Assessment of Strong Earthquake Risk in Maqin–Maqu Segment of the Eastern Kunlun Fault, Northeast Tibet Plateau
Abstract
:1. Introduction
2. Regional Tectonic Setting
3. Database and Methodology
3.1. Database
3.2. Methodology and Model
4. Results and Discussion
4.1. Estimation of Largest Earthquake Magnitudes
4.2. Estimation of Elapsed Time since the Last Earthquake (t) and Average Recurrence Interval (R)
4.2.1. Maqin Segment
4.2.2. Maqu Segment
4.3. Qualitative Classification of Risk Degrees in Maqin–Maqu Segments
4.4. Probability of Strong Earthquake (Ms ≥ 7) Occurrence in the Next 100 Years
4.5. Joint Probability of the Occurrence of Strong Earthquake with Magnitude Ms ≥ 7 in the Next 100 Years
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Research Data
No. | Name of Fault | Situation of Segment | Age of Ancient Earthquake Events (Age) | Recurrence Interval (T) | Average Recurrence Interval (Tave) | Normalization (T/Tave) | Data Source |
---|---|---|---|---|---|---|---|
F1 | Fault on the northern margin of West Qinling Mountains | Luanfeng segment | E1: 12,500 ± 500 | [30,31] | |||
E2: 7500 ± 500 | 5000 | 1.2749 | |||||
E3: 5000 | 2500 | 0.6374 | |||||
734 | 4266 | 3922 | 1.0877 | ||||
Zhangxian segment | E1: 9910–1310 | ||||||
E2: 4250–6930 | 5660 | 5660 | 1 | ||||
Guomatan segment | E1: 12,450 | ||||||
E2: 5480 ± 60 | 6970 | 1.1264 | |||||
1936.2 (74) | 5406 | 6188 | 0.8736 | ||||
F2 | Haiyuan fault zone | Xiaokou-Caixiang fault segment (east segment) | E1: 8330–9370 | [27,32,33] | |||
E2: 6800–7530 | 800 | 0.4975 | |||||
E3: 5690–6100 | 700 | 0.4353 | |||||
E4: 590–1260 | 4430 | 2.7550 | |||||
E5: 1920 | 500 | 1608 | 0.3109 | ||||
South and west Huashan fault segment | E1: 8330–9370 | ||||||
E2: 6810–7530 | 800 | 0.7547 | |||||
E3: 5640–6100 | 710 | 0.6698 | |||||
E4: 4440–5030 | 610 | 0.5755 | |||||
E5: 2630–6710 | 1810 | 1.7075 | |||||
E6: 590–1260 | 1370 | 1060 | 1.2925 | ||||
Hasishan-Machangshan fault segment (west segment) | E1: 8530–9370 | ||||||
E2: 6150–6350 | 2180 | 1.1315 | |||||
E3: 3590–4140 | 2010 | 1.0433 | |||||
E4: 2000 | 1590 | 1927 | 0.8253 | ||||
F3 | Fodongmiao–Hongyazi fault | Mid-west segment (Q2) | E1: >4320 ± 300 | [34] | |||
E2: 2100 ± 100 | 1820 | 1.0344 | |||||
401 | 1699 | 1760 | 0.9656 | ||||
F4 | Eastern Yumushan Fault | West segment | E1: >10,500 ± 600 | [35] | |||
E2: 7200–8500 | 1400 | 0.6432 | |||||
E3: 3700–3900 | 3300 | 1.5161 | |||||
180 Fall | 1830 | 2177 | 0.8407 | ||||
F5 | Eastern Yumushan Fault | Shanglongwang | E1: 10,500 ± 600 | [36] | |||
E2: 8600 ± 600 | 1900 | 0.5672 | |||||
E3: 3800 ± 600 | 4800 | 3350 | 1.4328 | ||||
F6 | Huangcheng–Shuangta fault | Shisi segment | E1: 7700 ± 600 | [37] | |||
E2: 3400 ± 300 | 4300 | 1.1292 | |||||
83 | 3317 | 3808 | 0.8711 | ||||
