properties of black silicon. AIP Adv. 2018, 8, 35010. [Google Scholar] [CrossRef]
- Ayvazyan, G.Y. Modelling of the Porous and Black Silicon Reflection Characteristics. J. Contemp. Phys. 2023, 58, 164–171. [Google Scholar] [CrossRef]
- Cheng, P.; Wang, H.; Müller, B.; Müller, J.; Wang, D.; Schaaf, P. Photo-Thermoelectric Conversion Using Black Silicon with Enhanced Light Trapping Performance far beyond the Band Edge Absorption. ACS Appl. Mater. Interfaces 2021, 13, 1818–1826. [Google Scholar] [CrossRef] [PubMed]
- Mi, G.; Lv, J.; Que, L.; Zhang, Y.; Zhou, Y.; Liu, Z. A Dual Four-Quadrant Photodetector Based on Near-Infrared Enhanced Nanometer Black Silicon. Nanoscale Res. Lett. 2021, 16, 38. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Gao, Z.; Zhang, D.; Tao, K.; Jia, R.; Jiang, S.; Wang, B.; Ji, Z.; Jin, Z.; Liu, X. High-efficiency multi-crystalline black silicon solar cells achieved by additive assisted Ag-MACE. Sol. Energy 2020, 195, 176–184. [Google Scholar] [CrossRef]
- Noor, N.A.M.; Mohamad, S.K.; Hamil, S.S.; Devarajan, M.; Pakhuruddin, M.Z. Effects of etching time towards broadband absorption enhancement in black silicon fabricated by silver-assisted chemical etching. Optik 2019, 176, 586–592. [Google Scholar] [CrossRef]
- Abdulkadir, A.; Aziz, A.b.A.; Pakhuruddin, M.Z. Optimization of etching time for broadband absorption enhancement in black silicon fabricated by one-step electroless silver-assisted wet chemical etching. Optik 2019, 187, 74–80. [Google Scholar] [CrossRef]
- Venkatesan, R.; Arivalagan, M.K.; Venkatachalapathy, V.; Pearce, J.M.; Mayandi, J. Effects of silver catalyst concentration in metal assisted chemical etching of silicon. Mater. Lett. 2018, 221, 206–210. [Google Scholar] [CrossRef]
- Abdulkadir, A.; Isiyaku, A.K.; Isah, M.; Abbas, D.U.; Ismaila, T. Effect of sputtered silver thin film thickness towards morphological and optical properties of black silicon fabricated by two-step silver-assisted wet chemical etching for solar cells application. Phys. Access 2022, 2, 70–77. [Google Scholar] [CrossRef]
- Tang, Q.; Shen, H.; Yao, H.; Jiang, Y.; Li, Y.; Zhang, L.; Ni, Z.; Wei, Q. Formation mechanism of inverted pyramid from sub-micro to micro scale on c-Si surface by metal assisted chemical etching temperature. Appl. Surf. Sci. 2018, 455, 283–294. [Google Scholar] [CrossRef]
- Li, P.; Wei, Y.; Zhao, Z.; Tan, X.; Bian, J.; Wang, Y.; Lu, C.; Liu, A. Highly efficient industrial large-area black silicon solar cells achieved by surface nanostructured modification. Appl. Surf. Sci. 2015, 357, 1830–1835. [Google Scholar] [CrossRef]
- Park, J.E.; Cho, Y.H.; Kang, S.; Hong, H.K.; Kim, D.S.; Lim, D. Effect of Cu-Assisted Chemical Etching for Black Silicon. In Proceedings of the 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion, WCPEC 2018—A Joint Conference of 45th IEEE PVSC, 28th PVSEC and 34th EU PVSEC, Waikoloa, HI, USA, 10–15 June 2018; pp. 1047–1050. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, Y.; Chen, W.; Wu, J.; Chen, Q.; Tang, H.; Wang, Y.; Du, X. Regulation of surface texturization through copper-assisted chemical etching for silicon solar cells. Sol. Energy 2020, 201, 461–468. [Google Scholar] [CrossRef]
