Urban Seismic Networks: A Worldwide Review
Abstract
:1. Introduction
2. USN Catalogue
2.1. Geographical Distribution
ID | Country | City-Met. Area | Objective 1 | Objective 2 | Objective 3 | Source (s) |
---|---|---|---|---|---|---|
1 | Turkey | Bursa | Site effect research | [13] | ||
2 | Greece | Thessaloniki | Site effect research | [14] | ||
3 | USA | Anchorage | Earthquake monitoring | Site effect research | [15,16] | |
4 | Colombia | Medellin | Earthquake monitoring | Early warning | [17] | |
5 | Netherlands | Groningen | Earthquake monitoring | Other | [18,19,20,21] | |
6 | Japan | Yokohama | Seismic intensity mapping | Earthquake monitoring | Post Event damage assessment | [22,23,24] |
7 | USA | Oakland | Seismic intensity mapping | [25] | ||
8 | Colombia | Bogotà | Site effect research | Post Event damage assessment | Seismic intensity mapping | [26,27] |
9 | Colombia | Armenia | Earthquake monitoring | [28,29] | ||
10 | Turkey | Izmit | Earthquake monitoring | [30] | ||
11 | Greece | Athens | Earthquake monitoring | [31,32] | ||
12 | Kazakhstan | Almaty | Earthquake monitoring | [33] | ||
13 | Germany | Cologne | Site effect research | [34] | ||
14 | Usa | Spokane | Earthquake monitoring | [35] | ||
15 | Turkey | Istanbul | Post Event damage assessment | Early warning | Seismic intensity mapping | [36,37] |
16 | Canada | Ottawa | Site effect research | Earthquake monitoring | [38] | |
17 | Romania | Bucharest | Seismic intensity mapping | Earthquake monitoring | [39] | |
18 | Turkey | Bursa | Earthquake monitoring | [40] | ||
19 | Romania | Bucharest | Earthquake monitoring | Site effect research | [41] | |
20 | Canada | Vancouver | Seismic intensity mapping | Site effect research | [42] | |
21 | Japan | Tokyo | Other | Seismic intensity mapping | Site effect research | [43,44,45] |
22 | USA | Anchorage | structural monitoring | Site effect research | [46,47,48,49] | |
23 | Iran | Bam | Site effect research | [50] | ||
24 | Italy | Potenza | Site effect research | [51] | ||
25 | Iran | Tabriz | Site effect research | [52] | ||
26 | Iran | Tehran | Earthquake monitoring | [53] | ||
27 | USA | Portland | Site effect research | [54] | ||
28 | Switzerland | Basel | Earthquake monitoring | Other | Site effect research | [55,56,57,58] |
29 | Mexico | Mexico City | Earthquake monitoring | Site effect research | [59] | |
30 | Colombia | Bogotà | Earthquake monitoring | [29] | ||
31 | Indonesia | Yogyakarta | Site effect research | [60] | ||
32 | Lebanon | Beirut | Site effect research | [61] | ||
33 | India | Delhi | Site effect research | [62,63,64,65] | ||
34 | Iceland | Hveragerdi | Earthquake monitoring | Site effect research | [66] | |
35 | Taiwan | Taipei | Site effect research | Earthquake monitoring | [67] | |
36 | Japan | Tokyo | Early warning | [68] | ||
37 | Turkey | Istanbul | Site effect research | Earthquake monitoring | [37] | |
38 | China | Chengdu | Earthquake monitoring | Seismic intensity mapping | [69] | |
39 | Chile | Santiago de Chile | Site effect research | [70] | ||
40 | India | Anjar | Site effect research | Earthquake monitoring | [71] | |
41 | Turkey | Izmir | Seismic intensity mapping | Site effect research | Post Event damage assessment | [72] |
42 | Kyrgyzstan | Bishkek | Site effect research | [73,74,75] | ||
43 | Turkey | Istanbul | Early warning | [76,77] | ||
44 | Canada | Vancouver | structural monitoring | Post Event damage assessment | [78] | |
45 | Italy | Norcia | Site effect research | [79,80] | ||
46 | Uzbekistan | Tashkent | Site effect research | [75] | ||
47 | Tajikistan | Dushanbe | Site effect research | [75,81] | ||
48 | Ecuador | Quito | Earthquake monitoring | Site effect research | [82] | |
49 | Taiwan | Taiwan | Early warning | Seismic intensity mapping | [83,84,85] | |
50 | New Zealand | Christchurch | Earthquake monitoring | Site effect research | [86,87] | |
51 | USA | Los Angeles | Seismic intensity mapping | structural monitoring | Early warning | [88,89] |
52 | Mexico | Jalisco | Earthquake monitoring | [90] | ||
53 | Kyrgyzstan | Karakol | Site effect research | [75,91] | ||
54 | China | Zhaotong | Early warning | [92] | ||
55 | UAE | Dubai | Seismic intensity mapping | [93] | ||
56 | Tajikistan | Khorog | Site effect research | [75] | ||
57 | China | Fujian | Early warning | [94] | ||
58 | Greece | Lefkada | Seismic intensity mapping | Site effect research | [95,96] | |
59 | UAE | Abu Dhabi | Post Event damage assessment | structural monitoring | [97,98] | |
60 | Switzerland | St. Gallen | Earthquake monitoring | [99] | ||
61 | Kyrgyzstan | Naryn | Site effect research | [75,100] | ||
62 | Indonesia | Jakarta | Other | [101] | ||
63 | Malta | Malta | Earthquake monitoring | [102] | ||
64 | Greece | Kalochori | Earthquake monitoring | Site effect research | structural monitoring | [103] |
65 | Kazakhstan | Almaty | Site effect research | [75] | ||
66 | USA | Washington | Site effect research | [104] | ||
67 | Algeria | Chlef | Site effect research | [105] | ||
68 | USA | Los Angeles | structural monitoring | Post Event damage assessment | Site effect research | [106] |
69 | United Kingdom | London | Other | [107] | ||
70 | USA | Ithaca | Earthquake monitoring | [108] | ||
71 | Italy | Perugia-Foligno | Earthquake monitoring | Seismic intensity mapping | [109] | |
72 | Ecuador | Quito | Site effect research | [110] | ||
73 | New Zealand | Dunedin | Earthquake monitoring | Other | [111] | |
74 | South Korea | Gyeongju | Early warning | Earthquake monitoring | [112] | |
75 | Italy | Acquasanta Terme | Site effect research | Earthquake monitoring | [113,114] | |
76 | France | Rhône Velley | Site effect research | [115] | ||
77 | South Korea | Gyeongju | Earthquake monitoring | [112] | ||
78 | USA | Uni. Cal. Berkeley | Earthquake monitoring | Early warning | [116] | |
79 | USA | Los Angeles | structural monitoring | Post Event damage assessment | [117] | |
80 | Greece | Chania | Other | Seismic intensity mapping | [118] | |
81 | China | Zigong | Site effect research | [119] | ||
82 | Taiwan | Taipei | Site effect research | Earthquake monitoring | [120] | |
83 | India | Ahmedabad | Site effect research | [121] | ||
84 | Spain | Lorca | Seismic intensity mapping | [122] | ||
85 | USA | Humboldt State Uni. | Earthquake monitoring | Early warning | [116] | |
86 | Japan | Tokio | Earthquake monitoring | [123] | ||
87 | Macedonia | Ohrid | Site effect research | structural monitoring | [124] | |
88 | South Korea | Pohang | Earthquake monitoring | [125] | ||
89 | South Korea | Gyeongju | Earthquake monitoring | [126] | ||
90 | Italy | Acireale | Seismic intensity mapping | structural monitoring | [127,128] | |
91 | Italy | Catania | Early warning | structural monitoring | Seismic intensity mapping | [129,130,131] |
92 | Italy | Ragusa | Seismic intensity mapping | structural monitoring | [8,132] | |
93 | Italy | Messina | Seismic intensity mapping | structural monitoring | [8,132] | |
94 | USA | Salt Lake City | Other | [133] | ||
95 | Finland | Helsinki | Earthquake monitoring | Other | [134] | |
96 | Singapore | Singapore | Earthquake monitoring | [135] | ||
97 | Greece | Athens | Earthquake monitoring | [32] | ||
98 | Spain | Barcelona | Other | [136] | ||
99 | Switzerland | Lucerne | Site effect research | [137] | ||
100 | Finland | Helsinki | Earthquake monitoring | Other | [138] | |
101 | Romania | Bucharest | structural monitoring | [139] | ||
102 | Switzerland | Sion | Earthquake monitoring | Site effect research | [140] | |
103 | Italy | Camerino | Post Event damage assessment | Seismic intensity mapping | Site effect research | [141,142] |
104 | Norway | Oslo | Earthquake monitoring | [143] | ||
105 | Kyrgyzstan | Bishkek | Early warning | [144] |
ID | Nodes | Area km2 | Density Log (Nodes/km2) | Start Year | Duration Years | Sensor Type | Transmission |
---|---|---|---|---|---|---|---|
1 | 6 | 375 | −1.80 | 1992 | 5.9 | Force Balance Accelerometer | No trasmission |
2 | 10 | 28 | −0.45 | 1993 | 0.25 | Velocimeter | No trasmission |
3 | 37 | 500 | −1.13 | 1995 | 28 | Force Balance Accelerometer | Real-time |
4 | 32 | 800 | −1.40 | 1996 | 21 | Force Balance Accelerometer | No info |