F7 | Changma fault | E1: 9520 ± 90 | [38,39] | ||||
E2: 9380 ± 150 | 140 | 0.0593 | |||||
E3: 5470 ± 60 | 3910 | 1.6564 | |||||
E4: 3230 ± 55 | 2240 | 0.9490 | |||||
78 | 3152 | 2361 | 1.3353 | ||||
F8 | Sunan fault segment | Middle segment | E1: 2200 | [40] | |||
E2: 1680 | 520 | 0.6933 | |||||
E3: 700 | 980 | 750 | 1.3067 | ||||
F9 | Lenglongling fault | West segment | E1: 5926 | [41] | |||
E2: 4050 ± 160 | 1876 | 1.3754 | |||||
E3: 2900 ± 270 | 1150 | 0.8431 | |||||
E4: 1560 ± 360 | 1340 | 0.9824 | |||||
470 | 1090 | 1364 | 0.7991 | ||||
F10 | Laohushan-Maomaoshan fault | Laohushan segment | E1: 7700 ± 50 | [42,43] | |||
E2: 6180 ± 150 | 1520 | 1.5833 | |||||
E3: 5200 ± 100 | 980 | 1.0208 | |||||
E4: 4250 ± 150 | 950 | 0.9896 | |||||
E5: 3050 ± 150 | 1200 | 1.2500 | |||||
E6: 2000 ± 300 | 1050 | 1.0938 | |||||
E7: 800 ± 100 | 1200 | 1.2500 | |||||
122 | 678 | 0.7063 | |||||
20 | 102 | 960 | 0.1063 | ||||
Maomaoshan segment | E1: 9000 ± 300 | ||||||
E2: 6600 ± 500 | 2400 | 1.3333 | |||||
E3: 5000 ± 300 | 1600 | 0.8889 | |||||
E4: 3700 ± 300 | 1300 | 0.7222 | |||||
E5: 1800 ± 300 | 1900 | 1800 | 1.0556 | ||||
F11 | Tianqiaogou-Huangyangchuan fault | Tianqiaogou | E1: 27,700 ± 2200 | [44] | |||
E2: 21,300 ± 2400 | 6400 | 1.3904 | |||||
E3: 16,800 ± 1400 | 4500 | 0.9776 | |||||
E4: 13,700 ± 2000 | 3100 | 0.6735 | |||||
E5: 10,300 ± 1700 | 3400 | 0.7386 | |||||
E6: 7590 ± 100 | 2710 | 0.5887 | |||||
83 | 7507 | 4603 | 1.6309 | ||||
F12 | Zhongwei–Tongxin fault | Daquanshui-Hushanzi segment (west segment) | E1: 13,150 ± 800 | [45] | |||
E3: 6535 ± 200 | 4584 | 1.1293 | |||||
E5: 3000 | 3535 | 4059 | 0.8709 | ||||
Xiliangtou-Shuangjingzi segment (Middle segment) | E1: 13,150 ± 800 | ||||||
E2: 8566 ± 500 | 4584 | 1.0703 | |||||
E4: 5450 ± 200 | 3116 | 0.7275 | |||||
301 | 5149 | 4283 | 1.2022 | ||||
F13 | Bayinguole River North Margin fault | E1: 32,700 ± 1450 | [46] | ||||
E2: 15,540 ± 1320 | 17,160 | 1.1652 | |||||
E3: 3245 ± 330 | 12,295 | 14,727 | 0.8349 | ||||
F14 | Elashan fault | E1: 12,500 ± 100 | [47] | ||||
E2: 10,000 ± 150 | 2500 | 1.0101 | |||||
E3: 6000 ± 100 | 4000 | 1.6162 | |||||
E4: 4100 ± 300 | 1900 | 0.7677 | |||||
E5: 2600 ± 400 | 1500 | 2475 | 0.6061 | ||||
F15 | Eastern Kunlun fault zone | Kusaihu segment | 16,865 ± 1018 | [18,20,27,48,49,50] | |||
12,935 ± 774 | 3930 | 1.1158 | |||||
9730 ± 592 | 3205 | 0.9100 | |||||
6955 ± 425 | 2775 | 0.7879 | |||||
3100 ± 201 | 3855 | 1.0945 | |||||
2001.11.14 (9) | 3846 | 3522 | 1.0920 | ||||
East and west Datan segment | E1: 11,000 | ||||||
E2: 7000 | 4000 | 1.2001 | |||||
E3: 2700 | 4300 | 1.2901 | |||||
E4: 1000 | 1700 | 3333 | 0.5101 | ||||
Xiugou-Tuosuohu segment | E1: 8000 | ||||||
E2: 6000 | 2000 | 1.0096 | |||||
E3: 1000 | 5000 | 2.5240 | |||||
E4: 637 | 363 | 0.1832 | |||||
73 | 564 | 1981 | 0.2847 | ||||
