Analyzing Parking Demand Characteristics Using a Bayesian Model Averaging
Abstract
:1. Introduction
2. Data Preparation
3. Methodology
3.1. Bayesian Model Averaging
3.2. Difficulties in Implementing BMA
3.3. Model Space Determination
3.4. Posterior Model Probability Calculation
3.5. BMA Implementation Procedure
- Step 1: Determination of model space. This step is to determine a set of candidate models as the model space. The details are described in Section 3.3.
- Step 2: Parameter estimation and evaluation of candidate models. According to the parking duration dataset, the parameters of candidate models are estimated using different methods. More specifically, the maximum likelihood estimation and the expectation-maximum methods are applied to estimate the parameters of single models and mixture models, respectively. Then, several goodness-of-fit metrics are calculated, including the log-likelihood, Akaike information criterion (AIC), and Bayesian information criterion.
- Step 3: Calculate the posterior model probability. According to the AIC values from step 2, the posterior model probability of each candidate model can be calculated using Equation (7).
- Step 4: Generate the probability density function of BMA. As per the posterior model probability and the probability density functions of candidate models, the derived probability density function of BMA can be obtained using Equation (1).
4. Experiments and Results
4.1. Parameter Estimation of Candidate Models
4.2. BMA Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Low, R.; Tekler, Z.D.; Cheah, L. Predicting commercial vehicle parking duration using generative adversarial multiple imputation networks. Transp. Res. Rec. 2020, 2674, 820–831. [Google Scholar] [CrossRef]
- Castrellon, J.P.; Sanchez-Diaz, I.; Kalahasthi, L.K. Enabling factors and durations data analytics for dynamic freight parking limits. Transp. Res. Rec. 2023, 2677, 219–234. [Google Scholar] [CrossRef]
- Valiente, R.; Toghi, B.; Pedarsani, R.; Fallah, Y.P. Robustness and adaptability of reinforcement learning-based cooperative autonomous driving in mixed-autonomy traffic. IEEE Open J. Intell. Transp. Syst. 2022, 3, 397–410. [Google Scholar] [CrossRef]
- Macioszek, E.; Kurek, A. P&R parking and bike-sharing system as solutions supporting transport accessibility of the city. Transp. Probl. 2020, 15, 275–286. [Google Scholar]
- Macioszek, E.; Kurek, A. The analysis of the factors determining the choice of park and ride facility using a multinomial logit model. Energies 2021, 14, 203. [Google Scholar] [CrossRef]
- Ornelas, D.A.; Nourinejad, M.; Park, P.Y.; Roorda, M.J. Managing parking with progressive pricing. Transp. Res. Part C Emerg. Technol. 2023, 149, 104040. [Google Scholar] [CrossRef]
- Nicolet, A.; Negenborn, R.R.; Atasoy, B. A logit mixture model estimating the heterogeneous mode choice preferences of shippers based on aggregate data. IEEE Open J. Intell. Transp. Syst. 2022, 3, 650–661. [Google Scholar] [CrossRef]
- Parmar, J.; Das, P.; Dave, S.M. Study on demand and characteristics of parking system in urban areas: A review. J. Traffic Transp. Eng. (Engl. Ed.) 2020, 7, 111–124. [Google Scholar] [CrossRef]
- Li, L.; Li, Y. Short-term prediction of parking demand for parking delicacy management. J. Tongji Univ. (Nat. Sci.) 2021, 49, 1301–1306. [Google Scholar]