- Volovlikova, O.V.; Gavrilov, S.; Lazarenko, P.; Kukin, A.; Dudin, A.; Tarhanov, A. Influence of Etching Regimes on the Reflectance of Black Silicon Films Formed by Ni-Assisted Chemical Etching. Key Eng. Mater. 2019, 806, 24–29. [Google Scholar] [CrossRef]
- Arafat, M.Y.; Islam, M.A.; Bin Mahmood, A.W.; Abdullah, F.; Nur-E-Alam, M.; Kiong, T.S.; Amin, N. Fabrication of Black Silicon via Metal-Assisted Chemical Etching—A Review. Sustainability 2021, 13, 10766. [Google Scholar] [CrossRef]
- Uddin, S.; Hashim, M.R.; Pakhuruddin, M.Z. Influence of Catalyst Thickness and Etching Solution Composition on Properties of Black Silicon Fabricated Via Aluminium-Assisted Chemical Etching. SSRN 2022. [Google Scholar] [CrossRef]
- Uddin, S.; Hashim, R.; Pakhuruddin, M.Z. Aluminium-assisted chemical etching for fabrication of black silicon. Mater. Chem. Phys. 2021, 265, 124469. [Google Scholar] [CrossRef]
- Uddin, S.; Hashim, M.; Pakhuruddin, M.Z. Effects of annealing temperature towards properties of black silicon fabricated by aluminium-assisted chemical etching. Mater. Sci. Semicond. Process. 2021, 133, 105932. [Google Scholar] [CrossRef]
- Ibrahim, I.M.; Noori, Z.M.; Hwail, H.M.; Abdullah, M.M. Morphological and Optical Study of Black P- Silicon Textured in KOH Bath. Diffus. Found. Mater. Appl. 2023, 32, 35–43. [Google Scholar] [CrossRef]
- Arafat, Y.; Islam, M.A.; Bin Mahmood, A.W.; Abdullah, F.; Kiong, T.S.; Amin, N. Study of Black Silicon Wafer through Wet Chemical Etching for Parametric Optimization in Enhancing Solar Cell Performance by PC1D Numerical Simulation. Crystals 2021, 11, 881. [Google Scholar] [CrossRef]
- Zhong, F.; Mo, J.; Li, Y.; Sun, B.; Wu, Z. Optical characteristics of porous silicon photonic crystals prepared on the back surface of silicon wafers. Optik 2020, 201, 163486. [Google Scholar] [CrossRef]
- Hwail, H.M.; Abdullah, M.M. Implementation of P-type black silicon with high aspect ratio for optoelectronics applications. EUREKA Phys. Eng. 2021, 4, 134–140. [Google Scholar] [CrossRef]
- Tang, Y.; Li, R.; Sun, R.; Min, J.; Lin, Q.; Yang, C.; Xie, G. Flexible all-organic photodetectors via universal water-assisted transfer printing. Innovation 2023, 4, 100460. [Google Scholar] [CrossRef]
- Fei, W.; Wu, Z.; Cheng, H.; Xiong, Y.; Chen, W.; Meng, L. Molecular mobility and morphology change of poly(vinyl alcohol) (PVA) film as induced by plasticizer glycerol. J. Polym. Sci. 2023, 61, 1959–1970. [Google Scholar] [CrossRef]
- Hsu, C.-H.; Liu, S.-M.; Wu, W.-Y.; Cho, Y.-S.; Huang, P.-H.; Huang, C.-J.; Lien, S.-Y.; Zhu, W.-Z. Nanostructured pyramidal black silicon with ultra-low reflectance and high passivation. Arab. J. Chem. 2020, 13, 8239–8247. [Google Scholar] [CrossRef]
- Sreejith, K.P.; Sharma, A.K.; Behera, S.; Kumbhar, S.; Basu, P.; Kottantharayil, A. Optimization of MACE black silicon surface morphology in multi-crystalline wafers for excellent opto-electronic properties. In Proceedings of the 2020 47th IEEE Photovoltaic Specialists Conference (PVSC), Calgary, AB, Canada, 15 June 2020; pp. 839–842. [Google Scholar] [CrossRef]
- Chen, K.; Pasanen, T.P.; Vahanissi, V.; Savin, H. Effect of MACE Parameters on Electrical and Optical Properties of ALD Passivated Black Silicon. IEEE J. Photovolt. 2019, 9, 974–979. [Google Scholar] [CrossRef]
- Ray, S.; Mondal, A.; Gangopadhyay, U. Optimization and characterization of silicon nano-grass antireflection layer on textured silicon wafer. Appl. Phys. A 2020, 126, 399. [Google Scholar] [CrossRef]