Tuosuohu-Xiadawu segment | E1: 10,000 | ||||||
E2: 6100–6700 | 3900 | 1.0400 | |||||
E3: 2500 | 3600 | 3750 | 0.9600 | ||||
Maqin segment | 9900 ± 200 | ||||||
7971–8050 | 1850 | 1.2107 | |||||
7200 ± 800 | 771 | 0.5046 | |||||
3342–3454 | 3746 | 2.4516 | |||||
2000 | 1342 | 0.8783 | |||||
977–1090 | 910 | 1528 | 0.5955 | ||||
Maqu segment | 15,800 ± 2500–24,100 ± 2900 | ||||||
9000–10,000 | 5800 | 2.9532 | |||||
7460 ± 60–8690 ± 40 | 1540 | 0.7841 | |||||
4586 ± 124–7460 ± 60 | 2874 | 1.4633 | |||||
3736 ± 57–4586 ± 24 | 850 | 0.4328 | |||||
1730 ± 50–2530 ± 40 | 2006 | 1.0214 | |||||
1210 ± 50–1730 ± 50 | 520 | 0.2648 | |||||
1055–1524 | 155 | 1964 | 0.0789 | ||||
F16 | Altun fault zone | Andier River-Cheerchen River segment | E1: 3800 | [51,52] | |||
E2: 2760–2900 | 1040 | 0.9020 | |||||
E3: 1077 | 1683 | 1.4597 | |||||
E4: 342 | 735 | 1153 | 0.6375 | ||||
Huangtuquan-Wuzunxiaoer segment | E1: 6366 | ||||||
E2: 2270–3500 | 2866 | 2866 | 1.0000 | ||||
Suoerkuli-Akesai segment | E1: 3900–4130 | ||||||
E2: 1800–2170 | 2100 | 1.4094 | |||||
E3: 920 | 880 | 1490 | 0.5906 | ||||
E1: 16,400 ± 100 | |||||||
E2: 13,500 ± 180 | 2900 | 2900 | 1.0000 | ||||
Subei-Kuantanshan segment | E1: 18,620–18,780 | ||||||
E2: 11,330–12,590 | 6030 | 1.2048 | |||||
E3: 7080–7350 | 3980 | 5005 | 0.7952 | ||||
F17 | Maduo-Gande fault | Gande Segment (Q3–Q4) | E1: 4000–4700 | [53] | |||
E2: 3000–3230 | 1000 | 0.8333 | |||||
E3: 1600 | 1400 | 1200 | 1.1667 | ||||
F18 | Tuolaishan fault | Liuhuanggou-Youhuli segment (east segment) | E1: 13,240–13,960 | [54] | |||
E2: >6080 ± 450 | 6710 | 2.6733 | |||||
E3: 3570–4390 | 1690 | 2510 | 0.6733 | ||||
F19 | Changma-Ebo fault | Changma fault segment (Q4) | E1: 12,000–13,000 | [55] | |||
E2: 9520 ± 90 | 2480 | 1.3333 | |||||
E3: 8020–8700 | 820 | 0.4409 | |||||
E4: >6670 ± 80 | 1270 | 0.6828 | |||||
E5: >5470 ± 60 | 1200 | 0.6452 | |||||
E6: 3230 | 2240 | 1.2043 | |||||
78 | 3152 | 1860 | 1.6946 | ||||
F20 | Yellow River-Linwu fault | Linwu segment | E1: 27,000 ± 7800 | [56] | |||
E2: 20,000 | 7000 | 1.3333 | |||||
E3: 13,000 ± 600 | 7000 | 1.3333 | |||||
E4: 10,600 ± 500 | 2400 | 0.4571 | |||||
E5: 6000 | 4600 | 5250 | 0.8762 | ||||
F21 | Luoshan east fault | E1: 8200 ± 600 | [57] | ||||
E2: 5000 ± 70 | 3200 | 1.2384 | |||||
E3: 3300 ± 12 0 | 1700 | 0.6579 | |||||
449 | 2851 | 2584 | 1.1033 | ||||
F22 | Helanshan east fault | E1: 8400 | [58] | ||||
E2: 5700 | 2700 | 0.9963 | |||||
E3: 2600 | 3100 | 1.1439 | |||||
271 | 2329 | 2710 | 0.8594 |
References
- Deng, Q.; Ran, Y.; Yang, X. Active Tectonics Map of China (1:4,000,000); Seismological Press: Beijing, China, 2007. (In Chinese) [Google Scholar]
- Seismological Bureau of Qinghai Province. East Kunlun Active Fault Zone; Institute of Crustal Deformarion, China Seismological Bureau, Seismological Press: Beijing, China, 1999; pp. 1–186. (In Chinese) [Google Scholar]