- Karaliopoulos, M.; Mastakas, O.; Chai, W.K. Matching supply and demand in online parking reservation platforms. IEEE Trans. Intell. Transp. Syst. 2022, 24, 3182–3193. [Google Scholar] [CrossRef]
- Li, L.; He, S.; Liang, X. A method for forecasting parking demand of complex under consistent feature. J. Tongji Univ. (Nat. Sci.) 2018, 46, 340–345. [Google Scholar]
- Schmid, J.; Wang, X.C.; Conway, A. Commercial vehicle parking duration in New York City and its implications for planning. Transp. Res. Part A: Policy Pract. 2018, 116, 580–590. [Google Scholar] [CrossRef]
- Ajeng, C.; Gim, T.-H.T. Analyzing on-street parking duration and demand in a Metropolitan City of a developing country: A case study of Yogyakarta City, Indonesia. Sustainability 2018, 10, 591. [Google Scholar] [CrossRef]
- Qin, H.; Zheng, F.; Yu, B.; Wang, Z. Analysis of the effect of demand-driven dynamic parking pricing on on-street parking demand. IEEE Access 2022, 10, 70092–70103. [Google Scholar] [CrossRef]
- Parmar, J.; Das, P.; Dave, S.M. A machine learning approach for modelling parking duration in urban land-use. Phys. A Stat. Mech. Its Appl. 2021, 572, 125873. [Google Scholar] [CrossRef]
- Ottosson, D.B.; Chen, C.; Wang, T.; Lin, H. The sensitivity of on-street parking demand in response to price changes: A case study in Seattle, WA. Transp. Policy 2013, 25, 222–232. [Google Scholar] [CrossRef]
- Mo, B.; Kong, H.; Wang, H.; Wang, X.C.; Li, R. Impact of pricing policy change on on-street parking demand and user satisfaction: A case study in Nanning, China. Transp. Res. Part A Policy Pract. 2021, 148, 445–469. [Google Scholar] [CrossRef]
- Guo, X.; Wang, Q.; Zhao, J. Data-driven vehicle rebalancing with predictive prescriptions in the ride-hailing system. IEEE Open J. Intell. Transp. Syst. 2022, 3, 251–266. [Google Scholar] [CrossRef]
- Desai, J.; Scholer, B.; Mathew, J.K.; Li, H.; Bullock, D.M. Analysis of route choice during planned and unplanned road closures. IEEE Open J. Intell. Transp. Syst. 2022, 3, 489–502. [Google Scholar] [CrossRef]
- Ghandeharioun, Z.; Kouvelas, A. Link travel time estimation for arterial networks based on sparse GPS data and considering progressive correlations. IEEE Open J. Intell. Transp. Syst. 2022, 3, 679–694. [Google Scholar] [CrossRef]
- Parmar, J.; Das, P.; Azad, F.; Dave, S.; Kumar, R. Evaluation of parking characteristics: A case study of Delhi. Transp. Res. Procedia 2020, 48, 2744–2756. [Google Scholar] [CrossRef]
- Chen, Q.; Wang, Y.; Pan, S. Characteristics of parking in central Shanghai, China. J. Urban Plan. Dev. 2016, 142, 05015012. [Google Scholar] [CrossRef]
- Wang, H.; Li, R.; Wang, X.C.; Shang, P. Effect of on-street parking pricing policies on parking characteristics: A case study of Nanning. Transp. Res. Part A Policy Pract. 2020, 137, 65–78. [Google Scholar] [CrossRef]
- Nie, Y.; Yang, W.; Chen, Z.; Lu, N.; Huang, L.; Huang, H. Public curb parking demand estimation with poi distribution. IEEE Trans. Intell. Transp. Syst. 2021, 23, 4614–4624. [Google Scholar] [CrossRef]
- Sun, Y.; Fan, W.; Schonfeld, P. Static parking choice model with consideration of parking duration. Transp. Res. Rec. 2016, 2543, 134–142. [Google Scholar] [CrossRef]