5 | 163 | 1600 | −0.99 | 1997 | 26 | Velocimeter and accelerometer | No info |
6 | 159 | 600 | −0.58 | 1997 | 13.5 | Force Balance Accelerometer | Real-time |
7 | 13 | 120 | −0.97 | 1998 | 7 | Force Balance Accelerometer | Near real-time |
8 | 32 | 500 | −1.19 | 1999 | 3 | Force Balance Accelerometer | Real-time |
9 | 10 | 19,000 | −3.28 | 1999 | 19 | Velocimeter and accelerometer | Real-time |
10 | 10 | 3600 | −2.56 | 1999 | 0.17 | Velocimeter | No trasmission |
11 | 8 | 200 | −1.40 | 1999 | 0.27 | Velocimeter and accelerometer | No trasmission |
12 | 15 | 400 | −1.43 | 2000 | 10 | Force Balance Accelerometer | No info |
13 | 44 | 660 | −1.18 | 2001 | 0.14 | Velocimeter | No trasmission |
14 | 6 | 130 | −1.34 | 2001 | 0.08 | Velocimeter | No info |
15 | 110 | 1500 | −1.13 | 2002 | 5 | Force Balance Accelerometer | Near real-time |
16 | 14 | 720 | −1.71 | 2002 | NA | Force Balance Accelerometer | Real-time |
17 | 13 | 45 | −0.54 | 2003 | 8 | Force Balance Accelerometer | Near real-time |
18 | 11 | 5000 | −2.66 | 2003 | 0.5 | Velocimeter | No info |
19 | 34 | 620 | −1.26 | 2003 | 0.8 | Velocimeter | No trasmission |
20 | 21 | 60 | −0.46 | 2004 | NA | Force Balance Accelerometer | Near real-time |
21 | 3800 | 3100 | 0.09 | 2004 | 19 | MEMS Accelerometer | Real-time |
22 | 43 | 2 | 1.33 | 2004 | 19 | Velocimeter and accelerometer | Real-time |
23 | 8 | 10 | −0.10 | 2004 | 0.14 | Velocimeter | No trasmission |
24 | 11 | 12 | −0.04 | 2004 | 0.66 | Velocimeter | No trasmission |
25 | 11 | 70 | −0.80 | 2004 | 0.23 | Velocimeter | No info |
26 | 24 | 4100 | −2.23 | 2004 | 14 | Velocimeter | No info |
27 | 16 | 320 | −1.30 | 2005 | 13 | Force Balance Accelerometer | No info |
28 | 21 | 75 | −0.55 | 2005 | 12.2 | Force Balance Accelerometer | Real-time |
29 | 28 | 3700 | −2.12 | 2006 | 17 | Velocimeter | Real-time |
30 | 9 | 720 | −1.90 | 2006 | 17 | Velocimeter | Real-time |
31 | 15 | 1650 | −2.04 | 2006 | 0.25 | Velocimeter | No trasmission |
32 | 10 | 20 | −0.30 | 2006 | 0.5 | Velocimeter | No trasmission |
33 | 20 | 1550 | −1.89 | 2007 | 6.9 | Force Balance Accelerometer | Real-time |
34 | 14 | 3 | 0.67 | 2007 | 15.2 | MEMS Accelerometer | Near real-time |
35 | 12 | 330 | −1.44 | 2008 | 12 | Force Balance Accelerometer | Real-time |
36 | 39 | 360 | −0.97 | 2008 | 3 | Velocimeter and accelerometer | Near real-time |
37 | 13 | 25 | −0.28 | 2008 | 8 | Force Balance Accelerometer | Real-time |
38 | 80 | 18,000 | −2.35 | 2008 | 6 | Force Balance Accelerometer | Real-time |
39 | 8 | 0.3 | 1.43 | 2008 | 0.16 | Velocimeter | No trasmission |
40 | 3 | 0.15 | 1.30 | 2008 | 0.25 | Velocimeter | No trasmission |
41 | 16 | 1000 | −1.80 | 2008 | 10 | Velocimeter and accelerometer | Real-time |
42 | 19 | 1000 | −1.72 | 2008 | 0.25 | Velocimeter | No trasmission |
43 | 20 | 20 | 0.00 | 2009 | 2 | MEMS Accelerometer | Real-time |
44 | 170 | 15,000 | −1.95 | 2009 | 6 | MEMS Accelerometer | Real-time |
45 | 15 | 20 | −0.12 | 2009 | 0.38 | Velocimeter | No trasmission |
46 | 5 | 300 | −1.78 | 2009 | 0.25 | Velocimeter | No trasmission |
47 | 45 | 280 | −0.79 | 2009 | 0.6 | Velocimeter | No trasmission |
48 | 18 | 570 | −1.50 | 2009 | 13.25 | Force Balance Accelerometer | No trasmission |
49 | 636 | 36,200 | −1.76 | 2010 | 13 | Low cost MEMS | Near real-time |
50 | 180 | 2250 | −1.10 | 2010 | 2.5 | Low cost MEMS | Near real-time |
51 | 500 | 1400 | −0.45 | 2011 | 12 | Low cost MEMS | Near real-time |
52 | 28 | 65,000 | -3.37 | 2011 | 6 | Velocimeter | Real-time |
53 | 16 | 240 | −1.18 | 2011 | 0.29 | Velocimeter | No trasmission |
54 | 12 | 0.1 | 2.08 | 2012 | 1 | MEMS Accelerometer | Real-time |
55 | 5 | 320 | −1.81 | 2012 | 10.7 | Force Balance Accelerometer | Real-time |
56 | 12 | 20 | −0.22 | 2012 | 0.27 | Velocimeter | No trasmission |
57 | 125 | 120,000 | −2.98 | 2012 | 10.1 | Velocimeter and accelerometer | Real-time |
58 | 21 | 9 | 0.37 | 2013 | 9 | Low cost MEMS | Real-time |
59 | 61 | 970 | −1.20 | 2013 | 2 | Force Balance Accelerometer | Real-time |
60 | 7 | 350 | −1.70 | 2013 | 1.4 | Force Balance Accelerometer | Real-time |
61 | 16 | 24 | −0.18 | 2013 | 0.33 | Velocimeter | No trasmission |
62 | 96 | 500 | −0.72 | 2013 | 0.41 | Velocimeter | No info |
63 | 8 | 315 | −1.60 | 2014 | 9 | Velocimeter | Real-time |
64 | 7 | 13 | −0.27 | 2014 | 3 | Force Balance Accelerometer | Real-time |
65 | 16 | 800 | −1.70 | 2014 | 0.25 | Velocimeter | No trasmission |
66 | 27 | 170 | −0.80 | 2014 | 0.8 | Velocimeter | No info |
67 | 9 | 10 | −0.05 | 2014 | 0.82 | Velocimeter | No trasmission |
68 | 300 | 480 | −0.20 | 2015 | 8 | Low cost MEMS | Near real-time |
69 | 5 | 15 | −0.48 | 2015 | 0.15 | Velocimeter | No trasmission |
70 | 12 | 30 | −0.40 | 2015 | 1 | Velocimeter | No trasmission |
71 | 20 | 1000 | −1.70 | 2016 | 5 | Low cost MEMS | No trasmission |
72 | 20 | 330 | −1.22 | 2016 | 2.16 | Velocimeter | No trasmission |
73 | 14 | 110 | −0.90 | 2016 | 0.13 | Velocimeter | No trasmission |
74 | 6 | 50 | −0.92 | 2016 | 0.08 | Low cost MEMS | Real-time |
75 | 5 | 3 | 0.22 | 2016 | 0.58 | Velocimeter and accelerometer | Real-time |
76 | 3 | 5 | −0.22 | 2016 | 0.85 | Velocimeter | No info |
77 | 27 | 1200 | −1.65 | 2016 | 0.3 | Velocimeter | No trasmission |
78 | 9 | 1.5 | 0.78 | 2016 | 2 | Low cost MEMS | Real-time |
79 | 220 | 1 | 2.34 | 2017 | 6 | Low cost MEMS | Real-time |
80 | 11 | 35 | −0.50 | 2017 | 6 | MEMS Accelerometer | Real-time |
81 | 8 | 0.15 | 1.73 | 2017 | 2 | Force Balance Accelerometer | No info |
82 | 140 | 3450 | −1.39 | 2017 | 6 | Velocimeter | Real-time |
83 | 12 | 320 | −1.43 | 2017 | 0.08 | Velocimeter | No info |
84 | 11 | 15 | −0.13 | 2017 | 5.8 | Low cost MEMS | Real-time |
85 | 13 | 0.8 | 1.21 | 2017 | 2 | Low cost MEMS | Real-time |
86 | 300 | 12000 | −1.60 | 2017 | 5.7 | Force Balance Accelerometer | Real-time |
87 | 8 | 1.5 | 0.73 | 2017 | 0.5 | Force Balance Accelerometer | No info |
88 | 13 | 45 | −0.54 | 2017 | 1.4 | Velocimeter | No info |
89 | 200 | 3600 | −1.26 | 2017 | 3.3 | Velocimeter | Real-time |
90 | 7 | 2 | 0.54 | 2018 | 2 | Low cost MEMS | Near real-time |
91 | 20 | 5 | 0.60 | 2018 | 3 | MEMS Accelerometer | Real-time |
92 | 12 | 3 | 0.60 | 2018 | 5 | Low cost MEMS | Near real-time |
93 | 5 | 1 | 0.70 | 2018 | 5 | Low cost MEMS | Near real-time |
94 | 32 | 3 | 1.03 | 2018 | 0.09 | Velocimeter | No info |
95 | 112 | 200 | −0.25 | 2018 | 0.3 | Velocimeter | No trasmission |
96 | 88 | 1000 | −1.06 | 2019 | 0.08 | Velocimeter | No trasmission |
97 | 6 | 325 | −1.73 | 2019 | 0.08 | Velocimeter | No info |
98 | 19 | 10 | 0.28 | 2019 | 1 | Velocimeter and accelerometer | Near real-time |
99 | 9 | 17 | −0.28 | 2019 | 0.67 | Velocimeter | No trasmission |
100 | 113 | 450 | −0.60 | 2019 | 0.7 | Velocimeter | No trasmission |
101 | 15 | 25 | −0.22 | 2020 | 2.5 | Low cost MEMS | Real-time |
102 | 6 | 21 | −0.54 | 2020 | 2.13 | Velocimeter and accelerometer | Real-time |
103 | 14 | 10 | 0.15 | 2021 | 2 | Low cost MEMS | Near real-time |
104 | NA | 450 | 2021 | 2 | Low cost MEMS | Real-time | |
105 | 32 | 150 | −0.67 | NA | NA | Low cost MEMS | Real-time |
2.2. Objectives
- Earthquake early warning. USNs are usually designed to provide a warning in the very first moments after the occurrence of a strong earthquake. Such systems are based on the early processing of the seismic signals recorded at the network nodes by means of opportune algorithms. The two possible approaches to this task are the “network- or regional-based” and the “on site (or single station)” approaches. The on-site approach is the one most commonly adopted by USNs devoted to earthquake early warning. It does not require an extended network, and the alert time is reduced compared to the regional approach, which need not necessarily include the accurate location of the event. For this reason, unlike the regional approach, low-cost sensors can be employed and transmission can even be neglected [146]. In particular, on-site early warning systems are based on the detection of P-wave arrivals and estimation of the intensity of the incoming ground shaking in a few fractions of second, which is done by taking advantage of the difference in velocity between the P and S waves [147,148,149].