- Zhang, Z.; Klemperer, S.; Bai, Z.; Chen, Y.; Teng, J. Crustal structure of the Paleozoic Kunlun orogeny from an active-source seismic profile between Moba and Guide in East Tibet, China. Gondwana Res. 2011, 19, 994–1007. [Google Scholar] [CrossRef]
- Karplus, M.S.; Zhao, W.; Klemperer, S.L. Injection of Tibetan crust beneath the south Qaidam Basin: Evidence from INDEPTH IV wide-angle seismic data. J. Geophys. Res.-Solid Earth 2011, 116, 1–23. [Google Scholar] [CrossRef]
- Parsons, T.; Chen, J.; Kirby, E. Sress changes from the 2008 wenchuan earthquake and increased hazard in the Sichuan basin. Nature 2008, 454, 509–510. [Google Scholar] [CrossRef] [PubMed]
- Sykes, L.R.; Nishenko, S.P. Probabilities of occurrence of large plate rupturing earthquakes for San Andreas, San Jacinto and Imperial fault, California, 1983~2003. J. Geophys. Res. 1984, 89, 5905–5927. [Google Scholar] [CrossRef]
- Nishenko, S.P. Seismic potential for large and great interplate earthquakes along the Chilean and southern Peruvian margins of South America: A quantitative reappraisal. J. Geophys. Res. 1985, 90, 3589–3615. [Google Scholar] [CrossRef]
- Nishenko, S.P.; Buland, R. A generic recurrence interval distribution for earthquake forecasting. Bull. Seismol. Soc. Am. 1987, 77, 1382–1399. [Google Scholar]
- Nishenko, S.P.; Singh, S.K. Conditional probabilities for the recurrence of large and great iner-plate earthquakes along the Mexican Subduction zone. Bull. Seismol. Soc. Am. 1987, 77, 2094–2114. [Google Scholar]
- Wen, X.Z. Conditional Probabilities for the Recurrence of Earthquakes on the Xianshuihe Fault Zone within the Coming Three Decades. Earthq. Res. China 1990, 6, 8–14. (In Chinese) [Google Scholar]
- Liu, J.; Wang, L.M. Evaluate the middle-and longterm seismic risk in the Fen-Wei seismic belt by using the active fault data. Acta Seismol. Sin. 1999, 18, 427–435. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, P.Z.; Mao, F.Y. Active Faulting and Fault Specific Probabilistic Seismic Hazard Assessment. In The Active Fault in China; Seismological Press: Beijing, China, 1996; pp. 12–31. (In Chinese) [Google Scholar]
- Wen, Y.; Fang, Z.; He, K.; Yang, J.; Xiong, L.; Xu, C. Present-day crustal deformation of the Maqin-Maqu segment in the East Kunlun fault zone revealed by Sentinel-1 images. Chin. J. Geophys. 2023, 66, 4517–4532. (In Chinese) [Google Scholar] [CrossRef]
- Elliott, A.J.; Oskin, M.E.; Liu, Z.J.; Shao, Y. Rupture termination at restraining bends: The last great earthquake on the Altyn Tagh fault. Geophys. Res. Lett. 2015, 42, 2164–2170. [Google Scholar] [CrossRef]