- Li, L.; Jiang, Y.; Zou, Y.; Wu, B. Potential features of parking demand characteristics. J. Tongji Univ. (Nat. Sci.) 2019, 47, 515–520. [Google Scholar]
- Abdelhalim, A.; Abbas, M. A real-time safety-based optimal velocity model. IEEE Open J. Intell. Transp. Syst. 2022, 3, 165–175. [Google Scholar] [CrossRef]
- Mesfin, B.G.; Sun, D.; Peng, B. Impact of COVID-19 on urban mobility and parking demand distribution: A global review with case study in Melbourne, Australia. Int. J. Environ. Res. Public Health 2022, 19, 7665. [Google Scholar] [CrossRef]
- Ran, J.; Xiucheng, G.; Chen, Y.; Yang, Z.; Zhang, Y.; Tang, L. Dynamic parking demand distribution character based on clustering non-parameter tests. J. Southeast Univ. (Nat. Sci. Ed.) 2011, 41, 871–876. [Google Scholar]
- Li, L.; Gao, T.; Jiang, Y. Night parking demand forecasting based on survival analysis. J. Southeast Univ. (Nat. Sci. Ed.) 2020, 50, 192–199. [Google Scholar]
- Zheng, L.; Xiao, X.; Sun, B.; Mei, D.; Peng, B. Short-term parking demand prediction method based on variable prediction interval. IEEE Access 2020, 8, 58594–58602. [Google Scholar] [CrossRef]
- Kalahasthi, L.K.; Sánchez-Díaz, I.; Castrellon, J.P.; Gil, J.; Browne, M.; Hayes, S.; Ros, C.S. Joint modeling of arrivals and parking durations for freight loading zones: Potential applications to improving urban logistics. Transp. Res. Part A Policy Pract. 2022, 166, 307–329. [Google Scholar] [CrossRef]
- Zou, Y.; Zhu, T.; Xie, Y.; Zhang, Y.; Zhang, Y. Multivariate analysis of car-following behavior data using a coupled hidden Markov model. Transp. Res. Part C Emerg. Technol. 2022, 144, 103914. [Google Scholar] [CrossRef]
- Yang, X.; Zou, Y.; Chen, L. Operation analysis of freeway mixed traffic flow based on catch-up coordination platoon. Accid. Anal. Prev. 2022, 175, 106780. [Google Scholar] [CrossRef]
- Zou, Y.; Han, W.; Lin, B.; Wu, B.; Li, L.; Wu, S.; Abid, M.M. Cross-border travel behavior analysis of Hong Kong-Zhuhai-Macao bridge using MXL-BMA model. J. Adv. Transp. 2023, 2023, 6690346. [Google Scholar] [CrossRef]
- Gharekhani, M.; Nadiri, A.A.; Khatibi, R.; Sadeghfam, S.; Moghaddam, A.A. A study of uncertainties in groundwater vulnerability modelling using Bayesian model averaging (BMA). J. Environ. Manag. 2022, 303, 114168. [Google Scholar] [CrossRef]
- Wang, G.; Jia, R.; Liu, J.; Zhang, H. A hybrid wind power forecasting approach based on Bayesian model averaging and ensemble learning. Renew. Energy 2020, 145, 2426–2434. [Google Scholar] [CrossRef]
- Wu, S.; Zou, Y.; Wu, L.; Zhang, Y. Application of Bayesian model averaging for modeling time headway distribution. Phys. A Stat. Mech. Its Appl. 2023, 620, 128747. [Google Scholar] [CrossRef]
- Gibbons, J.; Cox, G.; Wood, A.; Craigon, J.; Ramsden, S.; Tarsitano, D.; Crout, N. Applying Bayesian model averaging to mechanistic models: An example and comparison of methods. Environ. Model. Softw. 2008, 23, 973–985. [Google Scholar] [CrossRef]
- Li, G.; Shi, J. Application of Bayesian model averaging in modeling long-term wind speed distributions. Renew. Energy 2010, 35, 1192–1202. [Google Scholar] [CrossRef]
- Yao, Y.; Vehtari, A.; Simpson, D.; Gelman, A. Using stacking to average Bayesian predictive distributions (with discussion). Bayesian Anal. 2018, 13, 917–1007. [Google Scholar] [CrossRef]