- Meng, Y.; An, L.; Han, X.; Li, Y.; Hou, C.; Zhang, Q.; Wang, H. Controllable (Ga1−xZnx)(N1−xOx) nanorods grown on black silicon as anodes for water splitting. Appl. Surf. Sci. 2020, 502, 144174. [Google Scholar] [CrossRef]
- Gao, K.; Shen, H.; Liu, Y.; Jiang, Y.; Zheng, C.; Li, Y.; Ren, S.; Huang, C. Enhanced etching rate of black silicon by Cu/Ni Co-assisted chemical etching process. Mater. Sci. Semicond. Process. 2018, 88, 250–255. [Google Scholar] [CrossRef]
- Putra, I.R.; Li, J.-Y.; Chen, C.-Y. 18.78% hierarchical black silicon solar cells achieved with the balance of light-trapping and interfacial contact. Appl. Surf. Sci. 2019, 478, 725–732. [Google Scholar] [CrossRef]
- Ghezzi, F.; Pedroni, M.; Kovač, J.; Causa, F.; Cremona, A.; Anderle, M.; Caniello, R.; Pietralunga, S.M.; Vassallo, E. Unraveling the Mechanism of Maskless Nanopatterning of Black Silicon by CF4/H2 Plasma Reactive-Ion Etching. ACS Omega 2022, 7, 25600–25612. [Google Scholar] [CrossRef]
- Zhang, Z.; Martinsen, T.; Liu, G.; Tayyib, M.; Cui, D.; de Boer, M.J.; Karlsen, F.; Jakobsen, H.; Xue, C.; Wang, K. Ultralow Broadband Reflectivity in Black Silicon via Synergy between Hierarchical Texture and Specific-Size Au Nanoparticles. Adv. Opt. Mater. 2020, 8, 2000668. [Google Scholar] [CrossRef]
- Atteia, F.; Le Rouzo, J.; Denaix, L.; Duché, D.; Berginc, G.; Simon, J.J.; Escoubas, L. Morphologies and optical properties of black silicon by room temperature reactive ion etching. Mater. Res. Bull. 2020, 131, 110973. [Google Scholar] [CrossRef]
- Fung, T.H.; Pasanen, T.P.; Zhang, Y.; Soeriyadi, A.; Vähänissi, V.; Scardera, G.; Payne, D.; Savin, H.; Abbott, M. Improved emitter performance of RIE black silicon through the application of in-situ oxidation during POCl3 diffusion. Sol. Energy Mater. Sol. Cells 2020, 210, 110480. [Google Scholar] [CrossRef]
- Nm, R.; Banobre, A.; Marthi, S.R. Atomic force microscopy studies of formation of black silicon by reactive ion etching. Mater. Sci. Eng. Int. J. 2018, 2, 134–137. [Google Scholar] [CrossRef]
- Yusuf, M.; Herring, G.K.; Neustock, L.T.; Zaman, M.A.; Raghuram, U.; Narasimhan, V.K.; Chia, C.; Howe, R.T. Optimized Deep Reactive-Ion Etching of Nanostructured Black Silicon for High-Contrast Optical Alignment Marks. ACS Appl. Nano Mater. 2021, 4, 7047–7061. [Google Scholar] [CrossRef]
- Zaman, A. Hybrid RF Acoustic Resonators and Arrays with Integrated Capacitive and Piezoelectric Transducers. Ph.D. Thesis, University of South Florida, Tampa, FL, USA, 2020. [Google Scholar]
- Schmelz, D.; Käsebier, T.; Shi, Z.; Cheng, Q.; Sergeev, N.; Schelle, D.; Zeitner, U. Investigations on black silicon nanostructures fabricated by reactive ion etching on highly curved surfaces. Mater. Sci. Semicond. Process. 2023, 165, 107646. [Google Scholar] [CrossRef]
- Zhang, Y. Advanced Characterisation of Black Silicon by Electron Microscopy Techniques. Ph.D. Thesis, The University of New South Wales, Sydney, Australia, 2022. [Google Scholar] [CrossRef]
- Alsolami, A.; Zaman, A.; Rivera, I.F.; Baghelani, M.; Wang, J. Improvement of deep reactive ion etching process for motional resistance reduction of capacitively transduced vibrating resonators. IEEE Sens. Lett. 2018, 2, 1–4. [Google Scholar] [CrossRef]