- Duan, B. Multicycle dynamics of the Aksay Bend along the Altyn Tagh fault in Northwest China: 1. A simplified double bend. Tectonics 2019, 38, 1101–1119. [Google Scholar] [CrossRef]
- Xu, X.; Wang, F.; Zheng, R.; Chen, W.; Ma, W.; Yu, G.; Chen, G.; Tapponnier, P.; Van Der Woerd, J.; Meriaux, A.S.; et al. Late Quaternary sinistral slip rate along the Altyn Tagh fault and its structural transformation model. Sci. China Ser. D Earth Sci. 2005, 48, 384–397. [Google Scholar] [CrossRef]
- Li, C.X. The Long-Term Faulting Behavior of the Eastern Segment (Maqin-Maqu) of the East Kunlun Fault since the Late Quaternary. Ph.D. Thesis, Institute of Geology, China Earthquake Administration, Beijing, China, 2009. [Google Scholar]
- Harkins, N.; Kirby, E.; Shi, X.; Wang, E.; Burbank, D.; Chun, F. Millennial slip rates along the eastern Kunlun fault: Implications for the dynamics of intracontinental deformation in Asia. Lithosphere 2010, 2, 247–266. [Google Scholar] [CrossRef]
- Ren, J.; Xu, X.; Yeats, R.S.; Zhang, S. Millennial slip rates of the Tazang fault, the eastern termination of Kunlun fault: Implications for strain partitioning in eastern Tibet. Tectonophysics 2013, 608, 1180–1200. [Google Scholar] [CrossRef]
- Makkonen, L. Bringing closure to the plotting position controversy. Commun. Stat. Theory Methods 2008, 37, 460–467. [Google Scholar] [CrossRef]
- Wilk, M.B.; Gnanadesikan, R. Probability plotting methods for the analysis of data. Biometrika 1968, 55, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Wells, D.L.; Coppersmith, K.J. Updated empirical relationships among magnitude, rupture length, rupture area, and surface displacement. Bull. Seism. Soc. Am. 1994, 84, 947–1002. [Google Scholar] [CrossRef]
- Ran, H.L. Research on uncertainty of upper limit earthquake magnitude in potential seismic source zone. Acta Seimol. Sin. 2009, 31, 396–402. (In Chinese) [Google Scholar]
- Li, C.F.; He, Q.L.; Zhao, G.G. Paleo-earthquake studies on the eastern section of the kunlun fault. Acta Seismol. Sin. 2005, 27, 60–67. (In Chinese) [Google Scholar] [CrossRef]
- He, W.G.; Xiong, Z.; Yuan, D.Y. Palaeo-earthquake Study on the Maqu Fault of East Kunlun Active Fault. Earthq. Res. China 2006, 22, 126–134. (In Chinese) [Google Scholar]
- Lin, A.M.; Guo, J.M. Non-uniform Slip Rate and Millennial Recurrence Interval of Large Earthquakes along the Eastern Segment of the Kunlun Fault, Northern Tibet. Bull. Seismol. Soc. Am. 2008, 98, 2866–2878. [Google Scholar] [CrossRef]
- Institute of Geology, State Seismological Bureau, Seismological Bureau of Ningxia Hui Autonomous Region. Research on the Active Haiyuan Fault Zone; Seismological Press: Beijing, China, 1990. [Google Scholar]
- Matsuda, T. Estimation of future destructive earthquakes from active faults on land in Japan. J. Phys. Earth Suppl. 1977, 25, 795–855. [Google Scholar] [CrossRef] [PubMed]