- Wagenmakers, E.-J.; Farrell, S. AIC model selection using Akaike weights. Psychon. Bull. Rev. 2004, 11, 192–196. [Google Scholar] [CrossRef] [PubMed]
User Type | Minimum | Maximum | Mean | Median | S.D. 1 | |
---|---|---|---|---|---|---|
Arrival | Temporary users | 0.000 | 57.667 | 18.403 | 16.278 | 15.723 |
Long-term users | 1.111 | 76.778 | 13.106 | 7.222 | 18.803 | |
Departure | Temporary users | 0.000 | 40.333 | 18.093 | 18.667 | 10.307 |
Long-term users | 1.333 | 51.889 | 12.903 | 9.333 | 11.411 |
Distribution | Probability Density Function | Parameter |
---|---|---|
Normal | , | |
Log-normal | , | |
Gamma 1 | , | |
Weibull | , | |
Log-logistic | , | |
Burr | , , | |
GEV | , | |
GIG 2 | ,, |
Distribution | Parameter | Estimate | Distribution | Parameter | Estimate |
---|---|---|---|---|---|
Normal | 2.683 | Log-logistic | 0.430 | ||
2.844 | 0.618 | ||||
Log-normal | 0.466 | Burr | 0.839 | ||
1.031 | 2.233 | ||||
Gamma | 1.097 | 0.496 | |||
2.446 | GEV | 0.902 | |||
Weibull | 1.008 | 0.864 | |||
2.693 | 0.963 |
Distribution | Parameter | Estimate | Distribution | Parameter | Estimate |
---|---|---|---|---|---|
GauMM | ) | (0.273, 0.727) | WeiMM | ) | (0.256, 0.744) |
) | (1.890, 9.406) | ) | (10.843, 0.943) | ||
) | (1.128, 7.278) | ) | (9.044, 6.710) | ||
LognMM | ) | (0.283, 0.717) | LoglMM | ) | (0.298, 0.702) |
) | (2.171, 1.298) | ) | (2.172, 1.299) | ||
) | (0.107, 1.163) | ) | (0.068, 0.971) | ||
GamMM | ) | (0.248, 0.752) | GIGMM | ) | (0.271, 0.729) |
) | (87.373, 0.982) | ) | (8.729, 6.816) | ||
) | (0.100, 7.007) | ) | (0.111, 1.548) | ||
) | (46.972, 0.263) |
User Type | Distribution | Log-Likelihood | AIC 1 | BIC 1 | PMP 2 |
---|---|---|---|---|---|
Temporary users | Normal | −3710.85 | 7425.69 | 7436.20 | 0.000 |
Log-normal | −2884.97 | 5773.94 | 5784.45 | 0.910 | |
Gamma | −2988.53 | 5981.06 | 5991.57 | 0.000 | |
Weibull | −2992.44 | 5988.88 | 5999.39 | 0.000 | |
Log-logistic | −2941.78 | 5887.56 | 5898.07 | 0.000 | |
Burr | −2933.35 | 5872.69 | 5881.20 | 0.000 | |
GEV | −2887.29 | 5780.58 | 5789.09 | 0.090 | |
Long-term users | GauMM | −4761.90 | 9533.81 | 9560.62 | 0.000 |
LognMM | −4447.30 | 8904.60 | 8931.41 | 0.103 | |
GamMM | −4497.93 | 9005.86 | 9032.68 | 0.000 | |
WeiMM | −4494.62 | 8999.23 | 9026.05 | 0.000 | |
LoglMM | −4472.90 | 8955.80 | 8982.62 | 0.000 | |
GIGMM | −4445.13 | 8900.27 | 8927.08 | 0.897 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, B.; Zhang, P.; Wu, S.; Zou, Y.; Li, L.; Tang, S. Analyzing Parking Demand Characteristics Using a Bayesian Model Averaging. Appl. Sci. 2023, 13, 13245. https://doi.org/10.3390/app132413245
Liu B, Zhang P, Wu S, Zou Y, Li L, Tang S. Analyzing Parking Demand Characteristics Using a Bayesian Model Averaging. Applied Sciences. 2023; 13(24):13245. https://doi.org/10.3390/app132413245
Chicago/Turabian StyleLiu, Bo, Peng Zhang, Shubo Wu, Yajie Zou, Linbo Li, and Shuning Tang. 2023. "Analyzing Parking Demand Characteristics Using a Bayesian Model Averaging" Applied Sciences 13, no. 24: 13245. https://doi.org/10.3390/app132413245
APA StyleLiu, B., Zhang, P., Wu, S., Zou, Y., Li, L., & Tang, S. (2023). Analyzing Parking Demand Characteristics Using a Bayesian Model Averaging. Applied Sciences, 13(24), 13245. https://doi.org/10.3390/app132413245