- Earthquake monitoring. USNs are frequently established to monitor earthquakes in urban areas. they are sometimes implemented as permanent networks, while other times they are expressly temporary and established only after the main earthquake of a sequence with the main objective of monitoring any following aftershocks.
- Post-event damage assessment. This group of networks includes those specially planned for the implementation of systems that function to estimate earthquake damage, casualties, or losses in short time after an earthquake [150,151]. They are often referred to as “rapid response systems” because they account for their task immediately after an earthquake. They can quickly support the creation of basic seismic intensity maps.
- Seismic intensity mapping. Under this definition, we have grouped the networks which provide measurements of the ground motion intensity at the nodes of the urban network after an earthquake. These measurements can be straightforwardly used to map the distribution of the peak ground shaking for a given event as well as to produce products known as shakemaps. These depict the spatial distribution of peak ground motion, usually taking into account the recorded peak ground acceleration (PGA) or peak-ground velocity (PGV) together with information about the event source (e.g., magnitude, location) and the local site amplification and attenuation laws [152,153]. The distribution of ground motion shaking intensity is a very useful parameter for evaluating the potential damage. While this objective may partially overlap with the previously listed objectives, it is distinguished by its timing, as the action need not necessarily take place immediately after the earthquake.
- Site effect research. Among the factors that control the expected ground motion (i.e., the seismic hazard), site effects play a major role. Site effects can be generally defined as alterations to the earthquake’s characteristics in terms of amplitude, frequency, and duration of the wave field due to specific stratigraphic or topographic conditions [154]. Such effects can be significant, and can be evaluated with a variety of sensors and methods [155,156,157,158]. Their assessment is critical in the built environment, and is the reason behind the implementation of several USNs (usually temporary ones) worldwide.
- Structural health monitoring. Earthquakes can affect the state of health of buildings and structures in general. Certain structures can be considered strategic because of their function or value. Networks conceived to monitor the vibrations of such strategic buildings and their behaviour over time represent fundamental tools to establish protection strategies and preserve their functions, and possibly their cultural value, in case of damaging earthquakes [8].
2.3. Duration
2.4. Coverage
2.5. Technical Characteristics
2.5.1. Sensors
2.5.2. Transmission
Type | Pros | Cons | |
---|---|---|---|
SENSORS | Velocimeters | Wide range of devices (short-period to broad-band) and versatility. Generally higher sensitivity and lower self-noise level. High robustness and durability, suitable for long-term applications. Reliable reconstruction of the waveform in a wide frequency range. | Expensive and unaffordable for the implementation of a dense USN. Usually require quieter sites for the installation (vaults or post-hole configurations would be preferable, especially for broad-band sensors). Signals can saturate in case of strong motion. |
Force Balance Accelerometers | High sensitivity. High robustness and durability: suitable for long-term applications. Signals do not saturate in case of strong motion. | Relatively expensive. Poor capability to record weak motions. | |
MEMS sensors | Low unit cost, small size, and light weight, make them suitable for implementing a dense USN with a high number of sensors. Possible digital output; no need for a data-logger. Suitable for installations in noisy sites or buildings. | Generally low sensitivity and resolution and higher self-noise level. Usually limited durability and need for greater maintenance and replacement of non-functioning parts. | |
TRANSMISSION | No transmission | Agile solution. No extra power consumption. Easier installations. No need for remote acquisition system. Suitable for temporary observations. | Fixed storage capacity. Periodic on-site maintenance to gather data. No telemetry of the monitoring sites. Early on-site elaborations can be exploited only locally. No possibility of checking the correct functioning of the system, without on-site visits. |
Near or real-time | Immediate availability of data for end users. Extendable remote storage capacity. Possibility to share early on-site elaborations. Possibility of using the telemetry of the monitoring sites. Data back-up. | Higher power consumption. Remote storage infrastructure is required. Costs for data transmission can be relevant for large amounts of data, i.e., numerous devices with continuous recording at high sampling rates and for a long time. |
2.6. Network Geometry
3. Concluding Remarks
Objective | Sensors | Transmission | Duration | Notes |
---|---|---|---|---|
Early Warning | All types can be theoretically used. The literature indicates that, due to their characteristics (c.f. Table 3), MEMS sensors are preferable. | Real-time transmission is necessary for more reliable systems based on the “on-site” approach. It is indispensable for the “network-based” approach. | To be planned as an open-ended application. | USNs are suitable for implementing the “on-site” early warning approach in urban areas and for critical infrastructure. |
Earthquake Monitoring | Velocimeters are the most commonly employed sensors. According to specific purposes (e.g., the monitoring of strong local seismicity), force balance accelerometers or MEMS sensors can be suitable for integrating surveillance networks. | Data transmission is always recommended, especially for long-term monitoring campaigns (see Table 3). | Months to years, as well as a long-term task according to the specific USN’s needs. | Integration between the capabilities of different types of sensors at different nodes, or even at the same sites, can be exploited. |
Post-Event Damage Assessment | Accelerometers are the most adapted to measuring strong motion. | Transmission is required. | To be planned as an open-ended application. | Regular geometries are recommended. |
Seismic Intensity Mapping | Accelerometers are the most adapted to measuring strong motion. | Data transmission is required. | To be planned as an open-ended application. | Transmission can be essential for generating real-time shakemaps. |
Site Effects Research | Velocimeters are usually adopted. The natural period of the sensor affects the bandwidth of the results. | Data transmission is not essential, though it can be useful for the reasons listed in Table 3. | The USN can be planned as a short-term application. | The distribution of USN nodes must be homogeneous and representative of the soil types and stratigraphic conditions. |
Structural Health Monitoring | MEMS sensors are the most widely adopted; they represent a good trade-off between cost and quality. A free-field installation as a reference is recommended. | Data transmission is recommended. | To be planned as an open-ended application. | Critical infrastructure (bridges, distribution networks, etc.) and/or strategic buildings (hospitals, schools, fire stations, etc.) should represent the primary targets. |
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
USN | Urban Seismic Networks |
MEMS | Micro-Electro-Mechanical Systems |
DAS | Distributed Acoustic Sensing |
References
- Trnkoczy, A.; Havskov, J.; Ottemöller, L. Seismic networks. In New Manual of Seismological Observatory Practice (NMSOP); Deutsches GeoForschungsZentrum GFZ: Potsdam, Germany, 2009; pp. 1–60. [Google Scholar]
- Oliveira, C.S. The main developments of Seismology and Earthquake Engineering since the early 1700s and the new challenges for a sustainable society. Bull. Earthq. Eng. 2022, 20, 4697–4863. [Google Scholar] [CrossRef]
- Ringler, A.T.; Anthony, R.E.; Aster, R.; Ammon, C.; Arrowsmith, S.; Benz, H.; Ebeling, C.; Frassetto, A.; Kim, W.Y.; Koelemeijer, P.; et al. Achievements and prospects of global broadband seismographic networks after 30 years of continuous geophysical observations. Rev. Geophys. 2022, 60. [Google Scholar] [CrossRef]
- United Nations, Department of Economic and Social Affairs. World Urbanization Prospects: The 2018 Revision; United Nations: New York, NY, USA, 2019. [Google Scholar]
- Holzer, T.L.; Savage, J.C. Global earthquake fatalities and population. Earthq. Spectra 2013, 29, 155–175. [Google Scholar] [CrossRef]
- Dollet, C.; Guéguen, P. Global occurrence models for human and economic losses due to earthquakes (1967–2018) considering exposed GDP and population. Nat. Hazards 2022, 110, 349–372. [Google Scholar] [CrossRef]
- So, E.; Platt, S. Earthquakes and their socio-economic Consequences. In Encyclopedia of Earthquake Engineering; Springer: Berlin/Heidelberg, Germany, 2014; pp. 1–26. [Google Scholar]
- D’Alessandro, A.; Costanzo, A.; Ladina, C.; Buongiorno, F.; Cattaneo, M.; Falcone, S.; La Piana, C.; Marzorati, S.; Scudero, S.; Vitale, G.; et al. Urban seismic networks, structural health and cultural heritage monitoring: The national earthquakes observatory (INGV, Italy) experience. Front. Built Environ. 2019, 5, 127. [Google Scholar] [CrossRef]