- Wallace, R.E. Terms for expressing earthquake potential prediction, and probability. Bull. Seism. Soc. Am. 1984, 74, 1819–1925. [Google Scholar]
- Teng, R.Z.; Jin, Y.Q.; Li, X.H. Characteristics of recent activity along the fault zone at the northern edge of western Qinling Mt. Northwestern Seismol. J. 1994, 1, 85–90. [Google Scholar]
- Cao, J.J.; Liu, B.Z.; Wen, X.Z. Determination of the Average Recurrence Intervals of Characteristic Earthquake and Estimate of Earthquake Rick on Northern Xiqinling Faults. Earthq. Res. 2003, 26, 372–381. [Google Scholar]
- Zhang, P.Z.; Min, W.; Deng, Q.D. Paleoearthquake and strong earthquake recurrence interval in Haiyuan Active Fault. Sci. China Ser. D 2003, 33, 705–713. [Google Scholar]
- Ou, Q.; Kulikova, G.; Yu, J.; Elliott, A.; Parsons, B.; Walker, R. Magnitude of the 1920 Haiyuan Earthquake Reestimated Using Seismological and Geomorphological Methods. J. Geophys. Res. Solid Earth 2020, 125, 8. [Google Scholar] [CrossRef]
- Zhen, W.J. Geometric Pattern and Active Tectonics of the Hexi Corridor and Its Adjacent Regions. Ph.D. Thesis, Institute of Geology, China Earthquake Administration, Beijing, China, 2009. [Google Scholar]
- Chen, B.L.; Wang, C.Y.; Gong, H.L. A new understanding of the characteristics of Late Quaternary activity of the northern Yumushan marginal fault in the Hexi corridor, northwestern China. Geol. Bull. China 2007, 26, 976–983. [Google Scholar]
- Zhou, J.S.; Mao, S.M.; Chen, Z.T. Preliminary study on the Late Quaternary Active feature of The Yumushan Eastern Marginal Fault Zone. Earthq. Res. Plateau 1993, 5, 31–35. [Google Scholar]
- Wang, Y.C.; Liu, B.C. Analysis on Seismic Risk for Faults in The Mid-Esstern Qilianshan Area. Northwestern Seismol. J. 2001, 23, 330–338. [Google Scholar]
- Kang, L.X. Analysis of paleoearthquake on Changma Fault. J. Seismol. 1986, 4, 16–21. [Google Scholar]
- Guo, J.X.; Hou, Z.Q.; Hou, K.M. Active Character and Palaeo-earthquake on median Section of Changma-Qilian Fault Zone in Holocene. Northwestern Seismol. J. 1990, 12, 38–43. [Google Scholar]
- Liu, B.C.; Cao, J.J.; Yuan, D.Y. Quantitative data of Acitive Faults within the Active Tectonic Block in North Qinghai-xizang Plateau. Seismol. Geol. 2008, 30, 161–175. [Google Scholar]
- Hen, W.G.; Liu, B.J.; Yuan, D.Y. Preliminary research on the paleoearthquakes along the Leng Long Ling active fault zone. In Research on Active Fault (8); Institute of Geology, China Seismological Bureau, Ed.; Seismological Press: Beijing, China, 2006; pp. 64–74. (In Chinese) [Google Scholar]
- Institute of Geology, State Seismological Burean, Lanzhou Institute of Seismology, State Seismological Bureau. The Qilian Moutain-Hexi Corridou Active Fault System; Seismological Press: Beijing, China, 1993. (In Chinese) [Google Scholar]