- Fan, Z.; Cui, D.; Zhang, Z.; Zhao, Z.; Chen, H.; Fan, Y.; Li, P.; Zhang, Z.; Xue, C.; Yan, S. Recent Progress of Black Silicon: From Fabrications to Applications. Nanomaterials 2021, 11, 41. [Google Scholar] [CrossRef]
- Liu, K.; Qu, S.; Zhang, X.; Tan, F.; Bi, Y.; Lu, S.; Wang, Z. Sulfur-doped black silicon formed by metal-assist chemical etching and ion implanting. Appl. Phys. A 2014, 114, 765–768. [Google Scholar] [CrossRef]
- Xiao, G.; Liu, B.; Liu, J.; Xu, Z. The study of defect removal etching of black silicon for solar cells. Mater. Sci. Semicond. Process. 2014, 22, 64–68. [Google Scholar] [CrossRef]
- Lanterne, A.; Desrues, T.; Lorfeuvre, C.; Coig, M.; Torregrosa, F.; Milési, F.; Roux, L.; Dubois, S. Plasma-immersion ion implantation: A path to lower the annealing temperature of implanted boron emitters and simplify PERT solar cell processing. Prog. Photovolt. Res. Appl. 2019, 27, 1081–1091. [Google Scholar] [CrossRef]
- Nguyen, V.T.H.; Jensen, F.; Hübner, J.; Leussink, P.; Jansen, H. On the formation of black silicon in SF6-O2 plasma: The clear, oxidize, remove, and etch (CORE) sequence and black silicon on demand. J. Vac. Sci. Technol. A Vac. Surf. Film. 2020, 38, 043004. [Google Scholar] [CrossRef]
- Hazell, G.; May, P.W.; Taylor, P.; Nobbs, A.H.; Welch, C.C.; Su, B. Studies of black silicon and black diamond as materials for antibacterial surfaces. Biomater. Sci. 2018, 6, 1424–1432. [Google Scholar] [CrossRef] [PubMed]
- Vorobyev, A.; Guo, C. Direct creation of black silicon using femtosecond laser pulses. Appl. Surf. Sci. 2011, 257, 7291–7294. [Google Scholar] [CrossRef]
- Liu, X.; Radfar, B.; Chen, K.; Pasanen, T.P.; Vähänissi, V.; Savin, H. Tailoring Femtosecond-Laser Processed Black Silicon for Reduced Carrier Recombination Combined with >95% Above-Bandgap Absorption. Adv. Photonics Res. 2022, 3, 2100234. [Google Scholar] [CrossRef]
- Zhang, P.; Li, S.; Liu, C.; Wei, X.; Wu, Z.; Jiang, Y.; Chen, Z. Near-infrared optical absorption enhanced in black silicon via Ag nanoparticle-induced localized surface plasmon. Nanoscale Res. Lett. 2014, 9, 519. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.; Wu, Q.; Huang, S.; Deng, G.; Yao, J.; Huang, H.; Zhao, P.; Xu, J. High-performance black silicon photodetectors operating over a wide temperature range. Opt. Mater. 2021, 113, 110874. [Google Scholar] [CrossRef]
- Huang, S.; Deng, G.; Jin, X.; Lu, Y.; Song, G.; Huang, H.; Zhao, P.; Zhang, C.; Yao, J.; Wu, Q.; et al. The dark current suppression of black silicon photodetector by a lateral heterojunction. Opt. Mater. 2020, 110, 110474. [Google Scholar] [CrossRef]
- Heinonen, J.; Modanese, C.; Haarahiltunen, A.; Kettunen, H.; Rossi, M.; Jaatinen, J.; Juntunen, M. Results on radiation hardness of black silicon induced junction photodetectors from proton and electron radiation. Nucl. Instrum. Methods Phys. Res. Sect. A 2020, 977, 164294. [Google Scholar] [CrossRef]
- Nidhi; Jakhar, A.; Uddin, W.; Kumar, J.; Nautiyal, T.; Das, S. Nanolayered Black Arsenic–Silicon Lateral Heterojunction Photodetector for Visible to Mid-Infrared Wavelengths. ACS Appl. Nano Mater. 2020, 3, 9401–9409. [Google Scholar] [CrossRef]
- Li, C.; Zhao, J.-H.; Yang, Y.; Chen, Q.-D.; Chen, Z.-G.; Sun, H.-B. Sub-bandgap photo-response of chromium hyperdoped black silicon photodetector fabricated by femtosecond laser pulses. IEEE Sens. J. 2021, 21, 25695–25702. [Google Scholar] [CrossRef]