- Cochran, E.S.; Lawrence, J.F.; Christensen, C.; Jakka, R.S. The quake-catcher network: Citizen science expanding seismic horizons. Seismol. Res. Lett. 2009, 80, 26–30. [Google Scholar] [CrossRef]
- Luetgert, J.; Evans, J.; Hamilton, J.; Hutt, C.; Jensen, E.; Oppenheimer, D. NetQuakes-A new approach to urban strong-motion seismology. In Proceedings of the AGU Fall Meeting Abstracts, San Francisco, CA, USA, 14–18 December 2009; Volume 2009, p. S11B–1707. [Google Scholar]
- Calais, E.; Symithe, S.; Monfret, T.; Delouis, B.; Lomax, A.; Courboulex, F.; Ampuero, J.P.; Lara, P.; Bletery, Q.; Chèze, J.; et al. Citizen seismology helps decipher the 2021 Haiti earthquake. Science 2022, 376, 283–287. [Google Scholar] [CrossRef]
- Giardini, D.; Grünthal, G.; Shedlock, K.M.; Zhang, P. The GSHAP global seismic hazard map. Ann. Geofis. 1999, 42, 1225–1230. [Google Scholar] [CrossRef]
- Akyol, N.; Akıncı, A.; Eyidoǧan, H. Site amplification of S-waves in Bursa City and its vicinity, Northwestern Turkey: Comparison of different approaches. Soil Dyn. Earthq. Eng. 2002, 22, 579–587. [Google Scholar] [CrossRef]
- Lachet, C.; Hatzfeld, D.; Bard, P.Y.; Theodulidis, N.; Papaioannou, C.; Savvaidis, A. Site effects and microzonation in the city of Thessaloniki (Greece) comparison of different approaches. Bull. Seismol. Soc. Am. 1996, 86, 1692–1703. [Google Scholar] [CrossRef]
- Dutta, U.; Yang, Z. Anchorage Strong Motion Network: Maintenance and Data Archival; University of Alaska Anchorage: Anchorage, AK, USA, 2010. [Google Scholar]
- Thornley, J.; Douglas, J.; Dutta, U.; Yang, Z. Site Response Analysis of Anchorage, Alaska Using Generalized Inversions of Strong-Motion Data (2004–2019). Pure Appl. Geophys. 2022, 179, 499–525. [Google Scholar] [CrossRef]
- Casas, J.D.H.; Monsalve, G. Geological inferences about the upper crustal configuration of the Medellin–Aburra Valley (Colombia) using strong motion seismic records. Geod. Geodyn. 2018, 9, 67–76. [Google Scholar] [CrossRef]
- KNMI. Netherlands Seismic and Acoustic Network; Royal Netherlands Meteorological Institute (KNMI): De Bilt, The Netherlands, 1993. [Google Scholar] [CrossRef]
- Spetzler, J.; Dost, B. Hypocentre estimation of induced earthquakes in Groningen. Geophys. J. Int. 2017, 209, 453–465. [Google Scholar]
- Noorlandt, R.; Kruiver, P.P.; de Kleine, M.P.; Karaoulis, M.; de Lange, G.; Di Matteo, A.; von Ketelhodt, J.; Ruigrok, E.; Edwards, B.; Rodriguez-Marek, A.; et al. Characterisation of ground motion recording stations in the Groningen gas field. J. Seismol. 2018, 22, 605–623. [Google Scholar] [CrossRef] [PubMed]
- Spica, Z.J.; Nakata, N.; Liu, X.; Campman, X.; Tang, Z.; Beroza, G.C. The ambient seismic field at Groningen gas field: An overview from the surface to reservoir depth. Seismol. Res. Lett. 2018, 89, 1450–1466. [Google Scholar] [CrossRef]
- Midorikawa, S.; Abe, S. Real-time assessment of earthquake disaster in Yokohama based on dense strong-motion network. In Proceedings of the 12th World Conference in Earthquake Engineering, Auckland, New Zealand, 30 January–4 February 2000; Volume 30. [Google Scholar]
- Midorikawa, S. Dense strong-motion array in Yokohama, Japan, and its use for disaster management. In Directions in Strong Motion Instrumentation; Springer: Berlin/Heidelberg, Germany, 2005; pp. 197–208. [Google Scholar]
- Tsuda, K.; Archuleta, R.J.; Koketsu, K. Quantifying the spatial distribution of site response by use of the Yokohama high-density strong-motion network. Bull. Seismol. Soc. Am. 2006, 96, 926–942. [Google Scholar] [CrossRef]
- Evans, J.R.; Hamstra Jr, R.H.; Kündig, C.; Camina, P.; Rogers, J.A. TREMOR: A wireless MEMS accelerograph for dense arrays. Earthq. Spectra 2005, 21, 91–124. [Google Scholar] [CrossRef]
- Ojeda, A.; Martinez, S.; Bermudez, M.; Atakan, K. The new accelerograph network for Santa Fe De Bogota, Colombia and implications for microzonation. Soil Dyn. Earthq. Eng. 2002, 22, 791–797. [Google Scholar] [CrossRef]
- Cardona, O.D.; Bernal, G.A. Automatic system for post-earthquake evaluation of city damage in Bogota. In Proceedings of the 16th European Conference on Earthquake Engineering, Thessaloniki, Greece, 18 June 2018; pp. 18–21. [Google Scholar]
- Monsalve Jaramillo, H.; Correa Montaño, I.C.; Valencia Mina, W. Seismological observatory at Quindio University (OSQ): A firm long-term step toward resolving regional seismicity. Earth Sci. Res. J. 2005, 9, 85–98. [Google Scholar]
- Vargas, C.A.; Caneva, A.; Monsalve, H.; Salcedo, E.; Mora, H. Geophysical networks in Colombia. Seismol. Res. Lett. 2018, 89, 440–445. [Google Scholar] [CrossRef]
- Ito, A.; Uçer, B.; Bariʂ, S.; Nakamura, A.; Honkura, Y.; Kono, T.; Hori, S.; Hasegawa, A.; Pektaʂ, R.; Iʂikara, A.M. Aftershock activity of the 1999 Izmit, Turkey, earthquake revealed from microearthquake observations. Bull. Seismol. Soc. Am. 2002, 92, 418–427. [Google Scholar] [CrossRef]
- Papadimitriou, P.; Voulgaris, N.; Kassaras, I.; Kaviris, G.; Delibasis, N.; Makropoulos, K. The Mw = 6.0, 7 September 1999 Athens earthquake. Nat. Hazards 2002, 27, 15–33. [Google Scholar] [CrossRef]
- Kapetanidis, V.; Karakonstantis, A.; Papadimitriou, P.; Pavlou, K.; Spingos, I.; Kaviris, G.; Voulgaris, N. The 19 July 2019 earthquake in Athens, Greece: A delayed major aftershock of the 1999 Mw = 6.0 event, or the activation of a different structure? J. Geodyn. 2020, 139, 101766. [Google Scholar] [CrossRef]
- Abakanov, T.; Silacheva, N. Analysis of seismic effects in Almaty based on strong motion network data. Surv. Act.-Post-Earthq. Disaster. 2011, 53. Available online: https://www.researchgate.net/profile/Eka-Juliafad/publication/311087058_Brick_Characteristic_in_West_Sumatra/links/59b1eef8aca2728472d143e5/Brick-Characteristic-in-West-Sumatra.pdf#page=59 (accessed on 6 December 2023).
- Parolai, S.; Richwalski, S.M.; Milkereit, C.; Bormann, P. Assessment of the stability of H/V spectral ratios from ambient noise and comparison with earthquake data in the Cologne area (Germany). Tectonophysics 2004, 390, 57–73. [Google Scholar] [CrossRef]
- Wicks, C.; Weaver, C.; Bodin, P.; Sherrod, B. InSAR Evidence for an active shallow thrust fault beneath the city of Spokane Washington, USA. J. Geophys. Res. Solid Earth 2013, 118, 1268–1276. [Google Scholar] [CrossRef]
- Erdik, M.; Fahjan, Y.; Ozel, O.; Alcik, H.; Mert, A.; Gul, M. Istanbul earthquake rapid response and the early warning system. Bull. Earthq. Eng. 2003, 1, 157–163. [Google Scholar] [CrossRef]
- Kurtuluş, A. Istanbul geotechnical downhole arrays. Bull. Earthq. Eng. 2011, 9, 1443–1461. [Google Scholar] [CrossRef]
- Adams, J. Soil amplification in Ottawa from urban strong ground motion records. In Proceedings of the 9th Canadian Conference on Earthquake Engineering, Ottawa, ON, Canada, 26–29 June 2007; p. 1162. [Google Scholar]
- Craifaleanu, I.G.; Borcia, I.; Praun, I. Strong-motion networks in Romania and their efficient use in the structural engineering applications. In Earthquake Data in Engineering Seismology; Springer: Berlin/Heidelberg, Germany, 2011; pp. 247–259. [Google Scholar]
- Gok, E.; Polat, O. An assessment of the seismicity of the Bursa region from a temporary seismic network. Pure Appl. Geophys. 2012, 169, 659–675. [Google Scholar] [CrossRef]
- Ritter, J.R.; Balan, S.F.; Bonjer, K.P.; Diehl, T.; Forbriger, T.; Marmureanu, G.; Wenzel, F.; Wirth, W. Broadband urban seismology in the Bucharest metropolitan area. Seismol. Res. Lett. 2005, 76, 574–580. [Google Scholar] [CrossRef]
- Rosenberger, A.; Beverley, K.; Rogers, G. The new strong motion seismic network in southwest British Columbia, Canada. In Proceedings of the 13th World Conference on Earthquake Engineering, Vancouver, BC, Canada, 1–6 August 2004. [Google Scholar]
- Yamazaki, F.; Shimizu, Y. Super dense real-time monitoring of earthquakes for a city gas network in Japan. In Proceedings of the 17th International Symposium on Automation and Robotics in Construction, Madrid, Spain, 18–20 September 2000; pp. 581–586. [Google Scholar]
- Shimizu, Y.; Yamazaki, F.; Isoyama, R.; Ishida, E.; Koganemaru, K.; Nakayama, W. Development of realtime disaster mitigation system for urban gas supply network. In Proceedings of the the 13th WCEE, Vancouver, BC, Canada, 1–6 August 2004; pp. 1–6. [Google Scholar]
- Shimizu, Y.; Yamazaki, F.; Yasuda, S.; Towhata, I.; Suzuki, T.; Isoyama, R.; Ishida, E.; Suetomi, I.; Koganemaru, K.; Nakayama, W. Development of real-time safety control system for urban gas supply network. J. Geotech. Geoenviron. Eng. 2006, 132, 237–249. [Google Scholar] [CrossRef]
- Çelebi, M.; McCarthy, J.; Biswas, N.; Wald, L.; Page, R.; Steidl, J. Seismic monitoring of the Atwood building in Anchorage, Alaska; U.S. Geological Survey Fact Sheet 2004-3103; U.S. Geological Survey: Reston, VA, USA, 2004. [Google Scholar]
- Çelebi, M. Recorded earthquake responses from the integrated seismic monitoring network of the Atwood Building, Anchorage, Alaska. Earthq. Spectra 2006, 22, 847–864. [Google Scholar] [CrossRef]
- Thornley, P.J.; Dutta, P.U.; Yang, P.Z. Modeling the Site Response of a Downhole Array Site in Anchorage, Alaska. 2014. Available online: https://datacenterhub.org/resources/12292/download/10NCEE-000951.pdf (accessed on 6 December 2023).