- Liu, X.F.; Liu, B.Z.; Lv, T.Y. The research on the Laohushan active fault South China. J. Seismol. 1994, 14, 9–16. [Google Scholar]
- Zen, W.J.; Yuan, D.Y. Characteristics of Palaeoearthquake Activity along The Active Tianqiaogou Huangyangchuan Fault on The Eastern Section of The Qilanshan mountains. Seismol. Geol. 2004, 26, 645–657. [Google Scholar]
- Min, W.; Zhang, P.Z.; Deng, Q.D. Study of Holocene paleoearthquake on Zhongwei-Tongxin Fault zone. Seismol. Geol. 2001, 23, 357–366. [Google Scholar]
- Liu, X.L.; Yuan, D.Y. Study on The Active features of Bsy Guole River Active Fault, Delingha, Qinghai. Northwestern Seismol. J. 2004, 26, 303–308. [Google Scholar]
- Yuan, D.Y.; Zhang, P.Z.; Liu, X.L. The tectonic activity and deformation features during the Late Quaternary of ElashanMountain active fault zone in Qinghai Province and its implication for the deformationof the northeastern margins of the Qinghai-Tibet Platea. Earth Sci. Front. 2004, 11, 393–402. [Google Scholar]
- Hu, D.; Wu, Z.; Wu, Z.; Zhao, X.; Ye, P. Late quaternary paleoseismic history on the kusaihu segment of East Kunlun fault zone in northern Tibet. Quat. Sci. 2007, 27, 27–34. (In Chinese) [Google Scholar]
- Hu, D.; Ye, P.; Wu, Z.; Wu, Z.; Zhao, X.; Liu, Q. Research onHolocene paleoearthquakes on the Xidatan segment of the EastKunlun fault zone in Northern Tibet. Quat. Sci. 2006, 26, 1012–1020. (In Chinese) [Google Scholar]
- Ren, J.; Xu, X.; Yeats, R.S.; Zhang, S.; Ding, R.; Gong, Z. Holocene pa-leoearthquakes of the Maoergai fault, eastern Tibet. Tectonophysics 2013, 590, 121–135. [Google Scholar] [CrossRef]
- Task Group of Altun Active Fault Zone; State Seismological Bureau. Altun Active Fault Zone; Seismological Press: Beijing, China, 1992. (In Chinese) [Google Scholar]
- Shao, Y.; Zou, X.; Yuan, D.; Yao, Y.; Liu, X. Late Quaternary Slip along Yangguan Fault at Northeastern Section of Altyn Tagh Fault and Implications for Seismic Risk. Earth Sci. 2021, 46, 683–696. [Google Scholar] [CrossRef]
- Yu, W.; Chen, Z.; Chen, B.; Wang, Y.; Meng, L.; Sun, Y.; Zhang, W. Early Paleozoic Tectonic Deformation in Qiashenkansayigou Area, North Altun, and Implication for Tectonic Evolution. J. Geomech. 2019, 25, 301–312, (In Chinese with English abstract). [Google Scholar]
- Xiong, R.W.; Ren, J.W.; Zhang, J.L. Late Quaternary Active Characteristics of the Gande Segment in the Maduo-Gande Fault Zone. Earthquake 2010, 30, 65–73. [Google Scholar]
- The Research Group on Active Fault System around Ordos Massif, State Seismological Bureau. Active Fault System around Ordos Massif; Seismological Press: Beijing, China, 1988. (In Chinese) [Google Scholar]
- Cai, Z.Z.; Liao, Y.H.; Zhang, W.J. Late Quaternary Paleoearthquakes and Their Rupture Features along the Lingwu Fault. Seismol. Geol. 2001, 23, 15–23. [Google Scholar]