- Zhao, X.; Lin, K.; Zhao, B.; Du, W.; Nivas, J.J.; Amoruso, S.; Wang, X. Broadband MSM photodetector based on S-doped black silicon fabricated by femtosecond laser. Appl. Surf. Sci. 2023, 619, 156624. [Google Scholar] [CrossRef]
- Liu, C.; Guo, J.; Yu, L.; Li, J.; Zhang, M.; Li, H.; Shi, Y.; Dai, D. Silicon/2D-material photodetectors: From near-infrared to mid-infrared. Light Sci. Appl. 2021, 10, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Hu, F.; Dai, X.-Y.; Zhou, Z.-Q.; Kong, X.-Y.; Sun, S.-L.; Zhang, R.-J.; Wang, S.-Y.; Lu, M.; Sun, J. Black silicon Schottky photodetector in sub-bandgap near-infrared regime. Opt. Express 2019, 27, 3161–3168. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Wu, Q.; Jia, Z.; Jin, X.; Fu, X.; Huang, H.; Zhang, X.; Yao, J.; Xu, J. Black Silicon Photodetector with Excellent Comprehensive Properties by Rapid Thermal Annealing and Hydrogenated Surface Passivation. Adv. Opt. Mater. 2020, 8, 1901808. [Google Scholar] [CrossRef]
- Huang, S.; Cao, J.; Song, G.; Cao, J.; Lu, Y.; Wu, Q.; Gao, W.; Xu, J. Broadband-Spectral-Responsivity of black silicon photodetector with high gain and sub-bandgap sensitivity by titanium hyperdoping. Opt. Laser Technol. 2024, 171, 110399. [Google Scholar] [CrossRef]
Study Objectives | Methodologies | Results | Applications | Ref. |
---|---|---|---|---|
Studying the properties of temperature-dependent photodetection of sulfur-hyper-doped Si from 10 to 300 K | Fabricated by femtosecond laser | The subject exhibits a peak photoresponsivity that surpasses 10 A/W, a notably elevated specific detectivity exceeding 2 × 1012 Jones across the temperature spectrum, and a broad detection sensitivity ranging from 400 to 1200 nm. Furthermore, the interaction between femtosecond laser pulses and Si occurs with remarkable rapidity, generating hyper-doped carriers at multiple sub-bandgap energy levels, thereby facilitating substantial carrier activity within the temperature range of 10 to 300 K. | Multifunctional optoelectronic devices | [70] |
To decrease high noise | By fabricating a lateral heterojunction | The suppression of the dark current to 783 nA at a bias of −5 volts is notably low compared to the vertical configurations in terms of orders of magnitude, while the external quantum efficiency is recorded at 371%. | Massive integration in optical-electronic systems or flip–chip interconnection frameworks | [71] |
To study the stability of BSi-induced junction photodetectors under high-energy irradiation | By comparing the planar Si-induced junction and the planar Si-pn-junction photodetectors | The integration of the BSi surface and Al2O3-induced junction demonstrates considerable resistance to radiation when exposed to the utilized proton and electron dosages, revealing deterioration solely in the NIR region. Conversely, applying SiO2 passivation results in a marked decline in ultraviolet responsivity. | Space applications | [72] |
Widen the light band from one single bandwidth to broadband. | Using a lateral heterojunction-based photodetector composed of nanolayered BAs-Si | The observed photo-responsivities exhibit significant values across the visible to MIR spectrum, specifically within the wavelength range of 405 nm to 4 μm. | BAs present a potential avenue for actualizing SOI technology that is applicable across a diverse spectrum | [73] |