- Çelebi, M. Highlights of a cursory study of behavior of three instrumented buildings during the Mw 7.1 Anchorage, Alaska, earthquake of 30 November 2018. Seismol. Res. Lett. 2020, 91, 56–65. [Google Scholar] [CrossRef]
- Jafari, M.K.; Ghayamghamian, M.R.; Davoodi, M.; Kamalian, M.; Sohrabi-Bidar, A. Site effects of the 2003 Bam, Iran, earthquake. Earthq. Spectra 2005, 21, 125–136. [Google Scholar] [CrossRef]
- Strollo, A.; Parolai, S.; Bindi, D.; Chiauzzi, L.; Pagliuca, R.; Mucciarelli, M.; Zschau, J. Microzonation of Potenza (Southern Italy) in terms of spectral intensity ratio using joint analysis of earthquakes and ambient noise. Bull. Earthq. Eng. 2012, 10, 493–516. [Google Scholar] [CrossRef]
- Haghshenas, E.; Jafari, M.; Bard, P.; Moradi, A.; Hatzfeld, D.; Chaljub, E.; Cornu, C.; Cotton, F.; Guéguen, P. Preliminary results of site effects assessment in the city of Tabriz (Iran) using earthquakes recording. In Proceedings of the Third Internation Symposium on the Effects of Surface Geology on Seismic Motion, Grenoble, France, 30 August–1 September 2006. [Google Scholar]
- Kahbasi, A.; Moradi, A. Earthquake-explosion discrimination using waveform cross-correlation technique for mines in southeast of Tehran. J. Seismol. 2016, 20, 569–578. [Google Scholar] [CrossRef]
- Frankel, A.; Grant, A. Site response, basin amplification, and earthquake stress drops in the Portland, Oregon Area. Bull. Seismol. Soc. Am. 2021, 111, 671–685. [Google Scholar] [CrossRef]
- Ripperger, J.; Kästli, P.; Fäh, D.; Giardini, D. Ground motion and macroseismic intensities of a seismic event related to geothermal reservoir stimulation below the city of Basel—observations and modelling. Geophys. J. Int. 2009, 179, 1757–1771. [Google Scholar] [CrossRef]
- Clinton, J.; Cauzzi, C.; Fäh, D.; Michel, C.; Zweifel, P.; Olivieri, M.; Cua, G.; Haslinger, F.; Giardini, D. The current state of strong motion monitoring in Switzerland. In Earthquake Data in Engineering Seismology: Predictive Models, Data Management and Networks; Springer: Dordrecht, The Netherlands, 2011; pp. 219–233. [Google Scholar]
- Michel, C.; Fäh, D.; Edwards, B.; Cauzzi, C. Site amplification at the city scale in Basel (Switzerland) from geophysical site characterization and spectral modelling of recorded earthquakes. Phys. Chem. Earth, Parts A/B/C 2017, 98, 27–40. [Google Scholar] [CrossRef]
- Swiss Seismological Service (SED). Monitoring of the Borehole Basel-1. Available online: http://www.seismo.ethz.ch/en/earthquakes/monitoring/special-networks/basel/monitoring-geothermal-borehole-in-basel/ (accessed on 28 August 2023).
- Quintanar, L.; Cárdenas-Ramírez, A.; Bello-Segura, D.; Espíndola, V.; Pérez-Santana, J.; Cárdenas-Monroy, C.; Carmona-Gallegos, A.; Rodríguez-Rasilla, I. A seismic network for the Valley of Mexico: Present status and perspectives. Seismol. Res. Lett. 2018, 89, 356–362. [Google Scholar] [CrossRef]
- Zega, B.; Zulfakriza, Z.; Rosalia, S.; Puspito, N. Seismic Hazard Potential in Yogyakarta Based on HVSR Curve Estimation. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2022; Volume 1047, p. 012028. [Google Scholar]
- Brax, M.; Bard, P.Y.; Duval, A.M.; Bertrand, E.; Rahhal, M.E.; Jomaa, R.; Cornou, C.; Voisin, C.; Sursock, A. Towards a microzonation of the Greater Beirut area: An instrumental approach combining earthquake and ambient vibration recordings. Bull. Earthq. Eng. 2018, 16, 5735–5767. [Google Scholar] [CrossRef]
- Kumar, A.; Mittal, H.; Sachdeva, R.; Kumar, A. Indian strong motion instrumentation network. Seismol. Res. Lett. 2012, 83, 59–66. [Google Scholar] [CrossRef]
- Mittal, H.; Kumar, A.; Ramhmachhuani, R. Indian national strong motion instrumentation network and site characterization of its stations. Int. J. Geosci. 2012, 3, 25120. [Google Scholar] [CrossRef]
- Mittal, H.; Kumar, A.; Kumar, A. Site effects estimation in Delhi from the Indian strong motion instrumentation network. Seismol. Res. Lett. 2013, 84, 33–41. [Google Scholar] [CrossRef]
- Mittal, H.; Kumar, A.; Kumar, A.; Kumar, R. Analysis of ground motion in Delhi from earthquakes recorded by strong motion network. Arab. J. Geosci. 2015, 8, 2005–2017. [Google Scholar] [CrossRef]
- Halldorsson, B.; Sigbjornsson, R.; Schweitzer, J. ICEARRAY: The first small-aperture, strong-motion array in Iceland. J. Seismol. 2009, 13, 173–178. [Google Scholar] [CrossRef]
- Win-Gee, H.; Huang, B.S.; Wang, J.H.; Kou-Cheng, C.; Kuo-Liang, W.; Tsao, S.; Yu-Chung, H.; Chen, C.H. Seismic observations in the Taipei metropolitan area using the downhole network. Tao Terr. Atmos. Ocean. Sci. 2010, 21, 6. [Google Scholar]
- Nakamura, Y.; Saita, J.; Sato, T. On an earthquake early warning system (EEW) and its applications. Soil Dyn. Earthq. Eng. 2011, 31, 127–136. [Google Scholar] [CrossRef]
- Wen, R.; Ren, Y. Strong-motion observations of the Lushan earthquake on 20 April 2013. Seismol. Res. Lett. 2014, 85, 1043–1055. [Google Scholar] [CrossRef]
- Pilz, M.; Parolai, S.; Leyton, F.; Campos, J.; Zschau, J. A comparison of site response techniques using earthquake data and ambient seismic noise analysis in the large urban areas of Santiago de Chile. Geophys. J. Int. 2009, 178, 713–728. [Google Scholar] [CrossRef]
- Singh, A. Seismic hazard evaluation in Anjar city area of western India: Microtremor array measurement. Soil Dyn. Earthq. Eng. 2015, 71, 143–150. [Google Scholar] [CrossRef]
- Polat, O.; Ceken, U.; Uran, T.; Gok, E.; Yilmaz, N.; Beyhan, M.; Koc, N.; Arslan, B.; Yilmaz, D.; Utku, M. IzmirNet: A strong-motion network in metropolitan Izmir, Western Anatolia, Turkey. Seismol. Res. Lett. 2009, 80, 831–838. [Google Scholar] [CrossRef]
- Parolai, S.; Orunbaev, S.; Bindi, D.; Strollo, A.; Usupaev, S.; Picozzi, M.; Di Giacomo, D.; Augliera, P.; D’Alema, E.; Milkereit, C.; et al. Site effects assessment in Bishkek (Kyrgyzstan) using earthquake and noise recording data. Bull. Seismol. Soc. Am. 2010, 100, 3068–3082. [Google Scholar] [CrossRef]
- Ullah, S.; Bindi, D.; Pittore, M.; Pilz, M.; Orunbaev, S.; Moldobekov, B.; Parolai, S. Improving the spatial resolution of ground motion variability using earthquake and seismic noise data: The example of Bishkek (Kyrgyzstan). Bull. Earthq. Eng. 2013, 11, 385–399. [Google Scholar] [CrossRef]
- Pilz, M.; Abakanov, T.; Abdrakhmatov, K.; Bindi, D.; Boxberger, T.; Moldobekov, B.; Orunbaev, S.; Silacheva, N.; Ullah, S.; Usupaev, U.; et al. An overview on the seismic microzonation and site effect studies in Central Asia. Ann. Geophys. 2015, 58, S0104. [Google Scholar]
- Fleming, K.; Picozzi, M.; Milkereit, C.; Kuhnlenz, F.; Lichtblau, B.; Fischer, J.; Zulfikar, C.; Ozel, O. The self-organizing seismic early warning information network (SOSEWIN). Seismol. Res. Lett. 2009, 80, 755–771. [Google Scholar] [CrossRef]
- Zülfikar, A.; Fercan, N.; Tunç, S.; Erdik, M. Real-time earthquake shake, damage, and loss mapping for Istanbul metropolitan area. Earth Planets Space 2017, 69, 9. [Google Scholar] [CrossRef]
- Kaya, Y.; Ventura, C.; Huffman, S.; Turek, M. British Columbia smart infrastructure monitoring system. Can. J. Civ. Eng. 2017, 44, 579–588. [Google Scholar] [CrossRef]
- Pilz, M.; Parolai, S. Norcia Basin (Italy) Temporary Seismic Network. 2009. Available online: https://geofon.gfz-potsdam.de/doi/network/3H/2009 (accessed on 6 December 2023).