- Min, W.; Chai, Z.Z.; Wang, P. The study on the paleoearthquakes on the eastern pienmont fault of the luoshan mountains in Holocene. Earthq. Res. Plateau 1993, 5, 97–102. [Google Scholar]
- Du, P.; Chai, Z.Z.; Liao, Y.H. Study on Holocene Acticity of The South Segment of The Eastern Piedmont fault of the South Segment of The Eastern Piedmont Fault of Helan mountains between Taomengou and Yushugou. Seismol. Geol. 2009, 31, 256–264. [Google Scholar]
Name of Segment | Length of Segment (km) | Boundary Mark of Segment Division (with West Segment) | Type of Rupture | Equation of Statistical Relationship | Estimate of the Magnitude (Mw) | Estimate of the Magnitude (Ms) |
---|---|---|---|---|---|---|
Maqin segment | 132 | Animaqing Mountain uplift | Single-segment rupture | Mw = 5.16 + 1.12LgL [22] Ms = 1.412 + 0.845Mw [23] | 7.5 | 7.7 |
Maqu segment | 180 | Triple junction (fault intersection decomposition zone) | Single-segment rupture | 7.6 | 7.8 | |
Maqin–Maqu segment | 312 | Animaqing Mountain uplift | Two-segment joint rupture | 7.9 | 8.1 |
Name of Segment | Elapsed Time since Last Earthquake (t) | Average Recurrence Interval of Ancient Earthquakes (R) | Qualitative Classification of Risk | Relationship of Probability Distribution Function | (Ms ≥ 7) Conditional Probability P (%) | ||
---|---|---|---|---|---|---|---|
2023–2043 (Δt = 20) | 2023–2073 (Δt = 50) | 2023–2123 (Δt = 100) | |||||
Maqin | 977–1090a | 1765 a | B | (2) | 0.82–1.00% | 2.09–2.56% | 4.33–5.27% |
(5) | 1.11–1.19% | 2.65–2.72% | 5.19–5.34% | ||||
Maqu | 1210 ± 40a | 1465 a | A | (2) | 2.26% | 5.70% | 11.47% |
(5) | 1.19 | 2.95 | 5.77 |
Name of Segment | Maqin–Maqu Segment of the Eastern Kunlun Fault | ||
---|---|---|---|
Future time interval/a | 2023–2043 (Δt = 20) | 2023–2073 (Δt = 50) | 2023–2123 (Δt = 100) |
Joint probability | 3.24% | 8.11% | 16.14% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Zhou, B. Assessment of Strong Earthquake Risk in Maqin–Maqu Segment of the Eastern Kunlun Fault, Northeast Tibet Plateau. Appl. Sci. 2024, 14, 2691. https://doi.org/10.3390/app14072691
Li Z, Zhou B. Assessment of Strong Earthquake Risk in Maqin–Maqu Segment of the Eastern Kunlun Fault, Northeast Tibet Plateau. Applied Sciences. 2024; 14(7):2691. https://doi.org/10.3390/app14072691
Chicago/Turabian StyleLi, Zhengfang, and Bengang Zhou. 2024. "Assessment of Strong Earthquake Risk in Maqin–Maqu Segment of the Eastern Kunlun Fault, Northeast Tibet Plateau" Applied Sciences 14, no. 7: 2691. https://doi.org/10.3390/app14072691
APA StyleLi, Z., & Zhou, B. (2024). Assessment of Strong Earthquake Risk in Maqin–Maqu Segment of the Eastern Kunlun Fault, Northeast Tibet Plateau. Applied Sciences, 14(7), 2691. https://doi.org/10.3390/app14072691