The maximal photo-responsivity measurements recorded are 72.15 A/W, 930.49 A/W, and 75.2 A/W at wavelengths of 785 nm, 1.05 μm, and 3 μm, respectively. | ||||
Correspondingly, the maximum detectivities are quantified as 3.2 × 109, 4.17 × 1010, and 3.37 × 109 Jones, respectively. | ||||
Furthermore, the system can detect weak optical signals and demonstrates a degree of sensitivity to the polarization of incident radiation. | ||||
To enhance the sub-bandgap absorptance and reduce the ionized electron concentration | By Cr-hyper-doped BSi material in Si-based infrared photodetectors | The BSi layer contains Cr atoms exceeding 1020 cm−3, resulting in a large sub-bandgap absorptance of approximately 60% for 1.31 μm. | communication wavebands | [74] |
The Cr impurity introduces a deep-energy level 0.39 eV below the conduction band bottom, resulting in a very low ionized electron concentration (~1015 cm−3). | ||||
0.57 A/W of responsivity under 1.31 μm light illumination, with a millisecond rise and delay time to infrared light. | ||||
To achieve elevated absorption across an extensive spectral range, encompassing visible to infrared wavelengths. | Using femtosecond laser irradiation in ambient air | Superior infrared absorption under its bandgap, with an absorptance exceeding 85% ranging from 0.2 to 2.5 μm. | Optoelectronic devices. | [75] |
Reviewing recent progress in Si/2DM photodetectors | By focusing on the ultrabroad operation wavelength range and flexible integration, particularly in the NIR to MIR wavelength band | Significant advancements have been realized, encompassing approximately 100 GHz high-bandwidth M-G-M PDs. | Integrating 2DMs with Si microelectronics and photonics presents a compelling technological pathway for developing high-performance, cost-effective PDs, which may significantly influence the advancement of next-generation optoelectronic integrated circuits. | [76] |
Photodetectors based on the ultra-high sensitivity of the PG effect. | ||||
A number of representative wafer-scale image sensors constructed from Si/2DM PDs, along with their corresponding arrays, have also been demonstrated. | ||||
The 2DM PDs fulfill the pressing requirements of silicon photonics through their cost-effectiveness, high performance, and broadband photodetection capabilities. | ||||
To enhance the capturing of the sub-bandgap light and create a photocurrent | By preparing Si photodetector based on a BSi/Ag NPs Schottky junction | The BSi/Ag NPs photodetector demonstrated significantly improved responsivities compared to a planar-Si/Ag thin-film Schottky photodetector and demonstrates responsivity values of 0.277 mA/W and 0.226 mA/W at a voltage of 3 V for light wavelengths of 1319 nm and 1550 nm, respectively. | Integrated Si photonics | [77] |
To enhance the responsivity of wide-bandgap semiconductors and improve the signal-to-noise ratio while minimizing the dark current | By utilizing rapid thermal annealing and hydrogenated surface passivation were used | A notable sub-bandgap responsivity of 0.80 A/W was observed for a wavelength of 1550 nm at an applied voltage of 20 V under ambient temperature conditions. |