- Bindi, D.; Luzi, L.; Parolai, S.; Di Giacomo, D.; Monachesi, G. Site effects observed in alluvial basins: The case of Norcia (Central Italy). Bull. Earthq. Eng. 2011, 9, 1941–1959. [Google Scholar] [CrossRef]
- Pilz, M.; Bindi, D.; Boxberger, T.; Hakimov, F.; Moldobekov, B.; Murodkulov, S.; Orunbaev, S.; Pittore, M.; Stankiewicz, J.; Ullah, S.; et al. First steps toward a reassessment of the seismic risk of the city of Dushanbe (Tajikistan). Seismol. Res. Lett. 2013, 84, 1026–1038. [Google Scholar] [CrossRef]
- Laurendeau, A.; Courboulex, F.; Bonilla, L.F.; Alvarado, A.; Naya, V.A.; Guéguen, P.; Mercerat, E.D.; Singaucho, J.C.; Bertrand, E.; Perrault, M.; et al. Low-frequency seismic amplification in the Quito basin (Ecuador) revealed by accelerometric recordings of the RENAC network. Bull. Seismol. Soc. Am. 2017, 107, 2917–2926. [Google Scholar] [CrossRef]
- Wu, Y.M.; Chen, D.Y.; Lin, T.L.; Hsieh, C.Y.; Chin, T.L.; Chang, W.Y.; Li, W.S.; Ker, S.H. A high-density seismic network for earthquake early warning in Taiwan based on low cost sensors. Seismol. Res. Lett. 2013, 84, 1048–1054. [Google Scholar] [CrossRef]
- Wu, Y.M. Progress on development of an earthquake early warning system using low-cost sensors. Pure Appl. Geophys. 2015, 172, 2343–2351. [Google Scholar] [CrossRef]
- Wu, Y.M.; Mittal, H.; Chen, D.Y.; Hsu, T.Y.; Lin, P.Y. Earthquake early warning systems in Taiwan: Current status. J. Geol. Soc. India 2021, 97, 1525–1532. [Google Scholar] [CrossRef]
- Kaiser, A.E.; Benites, R.A.; Chung, A.; Haines, A.J.; Cochran, E.S.; Fry, B. Estimating seismic site response in Christchurch city (New Zealand) from dense low-cost aftershock arrays. In Proceedings of the 4th International IASPEI/IAEE Symposium on the Effects of Surface Geology on Seismic Motion, Los Angeles, CA, USA, 23–26 August 2011. [Google Scholar]
- Lawrence, J.F.; Cochran, E.S.; Chung, A.; Kaiser, A.; Christensen, C.M.; Allen, R.; Baker, J.W.; Fry, B.; Heaton, T.; Kilb, D.; et al. Rapid earthquake characterization using MEMS accelerometers and volunteer hosts following the M 7.2 Darfield, New Zealand, earthquake. Bull. Seismol. Soc. Am. 2014, 104, 184–192. [Google Scholar] [CrossRef]
- Clayton, R.; Heaton, T.; Chandy, M.; Krause, A.; Kohler, M.; Bunn, J.; Guy, R.; Olson, M.; Faulkner, M.; Cheng, M.; et al. Community seismic network. Ann. Geophys. 2011, 54, 738–747. [Google Scholar]
- Clayton, R.W.; Heaton, T.; Kohler, M.; Chandy, M.; Guy, R.; Bunn, J. Community seismic network: A dense array to sense earthquake strong motion. Seismol. Res. Lett. 2015, 86, 1354–1363. [Google Scholar] [CrossRef]
- Núñez-Cornú, F.J.; Sandoval, J.M.; Alarcón, E.; Gómez, A.; Suárez-Plascencia, C.; Núñez, D.; Trejo-Gómez, E.; Mariscal, O.S.; Ortiz, J.G.C.; Zúñiga-Medina, L.M. The Jalisco seismic accelerometric telemetric network (RESAJ). Seismol. Res. Lett. 2018, 89, 363–372. [Google Scholar] [CrossRef]
- Ullah, S.; Pilz, M.; Bindi, D.; Orunbaev, S.; Kamchybekov, Y.; Picozzi, M.; Parolai, S. Comparing site response techniques by means of earthquake data and ambient seismic noise analysis in Karakol (Kyrgyzstan). In Proceedings of the EGU General Assembly Conference Abstracts, Vienna, Austria, 7–12 April 2013. [Google Scholar]
- Peng, C.; Zhu, X.; Yang, J.; Xue, B.; Chen, Y. Development of an integrated onsite earthquake early warning system and test deployment in Zhaotong, China. Comput. Geosci. 2013, 56, 170–177. [Google Scholar] [CrossRef]
- Alkhatibi, E.; Abou Elenean, K. Dubai Smart Seismic Network. In Proceedings of the 10th Gulf Seismic Forum, Muscat, Oman, 19–22 March 2018. [Google Scholar]
- Zhang, H.; Jin, X.; Wei, Y.; Li, J.; Kang, L.; Wang, S.; Huang, L.; Yu, P. An earthquake early warning system in Fujian, China. Bull. Seismol. Soc. Am. 2016, 106, 755–765. [Google Scholar] [CrossRef]
- Karakostas, C.; Papanikolaou, V. A low-cost instrumentation approach for seismic hazard assessment in urban areas. Wit Trans. Inf. Commun. Technol. 2014, 47, 97–107. [Google Scholar]
- Papanikolaou, V.K.; Karakostas, C.Z.; Theodoulidis, N.P. A low-cost instrumentation system for seismic hazard assessment in urban areas. Sensors 2021, 21, 3618. [Google Scholar] [CrossRef] [PubMed]
- Skolnik, D.; Kaya, Y.; Safak, E.; Ciudad-Real, M. Structural health monitoring of unique structures in Abu Dhabi Emirate. In Proceedings of the EWSHM-7th European Workshop on Structural Health Monitoring, Nantes, France, 8–11 July 2014. [Google Scholar]
- Milutinovic, Z.; Garevski, M.; Salic, R.; Megahed, A.; Almulla, H. Abu Dhabi Emirate, UAE, system for seismic risk monitoring and management. In Proceedings of the 2nd European Conference on Earthquake Engineering and Seismology, Istanbul, Turkey, 25–29 August 2014. [Google Scholar]
- Swiss Seismological Service (SED). Project Description Geothermal Energy St. Gallen. Available online: http://www.seismo.ethz.ch/en/earthquakes/monitoring/special-networks/st.gallen-network/ (accessed on 28 August 2023).
- Orunbaev, S.; Pilz, M.; Usupaev, S.; Bindi, D.; Serenkov, A.; Mambetaliev, E.; Verjee, F.; Moldobekov, B.; Parolai, S. Site effect assessment in Naryn (Kyrgyzstan) using earthquake and noise data. In Proceedings of the A Joint Event of the 15th European Conference on Earthquake Engineering and 34th General Assembly of the European Seismological Commission, ESC, Istanbul, Turkey, 24–29 August 2014; Volume 24, p. 531. [Google Scholar]
- Ry, R.V.; Cummins, P.; Widiyantoro, S. Shallow shear-wave velocity beneath Jakarta, Indonesia revealed by body-wave polarization analysis. Geosciences 2019, 9, 386. [Google Scholar] [CrossRef]
- Galea, P.; Agius, M.R.; Bozionelos, G.; D’Amico, S.; Farrugia, D. A first national seismic network for the Maltese islands—The Malta seismic network. Seismol. Res. Lett. 2021, 92, 1817–1831. [Google Scholar] [CrossRef]
- Rovithis, E.; Makra, K.; Kirtas, E.; Manesis, C.; Bliziotis, D.; Konstantinidou, K. Field monitoring of strong ground motion in urban areas: The Kalochori Accelerometric Network (KAN), database and Web-GIS portal. Earthq. Spectra 2018, 34, 471–501. [Google Scholar] [CrossRef]
- Pratt, T.L.; Horton Jr, J.W.; Muñoz, J.; Hough, S.E.; Chapman, M.C.; Olgun, C.G. Amplification of earthquake ground motions in Washington, DC, and implications for hazard assessments in central and eastern North America. Geophys. Res. Lett. 2017, 44, 12–150. [Google Scholar] [CrossRef]
- Layadi, K.; Semmane, F.; Yelles-Chaouche, A. Site-effects investigation in the city of Chlef (formerly El-Asnam), Algeria, using earthquake and ambient vibration data. Bull. Seismol. Soc. Am. 2016, 106, 2185–2196. [Google Scholar] [CrossRef]
- Clayton, R.W.; Kohler, M.; Guy, R.; Bunn, J.; Heaton, T.; Chandy, M. CSN-LAUSD network: A dense accelerometer network in Los Angeles Schools. Seismol. Res. Lett. 2020, 91, 622–630. [Google Scholar] [CrossRef]
- Green, D.N.; Bastow, I.D.; Dashwood, B.; Nippress, S.E. Characterizing broadband seismic noise in Central London. Seismol. Res. Lett. 2017, 88, 113–124. [Google Scholar] [CrossRef]
- McLeod, L.; Brown, L.; Quiros, D.; Gustafson, J.O. Earthquakes in an Aseismic Region: Local Seismic Network Results for Central New York An AVF Investigation; Technical report; Cornell University: Ithaca, NY, USA, 2020. [Google Scholar]
- Boaga, J.; Casarin, F.; De Marchi, G.; Valluzzi, M.R.; Cassiani, G. 2016 central Italy earthquakes recorded by low-cost MEMS-distributed arrays. Seismol. Res. Lett. 2019, 90, 672–682. [Google Scholar] [CrossRef]
- Pacheco, D.; Mercerat, E.; Courboulex, F.; Bonilla, L.; Laurendeau, A.; Alvarado, A. Profiling the Quito basin (Ecuador) using seismic ambient noise. Geophys. J. Int. 2022, 228, 1419–1437. [Google Scholar] [CrossRef]
- Todd, E.K.; Stirling, M.W.; Fry, B.; Salichon, J.; Villamor, P. Characterising microseismicity in a low seismicity region: Applications of short-term broadband seismic arrays in Dunedin, New Zealand. N. Z. J. Geol. Geophys. 2020, 63, 331–341. [Google Scholar] [CrossRef]
- Kim, Y.; Kang, T.S.; Rhie, J. Development and Application of a Real-Time Warning System Based on a MEMS Seismic Network and Response Procedure for the Day of the National College Entrance Examination in South Korea. Seismol. Res. Lett. 2017, 88, 1322–1326. [Google Scholar] [CrossRef]
- Caserta, A.; Doumaz, F.; Costanzo, A.; Gervasi, A.; Thorossian, W.; Falcone, S.; La Piana, C.; Minasi, M.; Buongiorno, M.F. Assessing soil-structure interaction during the 2016 central Italy seismic sequence (Italy): Preliminary results. Ann. Geophys. 2016, 59, Fast Track 5. [Google Scholar] [CrossRef]
- Costanzo, A.; Caserta, A. Seismic response across the Tronto Valley (at Acquasanta Terme, AP, Marche) based on the geophysical monitoring of the 2016 Central Italy seismic sequence. Bull. Eng. Geol. Environ. 2019, 78, 5599–5616. [Google Scholar] [CrossRef]
- Gélis, C.; Cauchie, L.; Cushing, E.; Froment, B.; Franco, S.; Jomard, H.; Moiriat, D.; Provost, L.; Sariguzel, B.; Tebib, H. Estimation of the local seismic amplification on an industrialized site in the French Rhône Valley. Pure Appl. Geophys. 2022, 179, 2119–2145. [Google Scholar] [CrossRef]
- Nof, R.N.; Chung, A.I.; Rademacher, H.; Dengler, L.; Allen, R.M. MEMS Accelerometer Mini-Array (MAMA): A low-cost implementation for earthquake early warning enhancement. Earthq. Spectra 2019, 35, 21–38. [Google Scholar] [CrossRef]
- Massari, A.; Kohler, M.; Clayton, R.; Guy, R.; Heaton, T.; Bunn, J.; Chandy, K.; Demetri, D. Dense building instrumentation application for city-wide structural health monitoring. In Proceedings of the 16th World Conference on Earthquake, 16WCEE 2017, Santiago, Chile, 9–13 January 2017. [Google Scholar]
- Chatzopoulos, G.; Papadopoulos, I.; Vallianatos, F.; Makris, J.P.; Kouli, M. Strong ground motion sensor network for civil protection rapid decision support systems. Sensors 2021, 21, 2833. [Google Scholar] [CrossRef]
- Ma, Q.; Wang, F.; Tao, D.; Xie, Q.; Liu, H.; Jiang, P. Topographic site effects of Xishan Park ridge in Zigong city, Sichuan considering epicentral distance. J. Seismol. 2021, 25, 1537–1555. [Google Scholar] [CrossRef]
- Chen, K.H.; Yeh, T.C.; Chen, Y.; Johnson, C.W.; Lin, C.H.; Lai, Y.C.; Shih, M.H.; Guéguen, P.; Huang, W.G.; Huang, B.S.; et al. Characteristics and impact of environmental shaking in the Taipei metropolitan area. Sci. Rep. 2022, 12, 743. [Google Scholar] [CrossRef]
- Sairam, B.; Singh, A.; Patel, V.; Pancholi, V.; Chopra, S.; Dwivedi, V.; Kumar, M.R. Influence of local site effects in the Ahmedabad mega city on the damage due to past earthquakes in northwestern India. Bull. Seismol. Soc. Am. 2018, 108, 2170–2182. [Google Scholar] [CrossRef]
- Bravo, J.B.; Blanco, J.L.; Alcalde, J.M. The IGN MEMS Accelerographs Record the First Accelerograms in Different Locations in the Lorca City. J. Geol. Resour. Eng. 2019, 7, 71–92. [Google Scholar]
- Aoi, S.; Kimura, T.; Ueno, T.; Senna, S.; Azuma, H. Multi-data integration system to capture detailed strong ground motion in the Tokyo metropolitan area. J. Disaster Res. 2021, 16, 684–699. [Google Scholar] [CrossRef]
- Sinadinovski, C.; Pekevski, L.; Dojcinovski, D.; Cernih, D. Comparative analysis of strong motion (SM) records from the July 2017 Ohrid seismic sequence. J. Seismol. 2018, 22, 1451–1467. [Google Scholar] [CrossRef]
- Kim, K.H.; Seo, W.; Han, J.; Kwon, J.; Kang, S.Y.; Ree, J.H.; Kim, S.; Liu, K. The 2017 ML 5.4 Pohang earthquake sequence, Korea, recorded by a dense seismic network. Tectonophysics 2020, 774, 228306. [Google Scholar] [CrossRef]
- Seo, M.S.; Son, Y.O.; Kim, Y.; Kang, T.S.; Rhie, J.; Kim, K.H.; Ree, J.H. Measurement of seismometer misorientation based on P-wave polarization: Application to dense temporary broadband seismic array in the epicentral region of 2016 Gyeongju earthquake, South Korea. Geosci. J. 2022, 26, 385–397. [Google Scholar] [CrossRef]
- D’Alessandro, A.; Luzio, D.; D’Anna, G. Urban MEMS based seismic network for post-earthquakes rapid disaster assessment. Adv. Geosci. 2014, 40, 1–9. [Google Scholar] [CrossRef]
- D’Alessandro, A.; D’Anna, R.; Greco, L.; Passafiume, G.; Scudero, S.; Speciale, S.; Vitale, G. Monitoring Earthquake through MEMS Sensors (MEMS project) in the town of Acireale (Italy). In Proceedings of the 2018 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL), Lake Como, Italy, 26–29 March 2018; pp. 1–4. [Google Scholar]
- D’Alessandro, A.; Vitale, G.; Scudero, S.; D’Anna, R.; Passafiume, G.; Greco, L.; Speciale, S.; Patanè, D.; Torrisi, O.; Di Prima, S.; et al. Real-time urban seismic network and structural monitoring by means of accelerometric sensors: Application to the historic buildings of Catania (Italy). In Proceedings of the 2018 IEEE International Conference on Environmental Engineering (EE), Milan, Italy, 12–14 March 2018; pp. 1–5. [Google Scholar]
- Scudero, S.; Vitale, G.; Greco, L.; Patanè, D.; D’Alessandro, A. Earthquake Early Warning and Structural Health Monitoring in the historical city centre of Catania (Italy). In Proceedings of the SER4SC “Seismic and Energy Renovation for Sustainable Cities” International Conference, Catania, Italy, 1–3 February 2018; pp. 389–395, ISBN 978-88-96386-56-9. [Google Scholar]
- Patanè, D.; Tusa, G.; Yang, W.; Astuti, A.; Colino, A.; Costanza, A.; D’Anna, G.; Di Prima, S.; Fertitta, G.; Mangiagli, S.; et al. The Urban Seismic Observatory of Catania (Italy): A Real-Time Seismic Monitoring at Urban Scale. Remote Sens. 2022, 14, 2583. [Google Scholar] [CrossRef]
- D’Alessandro, A.; Vitale, G.; Scudero, S. MEMS-based system for structural health monitoring and earthquake observation in Sicily. In European Workshop on Structural Health Monitoring: Special Collection of 2020 Papers-Volume 1; Springer: Berlin/Heidelberg, Germany, 2021; pp. 89–95. [Google Scholar]
- Gkogkas, K.; Lin, F.C.; Allam, A.A.; Wang, Y. Shallow damage zone structure of the Wasatch fault in Salt Lake City from ambient-noise double beamforming with a temporary linear array. Seismol. Soc. Am. 2021, 92, 2453–2463. [Google Scholar] [CrossRef]
- Hillers, G.T.; Vuorinen, T.A.; Uski, M.R.; Kortström, J.T.; Mäntyniemi, P.B.; Tiira, T.; Malin, P.E.; Saarno, T. The 2018 geothermal reservoir stimulation in Espoo/Helsinki, southern Finland: Seismic network anatomy and data features. Seismol. Res. Lett. 2020, 91, 770–786. [Google Scholar] [CrossRef]
- Lythgoe, K.; Loasby, A.; Hidayat, D.; Wei, S. Seismic event detection in urban Singapore using a nodal array and frequency domain array detector: Earthquakes, blasts and thunderquakes. Geophys. J. Int. 2021, 226, 1542–1557. [Google Scholar] [CrossRef]
- Diaz, J.; Ruiz, M.; Jara, J.A. Seismic monitoring of urban activity in Barcelona during the COVID-19 lockdown. Solid Earth 2021, 12, 725–739. [Google Scholar] [CrossRef]
- Janusz, P.; Perron, V.; Imperatori, W.; Bonilla, F.; Fäh, D. Evaluation of Seismic Site Response in Urban Areas: Insight from the case of Lucerne, Switzerland. In Proceedings of the 6th International Symposium on the Effects of Surface Geology on Seismic Motion (ESG6 2021), Online, 30 August 2021. [Google Scholar]
- Rintamäki, A.E.; Hillers, G.; Vuorinen, T.A.; Luhta, T.; Pownall, J.M.; Tsarsitalidou, C.; Galvin, K.; Keskinen, J.; Kortström, J.T.; Lin, T.C.; et al. A seismic network to monitor the 2020 EGS stimulation in the Espoo/Helsinki area, southern Finland. Seismol. Soc. Am. 2022, 93, 1046–1062. [Google Scholar] [CrossRef]
- Özcebe, A.G.; Tiganescu, A.; Ozer, E.; Negulescu, C.; Galiana-Merino, J.J.; Tubaldi, E.; Toma-Danila, D.; Molina, S.; Kharazian, A.; Bozzoni, F.; et al. Raspberry Shake-based rapid structural identification of existing buildings subject to earthquake ground motion: The case study of Bucharest. Sensors 2022, 22, 4787. [Google Scholar] [CrossRef] [PubMed]
- Swiss Seismological Service (SED). Temporary Deployments in Sion, Switzerland to Understand 3D Site Amplification; Swiss Seismological Service (SED): Zürich, Switzerland, 2004. [Google Scholar] [CrossRef]
- Costanzo, A.; Falcone, S.; D’Alessandro, A.; Vitale, G.; Giovinazzi, S.; Morici, M.; Dall’Asta, A.; Buongiorno, M.F. A technological system for post-earthquake damage scenarios based on the monitoring by means of an urban seismic network. Sensors 2021, 21, 7887. [Google Scholar] [CrossRef] [PubMed]
- Vitale, G.; D’Alessandro, A.; Di Benedetto, A.; Figlioli, A.; Costanzo, A.; Speciale, S.; Piattoni, Q.; Cipriani, L. Urban Seismic Network Based on MEMS Sensors: The Experience of the Seismic Observatory in Camerino (Marche, Italy). Sensors 2022, 22, 4335. [Google Scholar] [CrossRef] [PubMed]
- Myklebust, E.; Köhler, A.; Dichiarante, A.M. Towards an Automatic Real-Time Seismic Monitoring System for the City of Oslo; Technical Report; Copernicus Meetings. 2022. Available online: https://ui.adsabs.harvard.edu/abs/2022EGUGA..24.3601M/abstract (accessed on 6 December 2023).