| [78] |
Using the 400–1700 nm spectral range, the highest responsivity at 1080 nm was 1097.60 A/W under 20 V. | ||||
The detectivity exhibited is remarkably high (1.22 × 1014 Jones at −5 V), attributable to the application of post-processing techniques and a reduction in dark current, measured at 7.8 μA under −5 V. | ||||
To introduce a highly comprehensive BSi photodetector characterized by broadband spectral responsivity and elevated gain. | Via using hyper-doping of Ti in Si of the BSi photodetector | The response to incident light ranges from 400 nm to 1550 nm. | Optoelectronic devices | [79] |
A notable responsivity of 40.59 A/W was observed at a wavelength of 950 nm under a bias of −5 V. | ||||
A consistent sub-bandgap photocurrent at a wavelength of 1550 nm. |
Method | Light Absorption Efficiency | Fabrication Cost | Complexity | Scalability | Reference |
---|---|---|---|---|---|
Metal-Assisted Chemical Etching (MACE) | High (can achieve >90% light absorption) | Low (uses common chemicals like Ag, Cu) | Moderate (dependent on control over nanoparticle formation) | High (scalable for large surfaces, suitable for industrial use) | [24,25,26,27] |
Reactive Ion Etching (RIE) | Very High (<1% reflectance over a broad range) | Moderate (requires specific gas setups) | High (requires precise control of etching parameters) | Medium (limited scalability due to equipment needs) | [50,51,52,53] |
Electrochemical Etching | High (1% reflectance in the visible spectrum) | Low (inexpensive setup) | Low (simpler than RIE or DRIE) | Medium (scalability depends on etching uniformity) | [40,41] |
Deep Reactive Ion Etching (DRIE) | Very High (nanopillars enhance absorption) | High (requires advanced machinery) | Very High (complex cyclic process) | Low (best suited for specialized applications) | [54,55] |
Laser Ablation | High (can tailor absorption for specific wavelengths) | Moderate (cost of laser systems) | Moderate (requires precise laser control) | Medium (suitable for patterning small areas) | [65,66] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alsolami, A.; Hussain, H.; Noor, R.; AlAdi, N.; Almalki, N.; Kurdi, A.; Tabbakh, T.; Zaman, A.; Alfihed, S.; Wang, J. Recent Advances in Black Silicon Surface Modification for Enhanced Light Trapping in Photodetectors. Appl. Sci. 2024, 14, 9841. https://doi.org/10.3390/app14219841
Alsolami A, Hussain H, Noor R, AlAdi N, Almalki N, Kurdi A, Tabbakh T, Zaman A, Alfihed S, Wang J. Recent Advances in Black Silicon Surface Modification for Enhanced Light Trapping in Photodetectors. Applied Sciences. 2024; 14(21):9841. https://doi.org/10.3390/app14219841
Chicago/Turabian StyleAlsolami, Abdulrahman, Hadba Hussain, Radwan Noor, Nourah AlAdi, Nada Almalki, Abdulaziz Kurdi, Thamer Tabbakh, Adnan Zaman, Salman Alfihed, and Jing Wang. 2024. "Recent Advances in Black Silicon Surface Modification for Enhanced Light Trapping in Photodetectors" Applied Sciences 14, no. 21: 9841. https://doi.org/10.3390/app14219841
APA StyleAlsolami, A., Hussain, H., Noor, R., AlAdi, N., Almalki, N., Kurdi, A., Tabbakh, T., Zaman, A., Alfihed, S., & Wang, J. (2024). Recent Advances in Black Silicon Surface Modification for Enhanced Light Trapping in Photodetectors. Applied Sciences, 14(21), 9841. https://doi.org/10.3390/app14219841