- Bindi, D.; Boxberger, T.; Orunbaev, S.; Pilz, M.; Stankiewicz, J.; Pittore, M.; Iervolino, I.; Ellguth, E.; Parolai, S. On-site early-warning system for Bishkek (Kyrgyzstan). Ann. Geophys. 2015, 58, S0112. [Google Scholar] [CrossRef]
- Diaz, J.; Schimmel, M.; Ruiz, M.; Carbonell, R. Seismometers within cities: A tool to connect earth sciences and society. Front. Earth Sci. 2020, 8, 9. [Google Scholar] [CrossRef]
- Chandrakumar, C.; Rahubadde Kankanamge, R.; Stephens, M.; Tan, M. Earthquake early warning systems based on low-cost ground motion sensors: A systematic literature review. Front. Sens. 2022, 3, 1020202. [Google Scholar] [CrossRef]
- Satriano, C.; Wu, Y.M.; Zollo, A.; Kanamori, H. Earthquake early warning: Concepts, methods and physical grounds. Soil Dyn. Earthq. Eng. 2011, 31, 106–118. [Google Scholar] [CrossRef]
- Cremen, G.; Galasso, C. Earthquake early warning: Recent advances and perspectives. Earth-Sci. Rev. 2020, 205, 103184. [Google Scholar] [CrossRef]
- D’Alessandro, A.; Scudero, S.; Vitale, G.; Di Benedetto, A.; Bosco, G.L. Optimization of low-cost monitoring systems for on-site earthquake early-warning of critical infrastructures. In Proceedings of the Computational Science and Its Applications–ICCSA 2020: 20th International Conference, Cagliari, Italy, 1–4 July 2020; Proceedings, Part II 20; Springer: Berlin/Heidelberg, Germany, 2020; pp. 963–975. [Google Scholar]
- Erdik, M.; Şeşetyan, K.; Demircioğlu, M.; Hancılar, U.; Zülfikar, C. Rapid earthquake loss assessment after damaging earthquakes. Soil Dyn. Earthq. Eng. 2011, 31, 247–266. [Google Scholar] [CrossRef]
- Guérin-Marthe, S.; Gehl, P.; Negulescu, C.; Auclair, S.; Fayjaloun, R. Rapid earthquake response: The state-of-the art and recommendations with a focus on European systems. Int. J. Disaster Risk Reduct. 2021, 52, 101958. [Google Scholar] [CrossRef]
- Wald, D.J.; Quitoriano, V.; Heaton, T.H.; Kanamori, H.; Scrivner, C.W.; Worden, C.B. TriNet “ShakeMaps”: Rapid generation of peak ground motion and intensity maps for earthquakes in southern California. Earthq. Spectra 1999, 15, 537–555. [Google Scholar] [CrossRef]
- Michelini, A.; Faenza, L.; Lauciani, V.; Malagnini, L. ShakeMap implementation in Italy. Seismol. Res. Lett. 2008, 79, 688–697. [Google Scholar] [CrossRef]
- Pitilakis, K. Site effects. In Recent Advances in Earthquake Geotechnical Engineering and Microzonation; Springer: Berlin/Heidelberg, Germany, 2004; pp. 139–197. [Google Scholar]
- Bonnefoy-Claudet, S.; Cornou, C.; Bard, P.Y.; Cotton, F.; Moczo, P.; Kristek, J.; Fäh, D. H/V ratio: A tool for site effects evaluation. Results from 1-D noise simulations. Geophys. J. Int. 2006, 167, 827–837. [Google Scholar] [CrossRef]
- Strollo, A.; Parolai, S.; Jäckel, K.H.; Marzorati, S.; Bindi, D. Suitability of short-period sensors for retrieving reliable H/V peaks for frequencies less than 1 Hz. Bull. Seismol. Soc. Am. 2008, 98, 671–681. [Google Scholar] [CrossRef]
- Bonnefoy-Claudet, S.; Cotton, F.; Bard, P.Y. The nature of noise wavefield and its applications for site effects studies—A literature review. Earth Sci. Rev. 2006, 79, 205–227. [Google Scholar] [CrossRef]
- Foti, S.; Lai, C.G.; Rix, G.J.; Strobbia, C. Surface Wave Methods for Near-Surface Site Characterization; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Allen, R.M.; Stogaitis, M. Global growth of earthquake early warning. Science 2022, 375, 717–718. [Google Scholar] [CrossRef]
- Holland, A. Earthquake data recorded by the MEMS accelerometer: Field testing in Idaho. Seismol. Res. Lett. 2003, 74, 20–26. [Google Scholar] [CrossRef]
- D’Alessandro, A.; D’Anna, G. Suitability of low-cost three-axis MEMS accelerometers in strong-motion seismology: Tests on the LIS331DLH (iPhone) accelerometer. Bull. Seismol. Soc. Am. 2013, 103, 2906–2913. [Google Scholar] [CrossRef]
- Evans, J.; Allen, R.M.; Chung, A.; Cochran, E.; Guy, R.; Hellweg, M.; Lawrence, J. Performance of several low-cost accelerometers. Seismol. Res. Lett. 2014, 85, 147–158. [Google Scholar] [CrossRef]
- Kong, Q.; Allen, R.M.; Schreier, L.; Kwon, Y.W. MyShake: A smartphone seismic network for earthquake early warning and beyond. Sci. Adv. 2016, 2, e1501055. [Google Scholar] [CrossRef] [PubMed]
- D’Alessandro, A.; Vitale, G.; Scudero, S.; D’Anna, R.; Costanza, A.; Fagiolini, A.; Greco, L. Characterization of MEMS accelerometer self-noise by means of PSD and Allan Variance analysis. In Proceedings of the 2017 7th IEEE International Workshop on Advances in Sensors and Interfaces (IWASI), Vieste, Italy, 15–16 June 2017; pp. 159–164. [Google Scholar]
- Liu, H.F.; Luo, Z.C.; Hu, Z.K.; Yang, S.Q.; Tu, L.C.; Zhou, Z.B.; Kraft, M. A review of high-performance MEMS sensors for resource exploration and geophysical applications. Pet. Sci. 2022, 19, 2631–2648. [Google Scholar] [CrossRef]
- Scudero, S.; D’Alessandro, A.; Greco, L.; Vitale, G. MEMS technology in seismology: A short review. In Proceedings of the 2018 IEEE International Conference on Environmental Engineering (EE), Milan, Italy, 12–14 March 2018; pp. 1–5. [Google Scholar]
- D’Alessandro, A.; Scudero, S.; Vitale, G. A review of the capacitive MEMS for seismology. Sens. 2019, 19, 3093. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Jiao, R.; Yu, H. MEMS based geophones and seismometers. Sens. Actuators A Phys. 2021, 318, 112498. [Google Scholar] [CrossRef]
- Havskov, J.; Alguacil, G. Instrumentation in Earthquake Seismology, 2nd ed.; Springer: Cham, Switzerland, 2016; Volume XVI, p. 413. [Google Scholar]
- Keil, S.; Wassermann, J.; Megies, T.; Kraft, T. Optimal Network Design for Microseismic Monitoring in Urban Areas-A Case Study in Munich, Germany. Seismica 2023, 2. [Google Scholar] [CrossRef]
- Siino, M.; Scudero, S.; Greco, L.; D’Alessandro, A. Spatial analysis for an evaluation of monitoring networks: Examples from the Italian seismic and accelerometric networks. J. Seismol. 2020, 24, 1045–1061. [Google Scholar] [CrossRef]
- Scudero, S.; Marcocci, C.; D’Alessandro, A. Insights on the Italian Seismic Network from location uncertainties. J. Seismol. 2021, 25, 1061–1076. [Google Scholar] [CrossRef]
- Bilham, R. The seismic future of cities. Bull. Earthq. Eng. 2009, 7, 839–887. [Google Scholar] [CrossRef]
- Cremen, G.; Galasso, C.; McCloskey, J. Modelling and quantifying tomorrow’s risks from natural hazards. Sci. Total. Environ. 2022, 817, 152552. [Google Scholar] [CrossRef] [PubMed]
- Biondi, B.; Martin, E.; Cole, S.; Karrenbach, M.; Lindsey, N. Earthquakes analysis using data recorded by the Stanford DAS array. In Proceedings of the SEG International Exposition and Annual Meeting. SEG, Houston, TX, USA, 17 August 2017; p. SEG–2017. [Google Scholar]
- Martins, H.F.; Fernández-Ruiz, M.R.; Costa, L.; Williams, E.; Zhan, Z.; Martin-Lopez, S.; Gonzalez-Herraez, M. Monitoring of remote seismic events in metropolitan area fibers using distributed acoustic sensing (DAS) and spatiotemporal signal processing. In Proceedings of the Optical Fiber Communication Conference, San Diego, CA, USA, 3–7 March 2019; p. M2J-1. [Google Scholar]
- Fang, G.; Li, Y.E.; Zhao, Y.; Martin, E.R. Urban near-surface seismic monitoring using distributed acoustic sensing. Geophys. Res. Lett. 2020, 47, e2019GL086115. [Google Scholar] [CrossRef]
- Lindsey, N.J.; Yuan, S.; Lellouch, A.; Gualtieri, L.; Lecocq, T.; Biondi, B. City-scale dark fiber DAS measurements of infrastructure use during the COVID-19 pandemic. Geophys. Res. Lett. 2020, 47, e2020GL089931. [Google Scholar] [CrossRef] [PubMed]
- Zhan, Z. Distributed acoustic sensing turns fiber-optic cables into sensitive seismic antennas. Seismol. Res. Lett. 2020, 91, 1–15. [Google Scholar] [CrossRef]
- Spica, Z.J.; Perton, M.; Martin, E.R.; Beroza, G.C.; Biondi, B. Urban seismic site characterization by fiber-optic seismology. J. Geophys. Res. Solid Earth 2020, 125, e2019JB018656. [Google Scholar] [CrossRef]
- Song, Z.; Zeng, X.; Xie, J.; Bao, F.; Zhang, G. Sensing shallow structure and traffic noise with fiber-optic internet cables in an urban area. Surv. Geophys. 2021, 42, 1401–1423. [Google Scholar] [CrossRef] [PubMed]
- Zhu, T.; Shen, J.; Martin, E.R. Sensing Earth and environment dynamics by telecommunication fiber-optic sensors: An urban experiment in Pennsylvania, USA. Solid Earth 2021, 12, 219–235. [Google Scholar] [CrossRef]
- Zeng, X.; Bao, F.; Thurber, C.H.; Lin, R.; Wang, S.; Song, Z.; Han, L. Turning a telecom fiber-optic cable into an ultradense seismic array for rapid postearthquake response in an urban area. Seismol. Res. Lett. 2022, 93, 853–865. [Google Scholar] [CrossRef]
- Jousset, P.; Reinsch, T.; Ryberg, T.; Blanck, H.; Clarke, A.; Aghayev, R.; Hersir, G.P.; Henninges, J.; Weber, M.; Krawczyk, C.M. Dynamic strain determination using fibre-optic cables allows imaging of seismological and structural features. Nat. Commun. 2018, 9, 2509. [Google Scholar] [CrossRef]
- Ristvej, J.; Lacinák, M.; Ondrejka, R. On smart city and safe city concepts. Mob. Netw. Appl. 2020, 25, 836–845. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scudero, S.; Costanzo, A.; D’Alessandro, A. Urban Seismic Networks: A Worldwide Review. Appl. Sci. 2023, 13, 13165. https://doi.org/10.3390/app132413165
Scudero S, Costanzo A, D’Alessandro A. Urban Seismic Networks: A Worldwide Review. Applied Sciences. 2023; 13(24):13165. https://doi.org/10.3390/app132413165
Chicago/Turabian StyleScudero, Salvatore, Antonio Costanzo, and Antonino D’Alessandro. 2023. "Urban Seismic Networks: A Worldwide Review" Applied Sciences 13, no. 24: 13165. https://doi.org/10.3390/app132413165
APA StyleScudero, S., Costanzo, A., & D’Alessandro, A. (2023). Urban Seismic Networks: A Worldwide Review. Applied Sciences, 13(24), 13165. https://doi.org/10.3390/app132413165